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In addition to this file, supplementary data also includes Supplementary Table 1, which contains 
all genetic data (control and disease populations) and disease liability assignments for alleles, and 
Supplementary Table 2, which contains information about variants with BayPR predictions 
<50% and which have been previously defined as pathogenic or likely pathogenic (P/LP). 

 

Data Sources 

All data as described below were de-identified.  The CFTR2 project is acknowledged by the Johns 

Hopkins IRB (NA_00018599) and does not require IRB approval.  All other datasets were obtained 

from publicly available resources and/or from researchers who provided de-identified variant 

information that meets NIH Exemption 4 (§46.104(d)(ii)) and does not qualify as human subjects 

research. In some cases, variant names were provided to the analytic team in legacy terminology 

or protein name only.  To obtain the associated nucleotide changes, original laboratory reports or 

records were reviewed by providing researchers when available.  Additional HGVS cDNA and 

protein changes were obtained using VEP v10135. 

“Control” Variant: Data Source: De-identified aggregated genomic data were downloaded from 

gnomAD v2.1.1, a publicly-available database consisting of 125,748 exome sequences and 15,708 

whole genome sequences from unrelated individuals27. All genetic data (control and disease 

populations) and disease liability assignments for alleles can be found in Supplementary Table 1. 

Cystic Fibrosis (CFTR): Data Source: For the CF disease population, de-identified CFTR genotype 

data in the CFTR2 [Clinical and Functional TRanslation of CFTR] (https://cftr2.org) database were 

provided for 89,052 individuals by national or regional CF patient registries or individual clinics 

from clinical records19. Individuals with no identified CFTR variants were excluded. Out of a total 

of 150,272 potential disease-causing alleles having received some genetic testing, 8,236 were not 

identified by available genetic testing and a total of 4,492 complex alleles, duplications/deletions 

greater than 3 base pairs, and variants in regions with poor or no coverage in gnomAD were 

excluded from analyses to yield a dataset of 137,544 CFTR allelic variants. Curation: Disease 

liability for specific alleles was determined by CFTR2 expert panels using clinical characteristics, 

functional studies, and penetrance analysis.  

Phenylketonuria (PAH): Data Source: For the PKU disease population, de-identified PAH 

genotype data in the BIOPKU database were provided for 9,953 individuals28,29.  Out of a total of 

19,906 potential disease-causing alleles, 331 either were not identified by available genetic testing 

or were duplications/deletions greater than 3 base pairs and were excluded from analyses to yield 

a dataset of 19,575 PAH allelic variants. Curation: Disease liability of specific alleles was 



determined based on frequencies of the metabolic phenotype for genotypes presenting in a 

functionally hemizygous state and genotypes were compared to blood phenylalanine levels and 

BH4 responsiveness20.  

Interstitial Lung Disease (ABCA3): Data Source: A list of de-identified variants was assembled 

from candidate gene sequencing was performed on symptomatic infants and children suspected of 

having genetic surfactant dysfunction in research laboratories at Washington University School of 

Medicine and Johns Hopkins University School of Medicine and critically reviewed publications30.  

Data Curation: Disease liability was determined by expert review of clinical characteristics, 

supporting imaging, family segregation studies, and/or lung histopathology if available, and mRNA 

splicing studies.  

X-linked Adrenoleukodystrophy (ABCD1): Data Source: ABCD1 variants were identified during 

clinical testing in the Johns Hopkins Genomics DNA Diagnostic lab from 2016 to 2020.  Curation: 

All variants were classified using current ACMG/AMP criteria6.  

Barth Syndrome (TAFAZZIN): Data Source: De-identified TAFAZZIN variants were obtained 

from the Human Tafazzin Gene Variants Database (a sub-database of the Barth Syndrome Registry 

and Repository), which is publicly available through the Barth Syndrome Foundation 

(https://www.barthsyndrome.org/research/tafazzindatabase.html). Data were supplied by 

contributions from clinicians/families31. Curation: Disease liability was determined by expert 

review of clinical characteristics, cardiolipin/MLCL levels, and family segregation studies and/or 

mRNA splicing studies if available.  

