Supplementary Appendix

Rare single nucleotide and copy number variants and the etiology of congenital obstructive uropathy: implications for genetic diagnosis

Dina F Ahram PhD^{1*}, Tze Y Lim MSc^{1*}, Juntao Ke PhD^{1*}, Gina Jin BS^{1*}, Miguel Verbitsky PhD¹, Monica Bodria MD², Byum Hee Kil BS¹, Debanjana Chatterjee PhD¹, Stacy E Piva BS¹, Maddalena Marasa MD¹, Jun Y Zhang PhD¹, Enrico Cocchi MD¹, Gianluca Caridi BS^{2,3}, Zoran Gucev MD⁴, Vladimir J Lozanovski MD^{4,5}, Isabella Pisani MD⁶, Claudia Izzi MD⁷, Gianfranco Savoldi MD⁸, Barbara Gnutti MS⁸, Valentina P Capone MD^{1,9}, William Morello MD⁹, Stefano Guarino MD¹⁰, Pasquale Esposito MD^{11,12}, Sarah Lambert MD¹³, Jai Radhakrishnan MD¹, Gerald B Appel MD¹, Natalie S Uy MD¹⁴, Maya K Rao MD¹, Pietro A Canetta MD¹, Andrew S Bomback MD¹, Jordan G Nestor MD¹, Thomas Hays MD, PhD¹⁵, David J Cohen MD¹, Carolina Finale NA¹⁶, Joanna A E van Wijk MD, PhD¹⁷, Claudio La Scola MD¹⁸, Olga Baraldi MD¹⁹, Francesco Tondolo MD¹⁹, Dacia Di Renzo PhD²⁰, Anna Jamry-Dziurla BS²¹, Alessandro Pezzutto MD²², Valeria Manca MD²³, Adele Mitrotti MD^{1,24}, Domenico Santoro MD²⁵, Giovanni Conti MD²⁶, Marida Martino MD²⁷, Mario Giordano MD²⁷, Loreto Gesualdo MD²⁴, Lada Zibar MD, PhD^{28,29}, Giuseppe Masnata MD²³, Mario Bonomini MD²², Daniele Alberti³⁰, Gaetano La Manna MD³¹, Yasar Caliskan MD³², Andrea Ranghino MD¹⁶, Pierluigi Marzuillo MD¹⁰, Krzysztof Kiryluk¹, Grażyna Krzemień MD³³, Monika Miklaszewska MD³⁴, Fangming Lin¹⁴, Giovanni Montini MD^{9,35}, Francesco Scolari MD³⁶, Enrico Fiaccadori MD⁶, Adela Arapović^{37,38}, Marijan Saraga MD^{37,38}, James McKiernan³⁹, Shumyle Alam MD^{39,40}, Marcin Zaniew MD⁴¹, Maria Szczepańska MD⁴², Agnieszka Szmigielska MD³³, Przemysław Sikora MD⁴³, Dorota Drożdż MD³⁴, Malgorzata Mizerska-Wasiak MD³³, Shrikant Mane PhD⁴⁴, Richard P Lifton MD, PhD⁴⁴, Velibor Tasic MD⁴, Anna Latos-Bielenska MD²¹, Ali G Gharavi MD¹, Gian Marco Ghiggeri MD^{2,3}, Anna Materna-Kiryluk MD²¹, Rik Westland MD, PhD¹⁷, Simone Sanna-Cherchi MD¹

¹Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
 ²Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
 ³Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
 ⁴Medical Faculty of Skopje, University Children's Hospital, Skopje, Macedonia
 ⁵Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Germany
 ⁶Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
 ⁷Division of Nephrology and Department of Obstetrics and Gynecology, ASST Spedali Civili of Brescia, Italy
 ⁸Medical Genetics Laboratory, ASST-Spedali Civili, Brescia, Italy

⁹Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, via della Commenda 9, Milan, Italy ¹⁰Department of Woman and Child and of General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy

¹¹Department of Internal Medicine, University of Genoa, Genova, Italy.

¹²Unit of Nephrology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy

¹³Yale School of Medicine/Yale New Haven Health System, New Haven, CT, USA

¹⁴Department of Pediatric, Division of Pediatric Nephrology, Columbia University Irving Medical Center NewYork-Presbyterian Morgan Stanley Children's Hospital in New York, NY, USA

 ¹⁵Department of Pediatrics, Division of Neonatology, Columbia University, New York, NY, USA
 ¹⁶Nephrology, Dialysis and Renal Transplantation Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti Umberto I, Lancisi, Salesi of Ancona, Ancona, Italy

¹⁷Department of Pediatric Nephrology, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands

¹⁸Department of Pediatrics, Nephrology and Dialysis Unit, Azienda Ospedaliero Universitaria Sant'Orsola-Malpighi, Via Massarenti 11, Bologna, 40138, Italy

¹⁹Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, Bologna, Italy

²⁰Pediatric Surgery of "G. d'Annunzio" University of Chieti-Pescara and "Spirito Santo" Hospital of Pescara, Italy

