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Supplementary Figures and Tables 

Table S1. Samples Sizes N for Main Fig. 5 c-e. 

  Torque [pN nM] N 

Panel c-e 

T1 

-4.883 29 

-3.958 117 

-4.201 113 

-4.436 61 

-4.663 53 

T2 

-4.663 53 

-4.883 22 

-5.098 58 

-5.307 34 

-5.512 26 

-5.712 42 

-5.908 48 

-6.101 68 

T4 
-6.477 21 

-6.841 16 
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Table S2. Oligonucleotides and plasmids used in the study. 

Oligo ID Description Sequence 

TS89 Cloning of Cse8e with C-terminal His-tag to pBAD24, 

forward Eco31I [NcoI tilt] 

ggtctcagatccaatgagtcggtttaatttacttgatgaa

c 

TS90 Cloning of Cse8e with C-terminal His-tag to pBAD24, 

reverse XhoI 

ctcgagttttaactgttgacgaagccaaaaatcg 

IR76 C252S and C262S mutagenesis of Cas8e, forward gaatccggtaatgtagaaaatattcagcgaccttcctg

ggaacgtaaaag 

IR77 C252S and C262S mutagenesis of Cas8e, reverse cccaggaaggtcgctgaatattttctacattaccggatt

cattatacg 

IR92 V76C mutagenesis of Cas6, forward caaaagcttgaaaaatatggttgtgtaggaagcgctc 

IR93 V76C mutagenesis of Cas6, reverse cctacacaaccatatttttcaagcttttgtaaattagg 

JM_Not1_forward Forward primer for making construct for combined 

magnetic tweezers and fluorescence measurements 

tattacgccagcggccgcaagggggatgtgctgcaa

g 

PA_Cascade_Rev_SpeI

_2.1 

Reverse primer for making construct for combined 

magnetic tweezers and fluorescence measurements 

gatcagttgggtgcacgagtggactagtgtgaa 

PS1-T20f/r Targets with AAN-PAM with 20 PAM-distal mismatches 

cloned into pUC19 for combined magnetic tweezers and 

fluorescence measurements 

gaccaccctttttgatataatatacctatatcataccgga

gggtgcgtattcggcagatacgttctgagggaa 

PS1-T20f/r-AG Targets with AGN-PAM with 20 PAM-distal mismatches 

cloned into pUC19 for combined magnetic tweezers and 

fluorescence measurements 

gaccaccctttttgatatagtatacctatatcataccgga

gggtgcgtattcggcagatacgttctgagggaa 

PS1-T20f/r-CC Targets with CCN-PAM with 20 PAM-distal mismatches 

cloned into pUC19 for combined magnetic tweezers and 

fluorescence measurements 

gaccaccctttttgatatcctatacctatatcataccgga

gggtgcgtattcggcagatacgttctgagggaa 

PS1-T1f Targets with one PAM-distal mismatch for target 

recognition measurements 

gaccaccctttttgatataatatacctatatcaatggcct

cccacgcataagggcagatacgttctgagggaa 

PS1-T2f Targets with two PAM-distal mismatches for target 

recognition measurements 

gaccaccctttttgatataatatacctatatcaatggcct

cccacgcataacggcagatacgttctgagggaa 

PS1-T4f Targets with four PAM-distal mismatches for target 

recognition measurements 

gaccaccctttttgatataatatacctatatcaatggcct

cccacgcatttcggcagatacgttctgagggaa 

PI_ZT_PNL_F Matching target oligo for EMSA ggaccacgcataatatacctatatcaatggcctccca

cgcataagcagtg 

Nonmatching-F Non-matching target oligo for EMSA cggaccacccataagctgtctttcgctgctgagggtac

g 

Plasmid Description Reference 

pUC19 Plasmid used for cloning plasmids with different CRISPR 

targets  

New England Biolabs, #N3041S 

pCRh Contains homogeneous CRISPR region with 6 identical 

spacers 

Sinkunas et al., 20131 

pCDF-Cascade-Cas8e-

C252S-C262S-Cas6-

V76C 

Plasmid encoding double mutant of Cas8e C252S-

C262S and a mutant of Cas6 V76C 

This study 

pBAD24-CHis Used for cloning of Cas8e fusing with C-terminal His6-tag Thermo Fisher Scientific 

   

pBAD-Cas7-C-His Contains Cas7 protein with C-terminal His6-tag under 

araC based promoter. 

Sinkunas et al., 20131 

pCas3 Contains Cas3 protein with C-terminal His6-tag under 

araC based promoter. 

Sinkunas et al., 20131 

pBAD-Cas8e-C-His Contains Cas8e protein with C-terminal His6-tag under 

araC based promoter. 