Marfan Syndrome (FBN1): Data Source: Allelic variants were identified during clinical testing at 

various CLIA-approved commercial labs from 2006 to 2020. Curation: Clinical data and variants 

are reviewed by a single clinical director and genetic counselor. All variants were classified using 

current ACMG/AMP criteria6.   

Loeys-Dietz Syndrome (TGFBR1/TGFBR2): Data Source: Allelic variants were identified during 

clinical testing at various CLIA-approved commercial labs from 2006 to 2020. SMAD3, TGFB2, and 

TGFB3 variants were not examined in this study. Curation: Clinical data and variants are reviewed 

by a single clinical director and genetic counselor. All variants were classified using current 

ACMG/AMP criteria6.   

 

Supplementary Methods 

Summary 

An empirical Bayesian approach was used to analyze the counts of allelic variants in the disease-
specific population database relative to the control gnomAD population using a two component 
finite mixture model.  In this empirical Bayes model, information across variants is pooled in order 



to get better estimates of each individual variant. Theoretically, this allows for more stable 
estimates, even when there may be few or no variants observed among the control cohort. The 
amount of information pooled is dependent on the number of variants observed, and the prior 
estimated from the data. With a richer dataset (the number of variants observed is larger, the total 
sample size is larger), there is less pooled information, but in a more restricted dataset (the 
number of variants observed is smaller, the total sample size is smaller), pooling increases. The 
algorithm is also dependent on the prior; when the prior is has a flatter distribution, reflecting 
more uncertainty about the distribution of prevalence ratios, the prior will exert less of an effect 
on the observed prevalence ratio. However, when the prior distribution is more peaked, reflecting 
less uncertainty about the distribution of prevalence ratios, it will exert more of an effect on the 
observed prevalence ratio. 

Each component modeled the allele counts of specific allelic variants in the disease-specific 
database conditional on the total number of observations, using a binomial likelihood, placing a 
beta prior on a transformation of the prevalence ratio. Estimates were obtained by maximizing the 
marginal likelihood using the expectation-maximization (EM) algorithm implemented using the 
optimx package for R version (R Foundation for Statistical Computing, Vienna, Austria). A grid 
search was used to assess sensitivity to starting values for the EM algorithm, including the 
parameters of each mixture component and the mixing fraction. The model allows for variation in 
the size of each database (particularly for true for the control database used in this study), but 
does assume a constant ratio of the ratio of these database sizes; variation from this ratio would 
induce a different prior on the prevalence ratio. For assessing the accuracy of our Bayesian 
algorithm, the probability of a variant belonging to one of the two beta distributions was 
compared to known disease liability obtained through functional and/or clinical data. 

Code availability: The R program used to generate the probabilities can be found on github 
(https://github.com/melishg/BayPR/). 

Introduction 

For a particular genetic variant, denoted variant 𝑘, the binomial model allows us to infer about the 
proportion of variants arising from controls, denoted 𝜃𝑘 . This model depends on 𝑌1𝑘, the number 
of observed variants in cases among the 𝑛1𝑘 cases assessed for variant 𝑘, and 𝑌0𝑘 , the number of 
observed variants in controls among the 𝑛0𝑘 controls assessed for variant 𝑘. The total number of 
observed variants of type 𝑘 is denoted 𝑇𝑘, and the relative sample size in cases relative to controls 
for variant 𝑘 is denoted 𝑟𝑘 = (𝑛1𝑘/𝑛0𝑘). We can transform the proportion of variants among the 
cases to get a prevalence ratio for variant 𝑘, denoted 𝛾𝑘: this tells us how much more prevalent a 
variant is in cases relative to controls. The transformation from the proportion of variants arising 
from cases (𝜃𝑘) to the prevalence ratio (𝛾𝑘) depends on the sample size ratio 𝑟𝑘. 

