Supplementary information

2 Supplementary Table 1 Demographic and cognitive information of the discovery and

3 validation datasets

Characteristic	Discovery	CNP	SALD
Sample size	361	103	329
Age (years)	28.84 ± 10.83	30.87 ± 8.56	37.81 ± 13.79
Education (years) *	14.94 ± 3.32	15.20 ± 1.63	-
Gender (F/M)	183/178	47/56	207/122
FD (mm)	0.13 ± 0.07	0.17 ± 0.08	0.15 ± 0.08
Race	Chinese Han	White (82)	Chinese Han
		American Indian or Alaskan Native (19)	
		Asian (1)	
		Black/African American (1)	
Handedness	Right	Right	Right
CVLT			
Short delay free recall **	12.73 ± 2.29	12.80 ± 2.33	-
Long delay free recall **	13.07 ± 2.18	13.16 ± 2.40	-
Trial 1-5 total **	56.39 ± 8.20	56.38 ± 7.91	-
Personality factors			
Neuroticism **	28.11 ± 6.36	-	-
Extraversion **	42.82 ± 6.36	-	-
Conscientiousness **	44.16 ± 5.35	-	-

Agreeableness **	45.24 ± 3.75	-	-
Openness **	40.43 ± 4.43	-	-
The accuracy of 3-back (%) **	72 ± 15	-	-
MoCA ***	25.03 ± 3.94	-	-
MPQ	-	18.33 ± 4.79	-
HPS	-	16.14 ± 7.71	-
BP-II	-	11.32 ± 4.53	-
WAIS			
Letter number sequencing	-	21.06 ± 2.76	-
Matrix reasoning	-	20.54 ± 4.17	-
Vocabulary	-	43.70 ± 7.91	-

Except for sample size and gender, other data are expressed as mean \pm standard deviation. 1 Abbreviations: CNP, Consortium for Neuropsychiatric Phenomics; SALD, Southwest 2 University Adult Lifespan Dataset; F, female; M, male; FD, frame-wise displacement; CVLT, 3 California Verbal Learning Test; MoCA, Montreal Cognitive Assessment; MPQ, 4 Multidimensional Personality Questionnaire; HPS, Hypomanic Personality Scale; BP-II, 5 Scale for Traits that Increase Risk for Bipolar II Disorder; WAIS, Wechsler Adult Intelligence 6 7 Scale. * The data are available for 360 from 361 participants in the discovery dataset. 8 ** The data are available for 215 from 361 participants in the discovery dataset. 9

10 *** The data are available for 78 from 361 participants in the discovery dataset.

Parameters	Discovery	CNP	SALD
Scanner	3.0T General Electric	3.0T Siemens Trio	3.0T Siemens Trio
	Discovery MR750w		
Sequence	GRE-SS-EPI	T2*-weighted EPI	GRE-EPI
TR (ms)	2000	2000	2000
TE (ms)	30	30	30
FA (°)	90	90	90
FOV (mm ²)	220 × 220	192 × 192	220 × 220
Matrix size	64×64	64×64	64×64
Voxel size (mm ³)	$3.4 \times 3.4 \times 4$	$3 \times 3 \times 4$	$3.4 \times 3.4 \times 4$
Slice thickness (mm)	3	4	3
Slice gap (mm)	1	-	1
Slices	35	34	32
Time points	185	152	242

1 Supplementary Table 2 Resting-state fMRI parameters for three datasets

Abbreviations: fMRI, functional magnetic resonance imaging; CNP, Consortium for
Neuropsychiatric Phenomics; SALD, Southwest University Adult Lifespan Dataset; GRE,
gradient echo; SS, single shot; EPI, echo planar imaging; TR, repetition time; TE, echo time;
FA, flip angle; FOV, field of view.

Supplementary Fig. 1 The cingulate functional atlas created using a combination of the winner-take-all method and the seven-network parcellation. The functional subdivision corresponding to the dorsal attention network was not found. Abbreviations: DMN, default mode network; VN, visual network; LN, limbic network; FPN, frontoparietal network; VAN, ventral attention network; SMN, sensorimotor network; CNP, Consortium for Neuropsychiatric Phenomics; SALD, Southwest University Adult Lifespan Dataset.

Supplementary Fig. 2 Relationships of cingulate gradients 2 and 3 with functional networks in the discovery dataset. Box plots showing distributions of the cingulate functional subdivisions corresponding to the canonical functional networks along gradient 2 (a) and 3 (b). The functional subdivision corresponding to the dorsal attention network was not found. Abbreviations: DMN, default mode network; VN, visual network; LN, limbic network; FPN, frontoparietal network; VAN, ventral attention network; SMN, sensorimotor network.

Supplementary Fig. 3 Associations of cingulate gradient 2 with behavioral terms from the NeuroSynth in the discovery dataset. To establish a link between gradient and behavior, the gradient map was binned into ten-percentile increments and then binarized, yielding 10 binary masks ranging from 0-10% to 90-100%. For each behavioral term, the average *z*-statistics within the 10 masks were extracted.