This study 

pSP1-AA Specific target with PAM AA for combined magnetic 

tweezers and fluorescence measurements at low torque 

Sinkunas et al., 20131 

pSP3-AA Non-specific target with PAM AA Sinkunas et al., 20131 

Bacterial strains Description Reference 

Escherichia coli DH5a Used for plasmid cloning, plasmid purification Thermo Fisher Scientific, #18265017 

Escherichia coli BL21 

(DE3) 

Used for protein expression New England Biolabs, #C2527 
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Figure S1. Labeling St-Cascade with a Cy5 dye for TIRF measurements. a Labeled St-Cascade complex. The 

complex is labeled via a malemeide linker on the Cas6 protein. b SDS-PAGE showing the successfully labeled Cas6 

before and after purification. The experiment was performed once.  c Electrophoretic Mobility Shift Assay. St-Cascade 

labeled with Cy5 and wild-type binding behaviour on matching and non-matching dsDNA targets labeled with Cy3. Both 

St-Cascade variants bind to the matching target. Slight non-specific binding is observed for wt Cascade but not for 

labeled Cascade (Cascade-Cy5). The image was taken in the green fluorescence channel (~530nm) in order to make 

the DNA visible. The experiment was repeated three times indepently with similar results.   
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Figure S2. Correlated trajectories magnetic tweezers and fluorescence trajectories monitoring unlabeled and 

dimeric Cascade complexes as well as fluorophore bleaching. All shown trajectories were taken at 0.2pN and -6 

turns (𝛤 = -4.7 pN nm). The DNA length trajectories (grey) were taken at 120 Hz and smoothed to 3Hz while the 

fluorescence trajectories (red) were recorded at 10 Hz. a R-loop formation events without detectable binding events 

(indicated by black arrows) indicate the binding of unlabeled St-Cascade complexes. By counting the binding events of 

labeled and unlabled complexes, a labeling efficiency of St-Cascade of 65±10%  was determined from the single-

molecule experiments.  b Occasional observation of binding events (7% of events) with doubled intensity (black arrow) 

indicated the binding of doubly labeled St-Cascade or a St-Cascade dimer. These events were considered in our 

quantitative analysis as they did not show an altered behavior c Occasional disappearance of the fluorescence signal 

before R-loop collapse was attributed to bleaching of the Cy5-fluorophore. In the analysis, these events were included 

for determining the delay between binding and R-loop formation but not for dissociation.   
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Figure S3 Analysis of transition times in simulated fluorescence trajectories. a Simulated 

fluorescence trajectories (grey) comprising multiple binding-dissociation events with an average length of 

10 s. The two-state approximation of the trajectory from Hidden Markov modelling is shown in red. b 

Distribution of the error of individual transition times determined from the simulated trajectories (grey bars, 

𝑁 = 1602). A Gaussian distribution is depicted in red. It provided a mean of 1ms and a standard deviation 

of 17 ms. Source Data are provided as a Source Data file. 
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Figure S4 Analysis of transition times in simulated magnetic tweezers trajectories. a Simulated 

magnetic tweezers trajectory with multiple R-loop formation events (black) and a two state approximation 

of the trajectory from Hidden Markov modeling (red). b Difference between the nominal transition times 

from the simulated trajectory and the transition times found in the simulated trajectories. The histogram of 

the values is depicted in black, while the maximum likelihood function is depicted in red. Source Data are 

provided as a Source Data file. 
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Figure S5. Estimating the fraction of undetected short binding events by MLE. a Dwell time histogram 

obtained from simulated fluorescence trajectories (50 ms integration time) using a nominal dwell time of 

154 ms (grey bars, N = 1865). The result of the MLE analysis is shown as a red line providing 𝜏 = 154 ±

4 ms and 𝜇 = 53 ± 10 ms b Mean dwell times found by the MLE analysis compared to the nominal mean 

dwell times used in the simulations (blue squares, N=1221, 1444, 1710, 1718, 1865, 1926 and 1952, 

respectively, from low (50ms) to high (200ms) nominal dwell times). The dotted line corresponds to the 

identity between both axis values. Errors correspond to SEM obtained from MLE. c Fraction of missed 

events retrieved from the MLE analysis (blue circles) compared to the actual fraction of missed events by 

Hidden Markov modelling (red squares). The number of individual simulated binding events corresponds 

to N=2484, 2459, 2499, 2407, 2440, 2457 and 2417, respectively, from low (50ms) to high (200ms) nominal 

dwell times. Errors correspond to SEM obtained from MLE. Source Data are provided as a Source Data 

file. 
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Figure S6. Dwell time histograms of the non-productive binding events for different torques. The black 

lines represent the maximum likelihood estimate of the data, while the dashed line indicates the mean 

dwell time. a Histogram for 𝛤 = -3 pN nm (𝑁 =  50, 𝜏𝑚𝑒𝑎𝑛 = 135 ± 19 ms). b Histogram for 𝛤 = -1.5 pN nm 

(𝑁 =  50, 𝜏𝑚𝑒𝑎𝑛 = 145 ± 23 ms). c Histogram for 𝛤 = 0 pN nm (𝑁 =  114, 𝜏𝑚𝑒𝑎𝑛 = 160 ± 17 ms). Source Data 

are provided as a Source Data file.  
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Figure S7. Correlated DNA length and fluorescence trajectories with productive and non-productive search 

events at low torque (𝚪= -1.5 pN nm, F = 0.2 pN). The DNA length (grey) trajectory was recored at 120 Hz and  

smoothed to 10 Hz, while the fluorescence trajectory (red) was recorded at 20Hz. Long lasting binding events 

corresponded to productive target search events yielding a locked R-loop. Locked R-loop formation was verified and 

reversed by transiently applying a high positive torque (dark grey shaded area, Γ= 15 pN nm, F = 1.6 pN). This promoted 

R-loop collapse seen as a pronounced DNA length jump. In contrast, short binding events corresponded to non-

productive search event without R-loop formation.   
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Figure S8. Correlated DNA Length and fluorescence trajectories and dwell time histograms of the non-

productive binding events for targets with non-cognate PAMs. a Trajectories for the non-cognate CCN 