If we have 𝐾 total variants, instead of viewing each variant in isolation, we can view them as a 
sample from a population of genetic variants. In this population of variants, the proportion of 
variants arising from controls follows a beta distribution, whose shape is determined by two 
parameters, 𝛼 and 𝛽. When viewed in this way, each variant informs us about the distribution of 
the proportion of variants arising from controls in the larger population of variants, which helps 
provide more stable estimates for a particular variant when the observed frequency of that 
variant is low. 



In this beta-binomial model, each variant is viewed arising from a population of variants, and in 
this population, the average proportion of variants arising from controls is 𝜇 = 𝛼/(𝛼 + 𝛽), and the 
variation in these proportions is 𝜇(1 − 𝜇)/(𝑀 + 1), where 𝑀 = (𝛼 + 𝛽). From a Bayesian 
viewpoint, the parameters of the beta distribution, 𝛼 and 𝛽, can be interpreted as observing 𝛼 
prior variants among cases, and 𝛽 prior variants among controls, equivalent to data from a prior 
sample size of 𝑀 = (𝛼 + 𝛽). This information can provide a stabilizing influence when the number 
of variants of a particular type are small or zero in one group. The stabilizing effect, called 
shrinkage, depends on the amount of observed data. 

Let 𝑠𝑘 = 𝑀/(𝑀 + 𝑇𝑘) denote the ratio of the prior sample size 𝑀 to the total sample size (prior 
sample size + number of variants of type 𝑘 observed). This 𝑠𝑘 can be thought of as a ‘shrinkage’ or 
‘stabilization’ factor for variant 𝑘: when the number of observed variants is small relative to the 
prior sample size, the estimates are stabilized by being ‘pulled’ or ‘shrunken’ towards the 
population mean according to this shrinkage factor. As the number of observed variants becomes 
larger, this ratio will approach zero, and this shrinkage effect diminishes. We can also view this as 
a more principled, data-driven way of doing what some may tempted to do in practice: adding 
some small quantity to a numerator or denominator in order to avoid a numerical singularity. 

Instead of viewing all variants as belonging to one homogenous population of variants, we could 
potentially view a sample variants as arising from a mixture of populations of variants. This is the 
conceptual basis of the mixture model. The added flexibility of this model allows for more local 
pooling of information across variants, and determining the sizes of population components and 
how compatible each variant is with each population component. 

There are different methods for obtaining the parameters 𝛼 and 𝛽, which describe the variation 
between variants in the proportion of variants arising from cases. Here, we used marginal 
maximum likelihood: finding the values of 𝛼 and 𝛽 (equivalently 𝜇 and 𝑀) that maximize the 
marginal likelihood of the data, averaging over 𝜃𝑘 . Since we are obtaining 𝛼 and 𝛽 from the data 
itself, not from independent prior information, the ‘prior’ here can be thought of as a mechanism 
for stabilizing estimates that approximates a full Bayesian analysis and provides many desirable 
statistical properties. 
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1. Why a Bayesian Approach? 

Suppose we have information about the occurrence of 𝐾 genetic variants from a sample of cases 
from a population with a given disease and a sample of healthy controls from a population without 
that disease. One way of estimating the degree of association between a given genetic variant and 
disease status is to estimate the prevalence ratio: the ratio of genetic variant prevalence in cases 
relative to that in controls. 

If we observe 𝑌1𝑘 variants of type 𝑘 in 𝑛1𝑘 cases, and 𝑌0𝑘 variants of type 𝑘 in 𝑛0𝑘 controls, we can 
estimate the prevalence in cases, denoted 𝜋1𝑘, using �̂�1𝑘 = 𝑌1𝑘/𝑛1𝑘, and the prevalence in controls, 
denoted 𝜋0𝑘, using �̂�0𝑘 = 𝑌0𝑘/𝑛0𝑘. We can estimate the prevalence ratio in cases relative controls, 
𝛾𝑘, using the ratio of the prevalence estimates: 𝛾𝑘 = (�̂�1𝑘/�̂�0𝑘) = (𝑌1𝑘/𝑛1𝑘)/(𝑌0𝑘/𝑛0𝑘). Since it is 
the ratio of two probabilities, the prevalence ratio could take on any positive value: ratios greater 
than 1 indicate higher prevalence among cases, and ratios less than 1 indicate higher prevalence 
among controls. 