²¹Polish Registry of Congenital Malformations, Chair and Department of Medical Genetics, University of Medical Sciences, 61-701 Poznan, Poland

²²Department of Medicine, Nephrology and Dialysis Unit, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy

²³Department of Pediatric Urology, Azienda Ospedaliera Brotzu, Cagliari, Italy

²⁴Department of Emergency and Organ Transplantation, Section of Nephrology, University of Bari, Bari, Italy

²⁵Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy

²⁶Department of Pediatric Nephrology, Azienda Ospedaliera Universitaria "G. Martino", Messina, Italy
²⁷Pediatric Nephrology and Dialysis Unit, Pediatric Hospital "Giovanni XXIII", Bari, Italy

²⁸Department of Nephrology, University Hospital Merkur, Zagreb, Croatia

²⁹Faculty of Medicine University Josip Juraj Strossmayer in Osijek, Osijek, Croatia ³⁰Pediatric Surgery, University of Brescia, Brescia, Italy

³¹IRCCS Azienda Ospedaliera di Bologna, Nephrology, Dialysis and Kidney Transplant Unit, St. Orsola University Hospital, Via Massarenti 9, Bologna, 40100, Italy

³²Division of Nephrology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
 ³³Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
 ³⁴Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College,

Krakow, Poland

³⁵Department of Clinical Sciences and Community Health, Giuliana and Bernardo Caprotti Chair of Pediatrics, University of Milano, Milano, Italy

³⁶Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Division of Nephrology and Dialysis, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy ³⁷Department of Pediatrics, University Hospital of Split,, Split, Croatia

³⁸School of Medicine, University of Split, Split, Croatia

³⁹Department of Urology, Columbia University Irving Medical Center, New York, NY, USA

⁴⁰Division of Pediatric Urology, MUSC Health-University Medical Center, Charleston, SC, USA

⁴¹Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland

⁴²Department of Pediatrics, FMS in Zabrze, Medical University of Silesia, Katowice, Poland

⁴³Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland

⁴⁴Yale Center for Mendelian Genomics (YCMG), New Haven, CT, USA

*These authors contributed equally

TABLE OF CONTENTS

Supplementary Figure S1. Analytical workflow for SNV and CNV analyses of the study cohort

Supplementary Figure S2. Genetically-determined ancestry proportions of the study cohort

Supplementary Figure S3. Overall diagnostic yield in each COU subcategory

Supplementary Table S1. List of 382 prioritized genes for developmental defects of the kidney and urinary tract

Supplementary Table S2. Ultrarare SNVs of uncertain significance identified in genes with an autosomal dominant inheritance

Supplementary Table S3: Rare structural variants of uncertain significance.

Supplementary Figure S1. Study cohort and analytical workflow for SNV and CNV analyses

A) The COU cohort comprised 733 cases that have been subjected to exome sequencing. 434 of the 733 cases were also genotyped with DNA SNP arrays and have been used as an orthogonal method for CNV variant calling and validation in this study. Among these 434 cases with DNA array data, 162 of the were previously published (Verbitsky et al., Nat Genet 2019)¹. **B)** Depiction of workflows to retrieve single nucleotide variants data and copy-number variant data using exome sequencing (left, orange) and chromosomal microarray (right, blue). Data on copy number variation was retrieved using exome sequencing, and compared to chromosomal microarray data which was available for a subgroup of the study cohort for internal validation. For a detailed description of our work-flow, see Methods section in the main manuscript.

Supplementary Figure S2. Genetically-determined ancestry proportions of the study cohort

The predicted probability of genetic ancestry for each of the 733 cases included in the COU cohort was computed using a set of 12,840 common, ancestry-informative, markers extracted from exome sequencing data. The ancestry probability for every sample was calculated by projecting the 12,840 common markers on principal component analysis (PCA) space and then running a previously trained ancestry classifier (multi-layer perceptron using Scikit-learn API in Python) implemented with ATAV IGM server². Each column distributed on the x-axis represents the probability distribution of ancestry in a COU case. Columns with more than one color denote genetic admixture of multiple ancestries. COU= congenital obstructive uropathy.

Supplementary Figure S3. Overall diagnostic yield in each COU subcategory

There were no statistical differences between COU subcategories (Chi-square 3x2 P= 0.3). COU-NOS, congenital obstructive uropathy not otherwise specified, UPJO, ureteropelvic junction obstruction; UVJO, ureterovesical junction obstruction.

SUPPLEMENTARY TABLES See attached Excel file

SUPPLEMENTARY REFERENCES

- 1. Verbitsky, M. *et al.* The copy number variation landscape of congenital anomalies of the kidney and urinary tract. *Nat Genet* **51**, 117-127 (2019).
- 2. Ren, Z. *et al.* ATAV: a comprehensive platform for population-scale genomic analyses. *BMC Bioinformatics* **22**, 149 (2021).