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A General algorithm for estimating the unknowns
JUMP requires tuning parameters λ1, λ2 and λ3 in estimation of the unknown parameters, π̂(1)

0 (λ1), π̂
(2)
0 (λ2)

and ξ̂00(λ3), which involves a trade-off between bias and variance. We use the following general algorithm
provided in [9] to estimate π̂

(1)
0 (λ1), π̂

(2)
0 (λ2) and ξ̂00(λ3) from p-values, (p1i, p2i), i = 1, . . . ,m, respectively.

1. For a range of λ1, λ2, and λ3, say {0.01, 0.02, 0.03, . . . , 0.80}, calculate corresponding estimates by

π̂
(1)
0 (λ1) =

∑m
i=1 I{p1i ≥ λ1}
m(1− λ1)

,

π̂
(2)
0 (λ2) =

∑m
i=1 I{p2i ≥ λ2}
m(1− λ2)

,

ξ̂00(λ3) =

∑m
i=1 I{p1i ≥ λ3, p2i ≥ λ3}

m(1− λ3)2
.

2. Fit three natural cubic splines with 3 degrees of freedom for π̂
(1)
0 (λ1), π̂

(2)
0 (λ2) and ξ̂00(λ3) over λ1, λ2

and λ3, denoted as f̂1, f̂2 and f̂3, respectively.

3. Find λ̂1, λ̂2 and λ̂3 corresponding to zero derivatives of f̂1, f̂2 and f̂3. Let π̂
(1)
0 (λ̂1), π̂

(2)
0 (λ̂2) and ξ̂00(λ̂3)

be our final estimates.

B Comparison methods overview
In the simulation study, We compared JUMP to several statistical methods for replicability analysis methods
(ad hoc BH, naïve MaxP, IDR, MaRR and radjust) and two p-value combination methods for meta-analysis.
Let (p1i, p2i), i = 1, . . . ,m denote the paired p-values from two studies. We review these comparison methods
as follows.

B.1 The Ad hoc BH method
BH [1] is the most popular multiple testing procedure that conservatively controls the FDR for m independent
or positively correlated tests. In study j, j = 1, 2, the BH procedure proceeds as below:

• Step 1. Let pj(1) ≤ pj(2) ≤ · · · ≤ pj(m) be the ordered p-values in study j, and denote by H
(j)
(i) the null

hypothesis corresponding to pj(i);
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• Step 2. Find the largest i such that pj(i) ≤ i
mα, i.e., k̂ = max{i ≥ 1 : pj(i) ≤ i

mα}, and k̂ = 0 if the set
is empty;

• Step 3. Reject all H(j)
(i) for i = 1, . . . , k̂.

The ad hoc BH method for replicability analysis identifies features rejected by both studies as replicable
signals.

B.2 The naïve MaxP method
Define the maximum p-values as

qi = max{p1i, p2i}, i = 1, . . . ,m.

As discussed in the paper, qi follows a super-uniform distribution under the replicability null. The naïve MaxP
method directly applies BH [1] to qi, i = 1, . . . ,m for FDR control of replicability analysis.

B.3 The radjust procedure
The radjust procedure [2] works as follows,

• Step 1. For a pre-specified FDR level α, compute

R = max
[
r :

∑
i∈S1∩S2

I

{
(p1i, p2i) ≤

(
rα

2|S2|
,

rα

2|S1|

)}
= r

]
,

where Sj is the set of features pre-selected in study j for j = 1, 2. By default, it selects features with
p-values less than or equal to α/2.

• Step 2. Declare as replicated the features with indices in the set

R =

{
i : (p1i, p2i) ≤

(
Rα

2|S2|
,
Rα

2|S1|

)
, i ∈ S1 ∩ S2

}
.

This procedure gains power by pre-filtering irrelevant features. It looks very similar to ad-hoc BH procedure
where the BH procedure is implemented for each study and the intersection of significant findings are regarded
as replicable features. After close inspection, we find these two procedures are quite different. We use the
following toy example to illustrate the difference between ad hoc BH and radjust procedure.

Assume we have two lists of p-values

(p1i)
10
i=1 = (0, 0, 0, 0, α/12, 3α/10, 1, 1, 1, 1),

(p2i)
10
i=1 = (1, 1, 1, 1, 3α/10, α/12, 0, 0, 0, 0).