One issue that may arise is that variants may be extremely rare in one population or another, 
which may result in unstable prevalence ratio estimates. If few or no variants are observed among 
controls, the denominator of the ratio becomes very small, resulting in unstable estimates of the 
prevalence ratio. Bayesian models augment the observed data with a prior distribution, which can 
provide estimates that are more stable and also have good frequentist statistical properties, such 
as interval estimate coverage and mean squared error. 

2. The Probability Model 

2.1 The Binomial Likelihood 

For each genetic variant 𝑘 = 1,  2,  … ,  𝐾, we assume that we have a random sample of 𝑛1𝑘 cases 
and 𝑛0𝑘 controls who were evaluated for that variant, with 𝑌1𝑘 occurrences in cases and 𝑌0𝑘 
occurrences in controls. The prevalence of variant 𝑘 in cases is denoted by 𝜋1𝑘, and the prevalence 
in controls is denoted by 𝜋0𝑘 . The proportion of individuals in a sample of size 𝑛 of a variant 𝑘 
independently sampled from a population with prevalence 𝜋𝑘 can be modeled using a binomial 
distribution: 

𝑌 ∼ 𝐵𝑖𝑛(𝑛, 𝜋):  𝑃𝑟{𝑌 = 𝑦|𝑛, 𝜋} = (
𝑛

𝑦
)𝜋𝑦(1 − 𝜋)𝑛−𝑦 

This binomial likelihood can be approximated using a Poisson distribution with rate parameter 
𝜆 = 𝑛𝜋 if 𝑛, the number of observations, is large and 𝜋𝑘, the prevalence of the variant, is small. 

𝑌 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 𝑛𝜋):  𝑃𝑟{𝑌 = 𝑦|𝑛, 𝜋} =
(𝑛𝜋)𝑦𝑒−𝑛𝜋

𝑦!
 

If we observe 𝑌1𝑘 variants of type 𝑘 in cases, 𝑌0𝑘 variants of type 𝑘 in controls, let 𝑇𝑘 denote their 
sum. We can model the proportion of type 𝑘 variants that arose from cases out of the the total 
number of type 𝑘 variants observed, denoted 𝜃𝑘 , using a binomial distribution: 

𝑌0𝑘 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛0𝑘𝜋0𝑘),  𝑌1𝑘 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛1𝑘𝜋1𝑘);  𝑌0𝑘 ⊥ 𝑌1𝑘:  (𝑌1𝑘|𝑌0𝑘 + 𝑌1𝑘 = 𝑇𝑘) ∼ 𝐵𝑖𝑛(𝑇𝑘, 𝜃𝑘), 



where 𝜃𝑘 = (𝑛1𝑘𝜋1𝑘)/(𝑛1𝑘𝜋1𝑘 + 𝑛0𝑘𝜋0𝑘), the rate of occurrences in cases divided by the sum of 
the rates in cases and controls. We can divide the numerator and denominator by 𝜋0𝑘 to 
parameterize this distribution by the prevalence ratio 𝛾𝑘: 

𝜃𝑘 =
𝑛1𝑘𝜋1𝑘/𝜋0𝑘

𝑛1𝑘𝜋1𝑘/𝜋1𝑘 + 𝑛0𝑘𝜋0𝑘/𝜋1𝑘
=

𝑛1𝑘𝛾𝑘
𝑛1𝑘𝛾𝑘 + 𝑛0𝑘

 

Let 𝑟𝑘 = 𝑛1𝑘/𝑛0𝑘  denote the ratio of the sample size of cases relative to controls. Dividing the 
numerator and denominator again by 𝑛0𝑘, the control sample size, gives: 

𝜃𝑘 =
𝑛1𝑘𝛾𝑘/𝑛0𝑘

𝑛1𝑘𝛾𝑘/𝑛0𝑘 + 𝑛0𝑘/𝑛0𝑘
=

𝑟𝑘𝛾𝑘
𝑟𝑘𝛾𝑘 + 1

 

Parameterizing the model this way allows the modeling multiple variants, allowing for variation in 
sample sizes across different variants, as long as their ratio of sample sizes for any given variant 𝑟𝑘 
is comparable. 