PAM recorded at 𝛤 = -4.7 pN nm (F=0.2 pN, -4 turns). The orange arrows point at non-productive search 

events. The DNA length was recorded at 120 Hz and smoothed to 3 Hz. The fluorescence signal was 

recorded at 20 Hz. b Trajectories for the non-cognate AGN PAM recorded at 𝛤 = -4.7 pN nm(F=0.2 pN,  

-5 turns).  c Histogram for a CCN PAM (𝑁 =41, 𝜏𝑚𝑒𝑎𝑛 = 170 ± 30 ms). Black lines represent the maximum 

likelihood estimate of the data, while dashed lines indicate the mean dwell time. The data was taken at 

a torque of 𝛤 = -4.7 pN nm. d Histogram for a AGN PAM (𝑁 =  119, 𝜏𝑚𝑒𝑎𝑛 = 180 ± 20 ms). Black lines 

represent the maximum likelihood estimate of the data, while dashed lines indicate the mean dwell 

time. The data was taken at a torque of 𝛤 = -4.7 pN nm. Source Data are provided as a Source Data file.  
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Figure S9 Simulation of the target search model. a The 𝑁𝑃𝐴𝑀 sequential states represent permissive 

PAMs with one of the PAMs (𝑇) containing the adjacent target sequence. After random binding to any of 

the PAMs, Cascade stochastically transits to either of the two next-neighbor PAMs at equal rates 𝑘. At 

every PAM, Cascade can dissociate with rate 𝑘𝑑𝑖𝑠𝑠, corresponding to an irreversible transition to State 

𝑁𝑃𝐴𝑀 + 2. At the target PAM, 𝑇, Cascade can additionally recognize the target with rate 𝑘𝑟𝑒𝑐𝑜𝑔, 

corresponding to an irreversible transition to state 𝑁𝑃𝐴𝑀 + 1. b Kinetics of non-productive target search 

events for which Cascade dissociated without recognizing the target. c Kinetics of productive target search 

events for which Cascade recognized the target. The model was solved for a lattice length 𝑁 = 60 and 

different target recognition probabilities per target binding 𝑝𝑟𝑒𝑐𝑜𝑔. The fraction of productive events that is 

asymptotically approached at long times corresponds to the efficiency 𝑝𝑠𝑒𝑎𝑟𝑐ℎ of the target recognition 

process. Source Data are provided as a Source Data file.  
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Figure S10 Scheme of the one-dimensional random walk model for target recognition. The probability 

to reach position 𝑁 when starting from position 1 without returning to zero is calculated. This problem can 

be treated by introducing permissive boundaries at position 0 and 𝑁. Particles that reach either of these 

positions are instantaneously placed back to position 1. The probabilities to reach either position 𝑁 or 

position 0 are proportional to the fluxes in either direction.  
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Figure S11 Probability of locked R-loop formation as well as the mean duration of an R-loop 

formationevent as function of the bias of the energy landscape. a Modeled formation probability after 

PAM binding as function of torque for different locking rates. b Total first passage time for R-loop formation 

function of torque. Shown are the numerical results for an R-loop length 𝑁 = 32 and various locking rates, 

where 𝑘𝐿𝑜𝑐𝑘 = 100𝑘𝑏𝑝 corresponds to the limit of very fast locking, i.e., negligible time. Source Data are 

provided as a Source Data file.  
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Figure S12 Target recognition probability upon PAM binding as function of the R-loop length.  

(Left) Formation probability of an unlocked R-loop vs. R-loop length plotted for differently biased energy 

landscapes. (Right) Probability for locked R-loop formation vs. R-loop length using a locking rate 

𝑘𝐿𝑜𝑐𝑘= 0.01𝑘𝑏𝑝. The biases of the energy landscapes are colored as in the left plot. Source Data are 

provided as a Source Data file.  
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Figure S13 Cummulative probability that a fully formed R-loop has collapsed to the intermediate 

state as function of time exemplary for two terminal mismatches. Experimental results of individual 

collapse events for varying torques (-4.9 pN nm, red circles, N= 230; -5.3 pN nm, blue circles, N=160;  

-5.7 pN nm, green circles, N=68). Single exponential fits are depicted as lines in the respective colours. 

Source Data are provided as a Source Data file. 
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Figure S14 Modeling the energy landscapes of R-loop formation by St-Cascade. a Model energy 

landscapes of R-loop formation for different numbers of PAM-distal mismatches at zero torque (top) and at 

a torque of 𝛤 = -8 pN nm using a mismatch penalty of Δ𝐺𝑀𝑀 = 2.5 𝑘𝑏𝑇. The depicted free energy is relative 

to the free energy at position 17. b Occupation probabilities of the R-loop length calculated for the different 

energy landscapes in a at zero torque and at a torque of 𝛤 = -8 pN nm. c Occupation probability of the full 

R-loop length, i.e. the probability that the R-loop extends to a length of 32 bp, as function of torque for 

different numbers of PAM-distal mismatches. Source Data are provided as a Source Data file. 
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Figure S15. Schematic representation of proposed DNA search by St-Cascade and other DNA binding 

proteins. The St-Cascade target search is limited to the basepairs directly adjacent to PAMs, allowing to ignore large 

parts of the DNA sequence space. This accelerated target search potentially makes up for the slow, multi-step target 

recognition by R-loop formation. In contrast, other DNA binding proteins search the full sequence space for a target, 

which is then recognized through an allosteric single-step process.    
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Figure S16. Purification and cleavage assays of Cascade-Cas6-V76C effector complex. a. 12 % SDS-PAGE after 

purification of Cascade through Q-Sepharose column. L represents PageRuler™ Unstained Protein Ladder, Cd – the 

wt Cascade effector complex as described in (Sinkunas et al., 2013). Next lines represent a peak of Cascade-Cas8e-