Applying BH procedure separately to the two studies with FDR level α/2, we get the rejections R1 =
{1, 2, 3, 4, 5, 6} and R2 = {5, 6, 7, 8, 9, 10}. The discovery set of ad hoc BH is R1 ∩R2 = {5, 6}.

If we pre-select p-values that are less than or equal to α/2, we get the pre-selection sets S1 = {1, 2, 3, 4, 5, 6}
and S2 = {5, 6, 7, 8, 9, 10}. At FDR level α/2, implementing Step 1 and 2 of radjust, we obtain R = 0 and
R = ∅. This toy example shows that radjust is more conservative than the ad hoc BH procedure.

B.4 The IDR procedure
The IDR procedure [5] deals with high throughput experimental data from two studies. For feature i, we have
the bivariate observations (x1i, x2i), i = 1, . . . ,m. It is assumed that (x1i, x2i), i = 1, . . . ,m consist of genuine
signals (replicable signals across two studies) and spurious signals (non-replicable signals). Let Ki denote
whether the ith feature is a replicable signal (Ki = 1) or not (Ki = 0). It is assumed that Ki, i = 1, . . . ,m are
independent and follow the Bernoulli distribution. Denote π1 = P (Ki = 1). To induce dependence between
x1i and x2i, we use a copula model. Specifically, we assume that the observed data (x1i, x2i) are generated
from latent variables (z1i, z2i). The latent variables(

z1i
z2i

) ∣∣∣∣∣Ki = k ∼ N

((
µk

µk

)
, σ2

k

(
1 ρk
ρk 1

))
, k = 0, 1,
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where µ0 = 0, µ1 > 0, σ2
0 = 1, σ2

1 > 0, ρ0 = 0, and 0 < ρ1 ≤ 1. The cdf of zji is

G(x) = P (zji ≤ x) = π1Φ

(
x− µ1

σ1

)
+ (1− π1)Φ(x).

Denote the marginal distribution function of xji, i = 1, . . . ,m; j = 1, 2, as Fj . Generate

xji = F−1
j (G(zji)), i = 1, . . . ,m; j = 1, 2.

In this way, dependence across two studies is produced. To control the false discovery rate, we use the local
irreproducible discovery rate (idr) as the test statistic, which is defined as the posterior probability of Ki = 0
given (x1i, x2i). Specifically,

idr(x1i, x2i) := P (Ki = 0 | x1i, x2i)

=
(1− π1)h0[G

−1{F1(x1i)}, G−1{F2(x2i)}]
(1− π1)h0[G−1{F1(x1i)}, G−1{F2(x2i)}] + π1h1[G−1{F1(x1i)}, G−1{F2(x2i)}]

.

where
hk ∼ N

((
µk

µk

)
, σ2

k

(
1 ρk
ρk 1

))
, k = 0, 1.

The estimation of (π1, µ1, σ
2
1 , ρ1) and (F1, F2) is through the EM algorithm [3]. The step-up procedure based

on ordered idr can be used for FDR control [11]. Specifically, let idr(1) ≤ · · · ≤ idr(m) be the ranked idr values,
and denote H(1), . . . , H(m) as the corresponding hypotheses. Find l = max{i : i−1

∑i
j=1 idrj ≤ α}, and reject

all H(i) with i = 1, . . . , l.

B.5 The MaRR procedure
The MaRR procedure [6] uses the maximum rank of each feature. The null hypothesis is that H0i : p1i and p2i
are irreproducible. Denote (R1i, R2i) as the ranks of (p1i, p2i), i = 1, . . . ,m within each study. Define

Mi = max{R1i, R2i}, i = 1, . . . ,m.