2.2 The Beta-Binomial Model 

Bayesian statistics augments the likelihood probability model with a prior probability model. Our 
model for the data is a binomial distribution, which depends on 𝑛 = 𝑇𝑘, the number of variants 
observed and 𝜋 = 𝜃𝑘 , the proportion of variants arising from the population of cases. Instead of 
viewing each of our 𝐾 variants separately, we could view them as a sample from a population of 
genetic variants, and the proportions of variants due to cases in this population follow a 
probability distribution called the Beta distribution. 

The shape of the beta distribution is controlled by two parameters, 𝛼 and 𝛽. Depending on the 
values these parameters, the beta distribution can take on many possible shapes, as seen in the 
figures below. The mean of the beta distribution is given by 𝐸[𝜃𝑘|𝛼, 𝛽] = 𝜇 = 𝛼/(𝛼 + 𝛽), and its 
variance is given by 𝑣𝑎𝑟[𝜃𝑘|𝛼, 𝛽] = 𝛼𝛽/((𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)). 



 

Supplementary Figure 1: Examples of beta distributions obtained by varying the values of the 
parameters alpha, indicated by the color, and beta, indicated by the figure panel. 

We can also re-parameterize the beta distribution in terms of 𝜇, its mean, and 𝑀 = 𝛼 + 𝛽: 

𝑃𝑟{𝜃𝑘|𝜇,𝑀} =
𝛤(𝑀)

𝛤(𝜇𝑀)𝛤((1 − 𝜇)𝑀)
𝜃𝜇𝑀−1(1 − 𝜃)(1−𝜇)𝑀−1 

In this parameterization, 𝛼 = 𝜇𝑀 and 𝛽 = (1 − 𝜇)𝑀. We can think of 𝑀 as a prior sample size: 𝛼 
prior variants among cases and 𝛽 prior variants among controls. When parameterized this way, 
the variance of the beta distribution is given by 𝑣𝑎𝑟[𝜃𝑘|𝜇,  𝑀] = 𝜇(1 − 𝜇)/(𝑀 + 1). 

The combination of a beta distribution for the proportion of variants arising from cases, and the 
binomial likelihood for the number of variants observed in cases, gives a Beta-Binomial 
Distribution. The parameters of the beta distribution are called hyperparameters, because their 
values determine the distribution of the proportion parameter in the binomial model. 



The probability density function for the prior is: 

𝑃𝑟{𝜃𝑘|𝛼,  𝛽} =
𝛤(𝛼 + 𝛽)

𝛤(𝛼)𝛤(𝛽)
𝜃𝑘
𝛼−1(1 − 𝜃𝑘)

𝛽−1 

The likelihood for the observed data is: 

𝑃𝑟{𝑌1𝑘|𝑇1𝑘,  𝜃𝑘} = (
𝑇1𝑘
𝑌1𝑘

) 𝜃𝑘
𝑌1𝑘(1 − 𝜃𝑘)

𝑌1𝑘−𝑇1𝑘  

Note the similarity between these two functions: both are products of the terms 𝜃𝑘  and (1 − 𝜃𝑘). 
When combined using Bayes’ Rule, they give a posterior distribution is also a beta distribution: 

𝑃𝑟{𝜃𝑘|𝑌1𝑘,  𝑇𝑘 ,  𝛼,  𝛽} =
𝛤(𝛼 + 𝛽 + 𝑇𝑘)

𝛤(𝛼 + 𝑌1𝑘)𝛤(𝛽 + 𝑌0𝑘)
𝜃𝛼+𝑌1𝑘−1(1 − 𝜃)𝛽+𝑌0𝑘−1 

This is just a beta distribution with 𝛼′ = 𝛼 + 𝑌1𝑘 and 𝛽′ = 𝛽 + 𝑌0𝑘: this is why we can interpret 𝛼 
as the prior number of variants observed in cases, and 𝛽 as the prior number of variants observed 
among controls. The posterior distribution, and its summaries (such as its mean, variance, and 
quantiles), allow us to infer about 𝜃𝑘 , the proportion of variants due to cases, for each of our 𝐾 
variants. 