C252S-C262S-Cas6-V76C complex (later on called Cascade-Cas6-V76C) on Q Sepharose column. Cas8e C252S-

C262S mutant is missing from the complex. b. Cascade-Cas6-V76C activity assay with Cas3 nuclease-helicase. R 

stands for MassRuler DNA Ladder Mix.  3 nM pSP1-AA (specific target) or pSP3-AA (non-specific target), 100 nM 

Cas3, 100 nM Cascade and 100 nM Cas8e-C-His (or their buffers, respectively) incubated in the Nuclease buffer (10 

mM Tris–HCl (pH 7.5), 75 mM NaCl, 40 mM KCl, 7% (v/v) glycerol, 1.5 mM MgCl2, 0.1 mM NiCl2, 2 mM ATP). The 

reaction was started by adding Cas3 to the mixture, incubated at 37°C and stopped after 40 min. Reactions were 

stopped by adding 1/3 of the reaction volume of “stop solution” containing 67.5 mM EDTA, 27% (v/v) glycerol, 0.3% 

(w/v) SDS and 0.1% w/v Orange G. The reaction products were visualized on 0.8 % agarose DNA gel and a voltage of 

3 V/cm followed by visualization using ethidium bromide staining. The experiments were conducted once, i.e. not 

reproduced. However, binding activity was measured twice more, indepently (see Supplementary Fig. 1). 
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Supplementary Notes 

1  Quantifying the accuracy of the transition point determination in fluorescence and magnetic 

tweezers trajectories  

The determined dwell times connected to the target search process were in the range of the resolution 

limits of the magnetic tweezers assay and the fluorescence signal acquisition. Extraction of reliable dwell 

time estimates required an elaborate data analysis procedure. Both the fluorescence and the DNA length 

trajectories exhibited considerable noise that limited the accuracy at which transition points could be 

determined. To quantify the accuracy of the transition point determination, we used simulated 

fluorescence and DNA length trajectories including transitions and performed our data analysis in the 

same manner as for the experimental data. This allowed us to obtain realistic dwell time estimates as well 

as errors.  

 

Accuracy of transition points in fluorescence trajectories 

The accuracy of transition points in fluorescence trajectories was mainly limited by the Poisson distributed 

shot noise of the photon statistics2 as well as the finite camera integration time of 50 ms. To simulate 

fluorescence trajectories, we first simulated two-state binding/dissociation trajectories obeying first order 

kinetics using 𝑘𝑏𝑖𝑛𝑑= 0.05 s-1 and 𝑘𝑑𝑖𝑠𝑠= 0.1 s-1 at a time resolution of 0.5 ms. We then split the trajectories 

into successive 50 ms windows and drew for each window random photon numbers from a Poisson 

distribution. The expected (mean) photon number 𝜆 depended on the relative length of the unbound and 

bound states within each window. We assumed average photon numbers of 𝜆 = 250 and 𝜆 = 350 if the 

time window was fully occupied by the unbound state and the bound state, respectively. This provided a 

signal change of 100 photons upon binding, such that we obtained signal-to-noise ratios of  

𝑆𝑁𝑅 ≈ ∆𝜆/√𝜆 ≈ 10 as experimentally observed (Supplementary Fig. 3a).  

 

We next analyzed the transition points in the simulated fluorescence trajectories in the same manner as 

the experimental trajectories using a Hidden Markov modelling algorithm3. The time error in determining 

the transition points was then calculated from the difference between input transition points for the 

simulations and output transitions from the analysis. The transition time errors were approximately 

Gaussian distributed with a mean of 𝜇𝐹𝑙 = 1.0 ± 0.5 ms indicating that on average the positions of 

transition points were correctly determined. The standard deviation of the distribution, corresponding to 

the accuracy of a single measured transition time, was 𝜎𝐹𝑙 = 17 ms (Supplementary Fig. 3b).  
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Accuracy of transition points in magnetic tweezers trajectories 

The accuracy of transition times in DNA length trajectories was mainly limited by the response time of the 

DNA tethered magnetic bead to sudden DNA length changes as well as thermal DNA length fluctuations.  

To simulate DNA length trajectories with R-loop formation-collapse events, we first simulated trajectories 

with sudden (R-loop) transitions between two fixed DNA lengths obeying first order kinetics with  

𝑘𝑅,𝑓𝑜𝑟𝑚= 𝑘𝑅,𝑐𝑜𝑙𝑙 = 0.05s-1 at a frame rate of 120 Hz. The length difference between the two states was 

60 nm as measured for experimentally observed transitions. To simulate DNA length fluctuations, we 

approximated our nanomechanical system as a sphere being attached to a linear spring with spring 

constant 𝑘 that is moving along the z coordinate with drag coefficient 𝛾. The spring constant was 

determined from the mean-squared fluctuations of the DNA length in experimental trajectories of 

supercoiled DNA as 𝑘 = 𝑘𝐵𝑇/〈𝑧
2〉 = 7.1 ⋅ 10−4pN nm−1. The drag coefficient was then determined from 

the measured characteristic cut-off frequency 𝑓𝑐 = 12 𝐻𝑧 of the frequency spectrum of the length 

fluctuations4 as 𝛾 = 𝑘/2𝜋𝑓𝑐 = 9.4 ⋅ 10−6 pN nm−1 s. DNA length fluctuations including R-loop 

transitions were then modelled using Brownian dynamics simulations4 in which the two-state R-loop 

trajectories provided the equilibrium position for the spring extension. (Supplementary Fig. 4a).  