2 Supplementary Fig. 4 Functional connectivity gradients of the cingulate cortex in the CNP dataset. a Illustration of cingulate subregions. b Connectivity variance explained by the 3 4 functional connectivity gradients and inserted scatter plots of the first three gradients. The 5 three-dimensional scatter plot shows the distributions of gradients 1-3 of all cingulate voxels, and is projected into 3 two-dimensional scatter plots showing the distributions of any pair of 6 7 the three gradients. c Topographies of the first three cingulate functional connectivity gradients. d Distributions of cingulate subregions along the first three gradients. 8 Abbreviations: L, left; R, right; A23v, ventral area 23; A23d, dorsal area 23; A23c, caudal 9 area 23; A24cd, caudodorsal area 24; A24rv, rostroventral area 24; A32p, pregenual area 32; 10 A32sg, subgenual area 32; CNP, Consortium for Neuropsychiatric Phenomics. 11

Supplementary Fig. 5 Functional connectivity gradients of the cingulate cortex in the SALD 2 3 dataset. a Illustration of cingulate subregions. b Connectivity variance explained by the functional connectivity gradients and inserted scatter plots of the first three gradients. The 4 three-dimensional scatter plot shows the distributions of gradients 1-3 of all cingulate voxels, 5 and is projected into 3 two-dimensional scatter plots showing the distributions of any pair of 6 7 the three gradients. c Topographies of the first three cingulate functional connectivity 8 gradients. d Distributions of cingulate subregions along the first three gradients. Abbreviations: L, left; R, right; A23v, ventral area 23; A23d, dorsal area 23; A23c, caudal 9 10 area 23; A24cd, caudodorsal area 24; A24rv, rostroventral area 24; A32p, pregenual area 32; A32sg, subgenual area 32; SALD, Southwest University Adult Lifespan Dataset. 11

1

2 Supplementary Fig. 6 Relationships of cingulate functional connectivity gradients with functional networks, behavioral domains, intrinsic geometry, and gray matter volume in the 3 CNP dataset. a Box plots showing distributions of the cingulate functional subdivisions 4 5 corresponding to the canonical functional networks along gradient 1. The functional subdivision corresponding to the dorsal attention network was not found. b Associations of 6 7 cingulate gradient 1 with behavioral terms from the NeuroSynth. To establish a link between 8 gradient and behavior, the gradient map was binned into ten-percentile increments and then 9 binarized, yielding 10 binary masks ranging from 0-10% to 90-100%. For each behavioral term, the average z-statistics within the 10 masks were extracted. c A scatter plot of the 10 11 association of gradient 2 with spatial distance from the maximal gradient location in the cingulate cortex. d A scatter plot of the spatial correlation between cingulate gradient 3 and 12

1	gray matter volume. Abbreviations: DMN, default mode network; VN, visual network; LN,
2	limbic network; FPN, frontoparietal network; VAN, ventral attention network; SMN,
3	sensorimotor network; CNP, Consortium for Neuropsychiatric Phenomics.
4	

2 Supplementary Fig. 7 Relationships of cingulate functional connectivity gradients with functional networks, behavioral domains, intrinsic geometry, and gray matter volume in the 3 4 SALD dataset. a Box plots showing distributions of the cingulate functional subdivisions 5 corresponding to the canonical functional networks along gradient 1. The functional subdivision corresponding to the dorsal attention network was not found. b Associations of 6 7 cingulate gradient 1 with behavioral terms from the NeuroSynth. To establish a link between 8 gradient and behavior, the gradient map was binned into ten-percentile increments and then 9 binarized, yielding 10 binary masks ranging from 0-10% to 90-100%. For each behavioral term, the average z-statistics within the 10 masks were extracted. c A scatter plot of the 10 11 association of gradient 2 with spatial distance from the maximal gradient location in the cingulate cortex. d A scatter plot of the spatial correlation between cingulate gradient 3 and 12

1	gray matter volume. Abbreviations: DMN, default mode network; VN, visual network; LN,
2	limbic network; FPN, frontoparietal network; VAN, ventral attention network; SMN,
3	sensorimotor network; SALD, Southwest University Adult Lifespan Dataset.
4	

Supplementary Fig. 8 Functional connectivity gradients of the cingulate cortex derived from two other rsFC matrix thresholds of top 20% (a) and 30% (b). On the left: connectivity variance explained by the functional connectivity gradients and inserted scatter plots of the first three gradients. On the right: topographies of the first three cingulate functional connectivity gradients. Abbreviations: rsFC, resting-state functional connectivity.

Supplementary Fig. 9 Functional connectivity gradients of the cingulate cortex derived from
BOLD data with GSR. On the left: connectivity variance explained by the functional
connectivity gradients and inserted scatter plots of the first three gradients. On the right:
topographies of the first three cingulate functional connectivity gradients. Abbreviations:
BOLD, blood-oxygen-level-dependent; GSR, global signal regression.

1

Supplementary Fig. 10 Functional connectivity gradients of the cingulate cortex calculated based on the group-level rsFC matrix by averaging individual-level rsFC matrices across subjects. On the left: connectivity variance explained by the functional connectivity gradients and inserted scatter plots of the first three gradients. On the right: topographies of the first three cingulate functional connectivity gradients. Abbreviation: rsFC, resting-state functional connectivity.

1

Supplementary Fig. 11 Functional connectivity gradients of the cingulate cortex derived from BOLD data preprocessed by CompCor. On the left: connectivity variance explained by the functional connectivity gradients and inserted scatter plots of the first three gradients. On the right: topographies of the first three cingulate functional connectivity gradients. Abbreviations: BOLD, blood-oxygen-level-dependent; CompCor, component-based noise correction.

Supplementary Fig. 12 Functional connectivity gradients of the cingulate cortex derived from the voxel-wise cingulate cortex-to-cerebrum (including the cingulate cortex) rsFC matrix. On the left: connectivity variance explained by the functional connectivity gradients and inserted scatter plots of the first three gradients. On the right: topographies of the first three cingulate functional connectivity gradients. Abbreviation: rsFC, resting-state functional connectivity.

Supplementary Fig. 13 Spatial correlation coefficients between cingulate functional
connectivity gradients in the main analysis and those in the validation analyses. Abbreviations:
CNP, Consortium for Neuropsychiatric Phenomics; SALD, Southwest University Adult
Lifespan Dataset; GSR, global signal regression; CompCor, component-based noise
correction; FC, functional connectivity.