2.3 Bayes and Shrinkage 

The advantage of the Bayesian approach is that the prior distribution acts as a stabilizing influence 
when the number of observed variants is small, and this influence diminishes as the number of 
observed variants becomes larger. The effect of the prior can be more easily understood when 
viewed through the parameterization of 𝜇 and 𝑀. The mean of the posterior distribution is given 
by 𝐸[𝜃𝑘|𝛼, 𝛽] = 𝜇 = 𝛼/(𝛼 + 𝛽). Re-writing this in terms of 𝜇 and 𝑀 gives: 

𝐸[𝜃𝑘|𝛼, 𝛽] =
𝛼 + 𝑌1𝑘

𝛼 + 𝛽 + 𝑇𝑘
=
𝜇𝑀 + 𝑌1𝑘
𝑀 + 𝑇𝑘

=
𝑀

𝑇𝑘 +𝑀
𝜇 +

𝑇𝑘
𝑇𝑘 +𝑀

(
𝑌1𝑘
𝑇𝑘

) = 𝑠𝑘𝜇 + (1 − 𝑠𝑘) (
𝑌1𝑘
𝑇𝑘

) 

Since 𝑀 acts as a prior sample size, and 𝑇𝑘 is the total number of variants observed, the quantity 
𝑠𝑘 = 𝑀/(𝑀 + 𝑇𝐾) represents the proportion of the information coming from the prior, and (1 −
𝑠𝑘) = 𝑇𝑘/(𝑀 + 𝑇𝐾) represents the proportion of information coming from the observed data. Here 
we see the posterior mean is a combination of the prior mean 𝜇 and the proportion of variants 
among cases to the total number of variants observed (𝑌1𝑘/𝑇𝑘), each weighted according their 
sample size contribution. When 𝑇𝑘, the number of observed variants is small, the posterior mean is 
‘pulled’ or ‘shrunken’ towards the prior mean: this gives more stable estimates. As the number of 
observed variants becomes increasingly larger than the prior sample size, the effect of the prior 
diminishes. 



 

Supplementary Figure 2: An example of how the shape of the prior affects the posterior mean, and 
how this depends on both the number of observed variants, the proportion of variants seen in cases, 
and the prior sample size. The prior distribution is shown in gray. When the prior sample size (M) is 
small, the effect of the prior is smallest, and the posterior means are very close to the direct estimates. 
As the prior sample size increases, direct estimates are ‘pulled’ or ‘shrunken’ towards the prior mean 
(here, 0.5), with greater shrinkage occurring when fewer variants are observed. 

2.4 The Beta Prime Distribution 

The beta distribution describes the distribution of a random variable over the interval (0,1), which 
is convenient for describing a proportion or probability. However, if we want to infer about the 
prevalence ratio 𝛾𝑘, we need to transform back to the prevalence ratio scale: 

𝜃𝑘
𝑟𝑘(1 − 𝜃𝑘)

= 𝛾𝑘 



Notice that when 𝑟𝑘 = 1 (sample sizes are identical between cases and controls), this 
transformation is from the probability scale to the odds scale. If we have a beta random variable, 
and transform it to the odds scale, this results in a variable with the beta prime distribution. The 
shape of this distribution is governed by the same parameters, 𝛼 and 𝛽: If 𝑋 ∼ 𝐵𝑒𝑡𝑎(𝛼,  𝛽) then 
𝑌 = 𝑋/(1 − 𝑋) ∼ 𝐵𝑒𝑡𝑎 𝑃𝑟𝑖𝑚𝑒(𝛼,  𝛽). 