We next analyzed the transition times in the simulated trajectories using Hidden Markov modelling3 and 

calculated their errors with respect to the nominal transition times. The transition time errors were 

Gaussian distributed with a pronounced non-zero mean of 𝜇𝑀𝑇 = 13 ms and a standard deviation of 

𝜎𝑀𝑇 =137 ms (Supplementary Fig. 4b). The measured time delay was due to the finite response time 𝜏 =

𝛾/𝑘 = 13.2 ms which the nanomechanical system required to adapt to changes of the DNA length. For 

the collapse of the R-loop, a similar error distribution was obtained. In the DNA length trajectories, the 

vbFRET algorithm detected more transitions than were present. Excess transitions were removed 

manually, similar as for the experimental trajectories, for which the fluorescence signal provided a 

corrective.  

 

 

2 Maximum Likelihood Estimation of short dwell times 

The determined mean values of the dwell times 𝜏𝑅,𝑓𝑜𝑟𝑚, 𝜏𝑅,𝑐𝑜𝑙𝑙 and 𝜏𝑛𝑜𝑛−𝑝𝑟𝑜𝑑 were smaller or on the 

order of the width of the experimentally determined dwell time distributions. To obtain accurate 

estimates of the mean dwell times we applied maximum likelihood estimation (MLE). Assuming that the 
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target search follows first order kinetics, the actual dwell times are exponentially distributed around the 

mean dwell time 𝜏, which corresponds to the decay time of the exponential: 

Each experimentally determined dwell time was calculated from the difference of two transition times 

with their own Gaussian distributed statistical errors as determined above. The experimentally 

determined dwell times are then, according to the central limit theorem, Gaussian distributed around the 

actual values, whose mean and variance equal the sum of the means and variances of the individual error 

distributions, respectively. Correspondingly, the dwell time error distribution of the non-productive 

events had a mean of 𝜇 = 2𝜇𝐹𝑙 ≈ 0 𝑚𝑠 and a variance of  𝜎2 = 2𝜎𝐹𝑙
2 = (24 𝑚𝑠)2 since it was calculated 

from two transitions in the fluorescence trajectories. The dwell time error distributions for the productive 

events had a mean of 𝜇 = 𝜇𝐹𝑙 + 𝜇𝑀𝑇 ≈ 13 𝑚𝑠 and a variance of  𝜎2 = 𝜎𝐹𝑙
2 + 𝜎𝑀𝑇

2 = (138 𝑚𝑠)2.  In base 

cases the dwell time error distributions are described by: 

The error distributions shift and broaden the actual exponential dwell time distribution 𝑝𝜏 as observed in 

the experiments. The expected measured dwell time distribution 𝑝𝜏,𝑒𝑥𝑝 can be mathematically described 

as a convolution of 𝑝𝜏 with the corresponding error distribution 𝑝𝑒𝑟𝑟𝑜𝑟 : 

Inserting the distributions and solving the convolution integral provides: 

 

where 𝜏 is the mean of the exponential distribution and 𝜇 and 𝜎 are the mean and standard deviation of 

the of the Gaussian distributed errors, respectively. The probability of measuring a set of 𝑛 experimental 

dwell times 𝑡𝑖 is described by the likelihood function 

Taking the logarithm of the likelihood function simplifies the product and yields a sum: 
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To find the most likely mean dwell time 𝜏 describing the measured dwell time distribution, ln(𝐿) was 

numerically maximized for the particular set of data points 𝑡𝑖 and error parameters 𝜇 and 𝜎. The estimated 

standard errors of 𝜇 and 𝜎 were derived from the inverted Hessian matrix of the optimized function, i.e. 

the covariance matrix5.  

 

3 Estimating the number of short non-detected binding events of St-Cascade to DNA 

 

The average dwell times for non-productive binding of St-Cascade to DNA were on the order of 150 ms. 

Given a frame rate of 20 Hz in the measurements, a fraction of short-lived events remained undetected. 

To reliably determine the search efficiency, we used our MLE approach to estimate the number of 

undetected events. Assuming that only events with a dwell time larger than a cut-off 𝑡𝑐 are detected, the 

dwell time distribution of the detected events corresponds to an exponential distribution that is shifted 

by 𝑡𝑐 to larger times. Convolution with the error distribution would smoothen the sharp transition around 

𝑡𝑐 and yield reduced event numbers at low times (Supplementary Fig. 5a), as also seen experimentally 

(Fig. 2e, main text). To obtain a nominal dwell time distribution, the shift by 𝑡𝑐 can be achieved by setting 

the mean of the Gaussian error distribution to 𝜇 = 𝑡𝑐 .  It can be shown that the fraction of non-detected 

events among all binding events is then given by: 

𝑟𝑚𝑖𝑠𝑠𝑒𝑑 = 1 − 𝑒
𝑡𝑐
𝜏 . (S7) 

where 𝜏 is the nominal mean dwell time. Using 𝜏 and 𝑡𝑐  (i. e. 𝜇) as free parameters in our MLE 

approximation of the experimental dwell times allowed us to estimate 𝑡𝑐 and thus to correct for the 

fraction of non-detected non-productive binding events.  