Let π1 denote the proportion of replicable signals. Under the assumptions:
(I1) if gene g is reproducible and gene h is irreproducible

R1g < R1h, R2g < R2h;

(I2) the correlation between the ranks of the reproducible gene is non-negative;
(I3) the two ranks of the irreproducible gene are independent,
irreproducible ranks R1i and R2i are uniformly distributed between ⌊mπ1⌋+1 and m. Denote the conditional
null survival function of Mi/m as

Sm,π1(x) = P (Mi/m > x | gene i is irreproducible)
=1− P (R1i/m ≤ x,R2i/m ≤ x | gene i is irreproducible)

=1−
2∏

j=1

P (Rji/m ≤ x | gene i is irreproducible)

=

{
1, x < π1,

1− (ix−jπ1
)2

(m−jπ1 )
2 , π1 ≤ x ≤ 1,

where ix = ⌊mx⌋ and jπ1
= ⌊mπ1⌋. The limiting conditional survival function of Mi/m under the null is

Sm,π1
(x) → Sπ1

(x) =


1 x < π1

1− (x−π1)
2

(1−π1)2
π1 ≤ x ≤ 1

0 1 < x

.
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The empirical survival function can be estimated by Ŝm(x) = 1
m

∑m
i=1 I(Mi/m ≥ x), x ∈ (0, 1). By strong

law of large numbers and Bayesian formula,

Ŝm(x) →P (Mi/m ≥ x)

=(1− π1)P (Mi/m ≥ x | gene i is irreproducible) + π1 × 0

=(1− π1)Sπ1(x) for x ∈ (π1, 1).

If we estimate π1 by i/m, we can define the mean square error (MSE) as follows.

MSE(i/m) = (m− i)−1
m∑
j=i

(
Ŝm(j/m)− (1− i/m)Si/m(j/m)

)2

.

k̂ is chosen to minimize the MSE in the range between 0 and ⌊0.9m⌋.

k̂ = argmin
i=0,1,...,⌊0.9m⌋

{MSE(i/m)} .

Thus k̂/m serves as a good estimation of π1. To control the FDR at level α, the MaRR generates the rejection
threshold as follows

Define N̂ = max
k̂<i≤n

{
i : mF̂DR(i) =

(i− k̂)2

Q(i)(m− k̂)
≤ α

}
,

where Q(i) =
∑m

j=1 I(Mj ≤ i). Reject all features associated with Mi ≤ N̂ . Philtron et al. [6] relax assumption
(I1) to (R1): P (R1g < R1h) > 1/2 and P (R2g < R2h) > 1/2, which is more plausible in practice.

B.6 The Šidák’s method
The Šidák-corrected minimum p-value [7] can be used for meta-analysis. Specifically, we calculate the aggre-
gated p-values across two studies through

qSi = 1− (1− min{p1i, p2i})2, i = 1, . . . ,m.

Assume that p1i and p2i, i = 1, . . . ,m are independent. Under the null for meta-analysis where p1i and p2i follow
standard uniform distribution, we compute the cdf of min{p1i, p2i}. Specifically, we have P (min{p1i, p2i} ≤
t) = 1 − (1 − t)2. Denote F (t) = 1 − (1 − t)2, qSi = F (min{p1i, p2i}) follows a standard uniform distribution
under the meta-analysis null. Here we use the property that for a standard uniformly distributed random
variable U, the cdf of F−1(U) is F.

We apply the BH procedure [1] on qSi , i = 1, . . . ,m to evaluate the performance of Šidák’s method in
replicability analysis.

B.7 The Lancaster’s method
Lancaster’s method [4] uses different weights for different studies. Denote Fχ2

wj
as the cdf of a χ2 distribution

with wj , j = 1, 2 degree of freedom. For the ith hypothesis, Lancaster’s method combines information across
two studies by a test statistic Li =

∑2
j=1 F

−1
χ2
wj

(pji), which follows a χ2 distribution with degree of freedom
w1 + w2 under the null for meta-analysis that both studies are from the null. The p-value for Lancaster’s
method is computed as the tail probability of the χ2 distribution with w1 + w2 degrees of freedom evaluated
at Li. We denote them as qLi , i = 1, . . . ,m.

We apply the BH procedure [1] on qLi , i = 1, . . . ,m to evaluate the performance of Lancaster’s method in
replicability analysis.