If (𝑌|𝛼, 𝛽) ∼ 𝐵𝑒𝑡𝑎 𝑃𝑟𝑖𝑚𝑒(𝛼, 𝛽), its mean is given by 𝐸[𝑌|𝛼, 𝛽] = 𝛼/(𝛽 − 1), and its variance is 
given by 𝑣𝑎𝑟[𝑌|𝛼, 𝛽] = 𝛼(𝛼 + 𝛽 − 1)/((𝛽 − 2)(𝛽 − 1)2) 

For a beta-prime posterior distribution of prevalence ratios, we can plug in our posterior values of 
𝛼′ = 𝛼 + 𝑌1𝑘 and 𝛽′ = 𝛽 + 𝑌0𝑘. When 𝑟𝑘 ≠ 1 (the sample size differs between cases and controls), 
the posterior becomes a scaled version of the beta prime distribution. The mean is scaled by 1/𝑟𝑘, 
and the variance is scaled by 1/𝑟𝑘

2: 

𝐸[𝛾𝑘|𝑌1𝑘, 𝑇𝑘, 𝛼, 𝛽] =
1

𝑟𝑘

𝛼 + 𝑌1𝑘
(𝛽 + 𝑌0𝑘 − 1)

=

𝛼
𝑛1𝑘

+
𝑌1𝑘
𝑛1𝑘

𝛽 − 1
𝑛0𝑘

+
𝑌0𝑘
𝑛0𝑘

 

By adding 𝛼/𝑛1𝑘 to the numerator, and (𝛽 − 1)/𝑛0𝑘 to the denominator, this stabilizes the 
prevalence ratio. If we think of 𝛼 as the prior number of variants observed among cases, and 𝛽 as 
the prior number of variants among controls, the numerator is ‘pulled’ or ‘shrunken’ towards 𝛼, as 
the denominator is towards 𝛽. This pull becomes negligable as the sample size becomes large. 

This can also be seen when we paramaterize instead using 𝜇 and 𝑀: 

𝐸[𝛾𝑘|𝑌1𝑘, 𝑇𝑘, 𝜇, 𝑀] =

𝜇𝑀
𝑛1𝑘

+
𝑌1𝑘
𝑛1𝑘

(1 − 𝜇)𝑀 − 1
𝑛0𝑘

+
𝑌0𝑘
𝑛0𝑘

 

The numerator is ‘pulled’ or ‘shrunken’ towards the prior mean 𝜇, and this effect diminishes as 
𝑛1𝑘, the sample size among cases, becomes large compared to the prior sample size 𝑀. The 
denominator is ‘pulled’ or ‘shrunken’ towards (1 − 𝜇), and this effect diminishes as 𝑛0𝑘, the 
sample size among controls, becomes large compared to the prior sample size 𝑀. 



 

Supplementary Figure 3: Examples of two beta distributions, modeling the proportion of variants 
observed in cases, and their corresponding distributions of prevalence ratios. 

2.5 The Effect of 𝒓𝒌 on the Prior 

Note that the transformation to the prevalence ratio scale depends on 𝑟𝑘, the ratio of sample sizes 
in cases (𝑛1) relative to controls (𝑛0). Note how the same beta model could represent populations 
of variants with lower, equal, or higher prevalence in cases relative to controls, depending on the 
value of 𝑟𝑘: 

 

Supplementary Figure 4: Example of how one beta distribution, could represent lower, equal, or 
higher prevalence between cases and controls, depending on the relative sample size between cases 
and controls. 



This also illustrates the importance of the assumption about the variation 𝑟𝑘 across all 𝐾 variants: 
if there is appreciable variation in this ratio across variants, then variants will essentially be 
‘pulled’ or ‘shrunken’ in different directions. 

3. Empirical Bayes Estimation 

Up until now, we have been treating the parameters of our beta prior distribution, 𝛼 and 𝛽, as 
known quantities, and showing how their values ‘pull’ or ‘shrink’ the direct estimates towards the 
prior mean on on the proportion (or 𝜃𝑘) scale, and ‘pull’ or ‘shrink’ the numerator and 
denominator on the ratio scale. But how do we determine suitable values for these 
‘hyperparameters?’ 