To validate this approach, we simulated fluorescence trajectories with short binding events using 

exponentially distributed dwell times of mean 𝜏 (see above as described above).  Detection of the binding 

events in the simulated trajectories and analysis of the dwell times (see above) provided dwell time 

distributions with a significantly reduced number of events at low dwell times, which could be well 

approximated by the expected dwell time distribution with detection cutoff 𝑡𝑐 (Supplementary Fig. 5a). 

We carried out the simulations and the analysis for a range of different dwell times and verified that the 

analysis returned, within error, the input dwell times (Supplementary Fig. 5b). Most importantly, from the 

simulations we could also determine the actual number of events that were missed by the Hidden-Markov 

ln(𝐿) =∑ln [
1

2𝜏
𝑒
1
2𝜏
(2𝜇+

𝜎2

𝜏
−2𝑡𝑖)erfc(

𝜇 +
𝜎2

𝜏 − 𝑡𝑖

√2𝜎
)]

𝑖

. (S6) 
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analysis of the trajectories and compare it with MLE result.  This revealed that the MLE provided realistic 

fractions of missed events over the whole range of tested dwell times albeit with a slight overestimation 

(Supplementary Fig. 5c).  

 

4 Target search model 

Following the binding to a random PAM on the DNA, we modeled the target search by St-Cascade as a 

one-dimensional random walk with stepping rate 𝑘𝑠𝑡𝑒𝑝 from one PAM to the next adjacent PAM in either 

direction (Supplementary Fig. 9a). The 1D PAM lattice was limited to 𝑁𝑃𝐴𝑀 lattice points to mimic the 

limited illuminated DNA length. The boundaries in our model are considered reflective. One of the PAMs 

(the target PAM, position 20, taken from the actual DNA sequence used in the experiments) was selected 

to contain the adjacent target.  The mean-squared-displacement of such a discrete random walk is 

provided by: 

〈𝑥2〉 = 2𝑘𝑠𝑡𝑒𝑝∆
2𝑡 = 2𝐷𝑡 (S8) 

with ∆= 2.7 nm being the mean distance between the PAMs. 〈𝑥2〉 has to match the observed mean-

square displacement, such that the stepping rate could be obtained from the experimentally determined 

diffusion coefficient as 𝑘𝑠𝑡𝑒𝑝 =
𝐷

∆
2 = 1920 𝑠−1. It shall be noted that Equation S8 is valid for unbounded 

motion only. The eqution is used to infer the the stepping rate of St-Cascade from the lateral diffusion 

measurements. In the experiment, a DNA substrate of approximately 5µm (15kbp) length was used. Given 

the finding that St-Cascade scans on average 90nm per 1D search, this assumption is believed to be valid. 

 At each PAM, St-Cascade could furthermore dissociate from the DNA with dissociation rate  

𝑘𝑑𝑖𝑠𝑠 =5.7 s-1 (Supplementary Fig. 9 and main text) yielding a non-productive search event. Upon arrival 

at the target PAM at position 𝑇, St-Cascade could form an R-loop at rate 𝑘𝑟𝑒𝑐𝑜𝑔, yielding a productive 

event, which is related to  the target recognition probability as 𝑝𝑟𝑒𝑐𝑜𝑔 =
𝑘𝑟𝑒𝑐𝑜𝑔

𝑘𝑟𝑒𝑐𝑜𝑔+𝑘𝑑𝑖𝑠𝑠+2𝑘𝑠𝑡𝑒𝑝
.  

Our model system can be seen as a Markov process with 𝑁𝑃𝐴𝑀 + 2 states, where state 𝑁𝑃𝐴𝑀 + 1 

represents the productive R-loop state and state 𝑁𝑃𝐴𝑀 + 2 the unproductive dissociated state. Let 𝑝(𝑡) 

be the vector containing the occupation probabilities of all states at any time t, the kinetics of 𝑝(𝑡) and 

thus the search process is then described by6: 

𝑑

𝑑𝑡
𝑝(𝑡) = 𝐾̿ 𝑝(𝑡)  , (S9) 
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where 𝐾̿ is the rate matrix containing the rate constants 𝑘𝑖,𝑗 of all possible transitions  between all states 

𝑖, 𝑗 of the system. For the scheme in Figure S9a, the rate matrix has the following form: 

 

                                     1    2       …        T              …            𝑁𝑃𝐴𝑀  

𝐾 =

(

 
 
 
 
 
 
 
 
 
 
 

−𝑘𝑠𝑡𝑒𝑝 − 𝑘𝑑𝑖𝑠𝑠 𝑘𝑠𝑡𝑒𝑝 … 0 … 0 0 0

𝑘𝑠𝑡𝑒𝑝 −2𝑘𝑠𝑡𝑒𝑝 − 𝑘𝑑𝑖𝑠𝑠 … 0 … 0 0 0

0 𝑘𝑠𝑡𝑒𝑝 … 0 … 0 0 0
… … … … … … … …
0 0 … 𝑘𝑠𝑡𝑒𝑝 … 0 0 0

0 0 … −2𝑘𝑠𝑡𝑒𝑝 − 𝑘𝑑𝑖𝑠𝑠 − 𝑘𝑟𝑒𝑐𝑜𝑔 … 0 0 0

0 0 … 𝑘𝑠𝑡𝑒𝑝 … 0 0 0
… … … … … … … …
0 0 … 0 … 𝑘𝑠𝑡𝑒𝑝 0 0

0 0 … 0 … −𝑘𝑠𝑡𝑒𝑝 − 𝑘𝑑𝑖𝑠𝑠 0 0

0 0 … 𝑘𝑟𝑒𝑐𝑜𝑔 … 0 0 0

𝑘𝑑𝑖𝑠𝑠 𝑘𝑑𝑖𝑠𝑠 … 𝑘𝑑𝑖𝑠𝑠 … 𝑘𝑑𝑖𝑠𝑠 0 0)