C Realistic simulation studies
We performed realistic simulations based on Replicate 9 and Replicate 12 of the mouse olfactory bulb data mea-
sured with ST technology (files ‘MOB Replicate 9’ and ‘MOB Replicate 12’ in the Spatial Research Website at
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https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/) [8].
The two datasets include 15, 284 genes measured on 237 spatial spots and 16, 034 genes measured on 282 spots,
respectively. We filtered out genes that are expressed in less than 10% spatial spots and selected spots with
at least ten total read counts, resulting in 9, 547 genes on 236 spots for the Replicate 9 dataset and 9, 904
genes on 279 spots for the Replicate 12 dataset. The spatial expression patterns and parameters used in data
generation for each study were inferred from SPARK [10]. We separately generated SRT count data based on
the two studies following the simulation design in [10].

In study j (j = 1, 2), for each gene, the count on spot i was generated from

yi ∼ Poisson(Niλi),

log λi = βi + ϵi,
(1)

where i = 1, . . . , 236 for study 1 and i = 1, . . . , 279 for study 2; Ni denotes total counts of all genes on spot
i, which is obtained from the mouse olfactory bulb data [8]; λi represents the relative expression level of the
focused gene, which will be generated; βi is the mean value of log λi; and ϵi ∼ N(0, s2j ) is the random noise. If
the gene in focus is not spatially variable, we set βi across all spatial spots to be constant, which is the median
value of intercepts estimated from SPARK [10](−9.94 for study 1 and −9.93 for study 2). If the focused gene is
an SVG, we used different βi for spots to exhibit spatial expression patterns. Specifically, we first categorized
the spots into two groups based on the three spatial expression patterns in Fig. S1: a group of spots with
low expression levels and a group of spots with high expression levels. In the low expression group, we set βi

to be the median value of intercepts estimated by SPARK (−9.94 for study 1 and −9.93 for study 2); in the
high expression group, we set βi to be two-fold (weak signal strength), three-fold (moderate signal strength)
or four-fold (strong signal strength) of the corresponding median value on rate parameter, e.g., eβi = 2 · ea
means βi is two-fold of a. Finally, yi was generated from (1) with simulated βi and ϵi.

Let m = 10, 000, ξ11 = 0.05 and ξ01 = ξ10. For a given value of ξ00, corresponding ξ01 and ξ10 can be
obtained by ξ01 = ξ10 = (1 − ξ00 − ξ11)/2. States of genes in two SRT studies, θ1i and θ2i, were generated
from a multinomial distribution with probabilities, P(θ1i = k, θ2i = l) = ξkl, k, l ∈ {0, 1}, for pre-specified
ξ00, ξ01, ξ10 and ξ11. After obtaining θji for i = 1, . . . ,m and j = 1, 2, we simulated gene count matrices based
on corresponding ST data and parameters with different signal strengths (moderate or strong) and different
standard deviations for the error term (sj = 0.3 or 0.5). Then we applied SPARK [10] on the two count data
to get two paired p-values sequences, denoted as (p1i, p2i), i = 1, . . . ,m. Methods for replicability analysis are
based on the paired p-value sequence.

Fig. S2 and Fig. S3 show the FDR control and power comparison of different methods across different
settings. We observe that MaxP and JUMP controlled the FDR at the nominal level across all settings, and
JUMP is more powerful than MaxP. BH is not valid in practice since it failed to control the FDR in some
settings (e.g., ξ00 = 0.5). The power increased for all methods from Pattern I to Pattern III. By examining the
three spatial expression patterns on which the corresponding data were generated (Supplementary Fig. S1),
we speculate that this might be due to the increased spatial variability from Pattern I to Pattern III.

D Computational time
We implemented all methods in R and evaluated the computational time of replicability analysis based on
paired p-values. Computations were carried out in an Intel(R) Core(TM) i7-9750H 2.6Hz CPU with 64.0
GB RAM laptop. In the simulation studies, we set µ1 = µ2 = 2.5, σ1 = σ2 = 1, ξ11 = 0.9, ξ01 = ξ10 =
0.025, and ξ11 = 0.05. Let m = 10, 000, 20, 000, 50, 000, and 100, 000, respectively. Table S1 summarizes the
computational time of different methods to finish one replication with different numbers of genes. We observe
that the computation is fast for all methods except MaRR [6] and IDR [5]. JUMP is scalable to hundreds of
thousands of genes. The minor extra computational time of JUMP over other valid methods for replicability
analysis can be ignored given its substantial power gain in replicability analysis. Table S2 summarizes the
data information and computational time for replicability analysis on two pairs of SRT datasets from mouse
olfactory bulb and mouse cerebellum.
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Table S1: Computational time (in seconds) for replicability analysis in simulation studies
# of genes JUMP BH MaxP radjust MaRR IDR Šidák Lancaster
10, 000 0.0280 0.0050 0.0040 0.0140 1.7564 4.1809 0.0040 0.0800
20, 000 0.0530 0.0050 0.0050 0.0150 7.0752 8.9121 0.0050 0.1560
50, 000 0.1280 0.0100 0.0080 0.0660 39.941 19.424 0.0070 0.3670
100, 000 0.3230 0.0264 0.0200 0.0370 235.34 52.093 0.0170 0.7350