Rather than either supplying exact values for these parameters, or specifying a prior distribution 
over these parameters, we can find the values of these parameters that maximize the marginal 
likelihood of the observed data, averaging over the parameter 𝜃𝑘: 𝑃𝑟{𝑌1𝑘|𝑇𝑘,  𝜇,  𝑀} 

𝑃𝑟{𝑌1𝑘|𝑇𝑘,  𝜇,  𝑀} = 𝑓(𝑌1𝑘|𝑇𝑘,  𝜇,  𝑀)

=
𝛤(𝑇𝑘 + 1)

𝛤(𝑌1𝑘 + 1)𝛤(𝑇𝑘 − 𝑌1𝑘 + 1)

𝛤(𝑌1𝑘 + 𝜇𝑀)𝛤(𝑇𝑘 − 𝑌1𝑘 + (1 − 𝜇)𝑀)

𝛤(𝑇𝑘 +𝑀)

𝛤(𝑀)

𝛤(𝜇𝑀)𝛤((1 − 𝜇)𝑀)
 

where 𝛤 denotes the gamma function. 

4. Using a Mixture Model 

Instead of assuming that all variants are represented by one beta distribution that describes the 
proportion of variants among cases, we can relax this assumption by assuming that the observed 
data were generated from a mixture of different beta distributions. 

Instead of our model having only two parameters, 𝜇 and 𝑀, our mixture model will have 5 
parameters: 𝜇1 and 𝑀1, which control the shape of one beta distribution, 𝜇2 and 𝑀2, which control 
the shape of the second beta distribution, and 𝜖, which is the proportion of variants arising from 
the second beta distribution: 

𝑓(𝑌1𝑘|𝑇𝑘,  𝜇1,  𝑀1,  𝜇2,  𝑀2,  𝜖) = 𝜖𝑓(𝑌1𝑘|𝑇𝑘,  𝜇1,  𝑀1) + (1 − 𝜖)𝑓(𝑌1𝑘|𝑇𝑘,  𝜇2,  𝑀2) 

Note that two different parameter vectors (𝜇1 = 𝑎, 𝑀1 = 𝑏, 𝜇2 = 𝑐, 𝑀2 = 𝑑, 𝜖 = 𝑒) and (𝜇1 =
𝑐,  𝑀1 = 𝑑, 𝜇2 = 𝑎, 𝑀2 = 𝑏, 𝜖 = 1 − 𝑒) result in identical values of the mixture model: for this 
reason, the constraint 𝜖 < 0.5 is imposed to identify a unique solution. Estimates of these 
parameters are obtained by maximizing the marginal likelihood of the mixture. 

Instead of each direct estimate being ‘pulled’ or ‘shrunken’ in the same direction, each distribution 
will exert a different ‘pull’ on the data, with the ‘pull’ being related to the relative compatibility 
between each model component and the data. 

From this mixture distribution, in addition to obtaining posterior means, variances, and quantiles, 
we can additionally obtain: 

• The marginal likelihood ratio: 𝑀𝐿𝑅2/1 = 𝑃𝑟{𝑌1𝑘|𝑇𝑘,  𝜇2,  𝑀2}/𝑃𝑟{𝑌1𝑘|𝑇𝑘,  𝜇1,  𝑀1} 

• The posterior odds of belonging to component 2 vs. 1: 𝑃𝑂2𝑘 = (𝜖/(1 − 𝜖))𝑀𝐿𝑅2/1 



• The posterior probability of belonging to component 2: 𝑃2𝑘 = 𝑃𝑂2𝑘/(1 + 𝑃𝑂2𝑘) 

 

Supplementary Figure 5: An example of a mixture prior, and the effect of each mixture component 
on the direct estimate. When the prior sample size (M) is small, the effect of the prior is smallest, and 
the posterior means are very close to the direct estimates. As the prior sample size increases, direct 
estimates are ‘pulled’ or ‘shrunken’ towards each of the priors. The ‘pull’ of each prior depends on the 
marginal likelihood ratio: the relative compatibility between the direct estimate and each prior 
probability component.  
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