 
 
 
 
 
 
 
 
 
 
 

   

1
2
3
…

𝑇 − 1
𝑇

𝑇 + 1
…

𝑁𝑃𝐴𝑀 − 1
𝑁𝑃𝐴𝑀

𝑁𝑃𝐴𝑀 + 1
𝑁𝑃𝐴𝑀 + 2

  

 

(S10) 

 

  

Eq. S9 is solved by  

𝑝(𝑡) = exp(𝐾̿𝑡) 𝑝(0) (S11) 

with exp(𝐾̿𝑡) being the matrix exponential of 𝐾̿ and 𝑝(0) being the initial probability distribution at 𝑡 =

0.  The exponential term can be expressed as 

exp(𝐾̿𝑡) = 𝑥̿ ⋅ exp(Λ̿𝑡) ⋅ 𝑥̿−1  ,  (S12) 

where 𝑥̿ is the eigenvector matrix of 𝐾̿, and exp(Λ̿𝑡) is a diagonal matrix, containing exponential decays 

in time with the eigenvalues 𝜆𝑖 as decay constants: 

exp(Λ̿𝑡) = (
exp(𝜆1𝑡) 0 …

0 exp(𝜆2𝑡) …
… … …

) .  (S13) 

The entries of the matrix exponential are, according to Eq. S12, sums of the 𝑁 + 2 exponential decays: 

(𝑥̿ ⋅ exp(Λ̿𝑡) ⋅ 𝑥̿−1)
𝑖,𝑗
= ∑ 𝑥𝑖,𝑘𝑥𝑘,𝑗

−1 exp (−𝜆𝑘𝑡)

𝑁𝑃𝐴𝑀+2

𝑘=1

.  (S14) 

 Combining Eqns. S11, S12 and S14, provides then for the occupation probability of state 𝑖 the following 

sum of the 𝑁𝑃𝐴𝑀+2 exponential decays: 

𝑝𝑖(𝑡) = ∑ exp (−𝜆𝑘𝑡) ∑ 𝑝𝑗(0) 𝐴𝑖𝑗𝑘  

𝑁𝑃𝐴𝑀+2

𝑗=1

𝑁𝑃𝐴𝑀+2

𝑘=1

 (S15) 
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with 𝐴𝑖𝑗𝑘 = 𝑥𝑖,𝑘𝑥𝑘,𝑗
−1. For an initial binding of Cascade to a random PAM, the starting probabilities are given 

by: 

𝑝(0) = (1/𝑁𝑃𝐴𝑀 , 1/𝑁𝑃𝐴𝑀 , … ,1/𝑁𝑃𝐴𝑀 , 0,0) (S16) 

With this solution and experimentally determined values for 𝑘𝑠𝑡𝑒𝑝 and  𝑘𝑑𝑖𝑠𝑠, one can calculate the kinetics 

of productive (𝑝𝑁+1(𝑡)) and non-productive (𝑝𝑁+2(𝑡)) target recognition events for any set the lattice 

length 𝑁𝑃𝐴𝑀 and the target recognition efficiency 𝑝𝑟𝑒𝑐𝑜𝑔 (Supplementary Fig. 9a). We validated the 

obtained kinetics using stochastic simulations of the random walk process. The fraction of productive 

events that is asymptotically approached at long times provides the efficiency 𝑝𝑠𝑒𝑎𝑟𝑐ℎ of the target 

recognition process (Supplementary Fig. 9c). 𝑝𝑠𝑒𝑎𝑟𝑐ℎwas increasing with increasing 𝑝𝑟𝑒𝑐𝑜𝑔 and generally 

larger than 𝑝𝑟𝑒𝑐𝑜𝑔 due to multiple target site revisits during the search. From the kinetics, we furthermore 

calculated the mean event durations, i.e. the dwell times for non-productive and productive search 

events:  

𝜏𝑅,𝑓𝑜𝑟𝑚/𝑛𝑜𝑛−𝑝𝑟𝑜𝑑 = 〈𝑡𝑖〉 = ∑ 1/𝜆𝑘 ∑ 𝑝𝑗(0) 𝐴𝑖𝑗𝑘  

𝑁𝑃𝐴𝑀+2

𝑗=1

𝑁𝑃𝐴𝑀+2

𝑘=1

 (S17) 

with 𝑖 being either 𝑁𝑃𝐴𝑀 + 1 or 𝑁𝑃𝐴𝑀 + 2, respectively.  