Table S2: Computational time (in seconds) for replicability analysis of different datasets: mouse olfactory bulb
(MOB) and mouse cerebellum (MC).

Dataset # of genes/samples # of genes common
to both studies BH MaxP JUMPstudy 1 study 2

MOB 9, 547/237 10, 680/1, 185 8, 547 0.0050 0.0040 0.0280
MC 17, 481/14, 667 20, 117/11, 626 16, 519 0.0090 0.0070 0.0600
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a

b

Figure S1: Spatial expression patterns summarized in two SRT studies on which the realistic simulation
studies were performed. The SVGs were identified by SPARK [10] at an FDR level of 10−10. (a) Three spatial
expression patterns based on 43 SVGs identified by SPARK [10] from Replicate 9 of the mouse olfactory bulb
ST data. (b) Three spatial expression patterns based on 71 SVGs identified by SPARK from Replicate 12 of
the mouse olfactory bulb ST data.
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Figure S2: FDR control and power comparison of different methods in realistic simulations. Simulations were
performed with m = 10, 000, ξ11 = 0.05 and ξ01 = ξ10. The signal strengths were set to be strong for study
1 and moderate for study 2. Each column corresponds to a different ξ00 setting. Each row corresponds to
a different spatial expression pattern on which the paired count data were generated. Patterns I-III for two
studies are shown in Supplementary Fig. S1. In each panel, the empirical FDR and power of different methods
were calculated at a target FDR level of 0.05 (horizontal dashed line in the plots) for different standard
deviations (left: s1 = 0.3, s2 = 0.5; right: s1 = 0.5, s2 = 0.3).
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Figure S3: FDR control and power comparison of different methods in realistic simulations. Simulations
were performed with m = 10, 000, ξ11 = 0.05 and ξ01 = ξ10. The signal strengths were set to be moderate
for both studies. Each column corresponds to a different ξ00 setting. Each row corresponds to a different
spatial expression pattern on which the paired count data were generated. Patterns I-III for two studies are
shown in Supplementary Fig. S1. In each panel, the empirical FDR and power of different methods were
calculatedat a target FDR level of 0.05 (horizontal dashed line in the plots) for different standard deviations
(left: s1 = 0.3, s2 = 0.5; right: s1 = 0.5, s2 = 0.3).
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Figure S4: Analysis results of the mouse olfactory bulb data. (a) Scatter plot of 807 replicable SVGs identified
by JUMP in two datasets (left: ST; right: 10X Visium). We first used UMAP (R package umap) to reduce
the dimension to two. Then we used the cell labels obtained from hierarchical agglomerative clustering (R
package amap) to visualize the distribution of cells in each cluster. (b) Spatial expression patterns in the two
datasets summarized based on the 189 replicable SVGs additionally identified by JUMP (left: ST; right: 10X
Visium). (c) Scatter plot of 189 replicable SVGs additionally identified by JUMP.
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Figure S5: Spatial expression patterns of 30 genes randomly selected from the 189 replicable SVGs additionally
identified by JUMP in mouse olfactory bulb. (a) Spatial expression patterns of the 30 randomly selected genes
based on the ST data. (b) Spatial expression patterns of the 30 randomly selected genes based on the 10X
Visium data.
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Figure S6: Spatial expression patterns of 24 genes randomly selected from the 169 replicable SVGs additionally
identified by JUMP in mouse cerebellum. (a) Spatial expression patterns of the 24 randomly selected genes
based on the Slide-seq data. (b) Spatial expression patterns of the 24 randomly selected genes based on the
Slide-seqV2 data.
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