Dwell times for R-loop collapse were obtained from the calculated kinetics of non-productive events that 

started at the target site at position 𝑇 for which the initial occupancies changed to 𝑝(0) =

(0,… ,0,1,0,… ,0). The number of target site revisits for productive events was obtained from 10,000 

stochastic simulations of the target search process following the scheme in Supplementary Fig. 9a. The 

search process was always started at the target site and the number of revisits was counted for each 

productive search event.  
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5 Target recognition model 

Probability to finish a 1D random walk once the first step was taken 

Due to the reversibility of the R-loop formation process, an R-loop of a CRISPR-Cas effector complex that 

became nucleated upon PAM binding has, even on a perfectly matching sequence, a certain chance to 

collapse without full R-loop formation or locking. To provide a theoretical description for the probability 

𝑝𝑟𝑒𝑐𝑜𝑔 at which a matching target becomes recognized upon PAM binding, we model R-loop formation as 

a one-dimensional random walk process over 𝑁 + 1 positions (0,1,2,...,𝑁), where 𝑁 corresponds to the 

number of base pairs of the full R-loop (Supplementary Fig. 10). Within the model, position 0 corresponds 

to the unbound state, position 1 to the PAM-bound state with the first base-pair of the R-loop being 

formed and the positions from 2 to 𝑁 to all subsequent R-loop lengths. To include R-loop locking, an 

additional position 𝑁 + 1 can be introduced. Transitions are only allowed between neighboring states. 

They are described by position-dependent rate constants 𝑘𝑖
+

  for forward steps and 𝑘𝑖
− for backward steps 

with 𝑖 indicating the position. Within the random walk model, the target recognition following PAM 

binding translates into a start of the walk at position 1. The walk is terminated when either Position 0 

(non-successful recognition) or position 𝑁 (successful recognition) are reached. The target recognition 

probability is then the probability 𝑝𝑝𝑎𝑠𝑠 for a successful termination of the walk. To obtain this probability 

but also the time scale of the walk in the frame work of the model, one introduces permissive boundaries 

at positions 0 and 𝑁 and places a single particle into the system.  

Once the particle reaches a boundary, the particle is instantaneously placed to the start position 1. To 

obtain average quantities over many single-particle trajectories, we assume steady state conditions for 

this system, i.e. probabilities 𝑝𝑖  for the particle to be found at position 𝑖 that are time-invariant. Given the 

permissive boundaries we directly get 𝑝0 = 𝑝𝑁 = 0. In steady state, this results in a constant backward 

flux 𝑗− of particles from position 1 to 0 and a constant forward flux 𝑗+ of particles from position 1 to 𝑁. 

The fluxes correspond to the rates of particles arriving at either boundary, i.e. to the rates of successful 

vs. unsuccessful recognition. The probability 𝑝𝑝𝑎𝑠𝑠 to reach position 𝑁 is then provided by the forward 

flux divided by the total flux at position 1: 

𝑝𝑝𝑎𝑠𝑠 =
𝑗+

𝑗+ + 𝑗−
=

1

1 +
𝑗+
𝑗−

. (S18) 

For the forward/backward flux 𝑗𝑖
± between two neighboring positions 𝑖 and 𝑖 + 1 we can write: 

𝑗𝑖
± = ±𝑘𝑖

+𝑝𝑖 ∓ 𝑘𝑖+1
− 𝑝𝑖+1  (S19) 
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In steady state, the probability at any position 𝑖 does not change in time such that for a pure linear chain 

we have: 

𝑑𝑝𝑖
𝑑𝑡

= 𝑗𝑖+1 − 𝑗𝑖 = 0  (S20) 

Recursively, it follows that 𝑗𝑖 = 𝑗0  for all 𝑖 of a linear chain segment not containing branches. For the 

backward flux 𝑗−, we then get from 𝑝0 = 0 and Eq. S19: 

𝑝1
𝑗−

=
1

𝑘1
− (S21) 

For the forward flux, we get from Eq. S19: 

𝑝𝑖
𝑗+
=

1

𝑘𝑖
+ +

𝑘𝑖+1
−

𝑘𝑖
+

𝑝𝑖+1
𝑗+

 (S22) 

Thus, with the boundary condition 𝑝𝑁 = 0, we can obtain all 𝑝𝑖/𝑗+ from N-1 to 1 in a recursive manner: 

𝑝𝑁−1
𝑗+

=
1

𝑘𝑁−1
+   , 

𝑝𝑁−2
𝑗+

=
1

𝑘𝑁−2
+ +

1

𝑘𝑁−2
+

𝑘𝑁−1
−

𝑘𝑁−1
+    , 

 

𝑝𝑁−3
𝑗+

=
1

𝑘𝑁−3
+ +

1

𝑘𝑁−3
+

𝑘𝑁−2
−

𝑘𝑁−2
+ +

𝑘𝑁−2
−

𝑘𝑁−2
+

𝑘𝑁−1
−

𝑘𝑁−1
+ , … 

 

Since the probability distribution {𝑝𝑖} is normalized (single particle in the system) and 𝑝0 = 0, one 

can easily derive an expression for the forward flux: 

∑
𝑝𝑖
𝑗+

𝑁

𝑖=1

=
1

𝑗+
∑𝑝𝑖

𝑁

𝑖=0

=
1

𝑗+
 (S23) 

The local probabilities are then obtained by multiplying the derived values 𝑝𝑖/𝑗+ with 𝑗+. From 𝑝1 and 

Equation S21, one obtains 𝑗− = 𝑘1
−𝑝1. Using the principle of detailed balance, one can express the ratio 

of the rate constants between positions 𝑖 and 𝑖 + 1 directly as 

𝑘𝑖+1
− /𝑘𝑖

+ = exp(Δ𝐺𝑖/𝑘𝐵𝑇). (S24) 

The variable Δ𝐺𝑖 = 𝐺𝑖+1 − 𝐺𝑖  is the local bias of the energy landscape, i.e. the free energy difference 

between positions 𝑖 + 1 and 𝑖. With this, Eq. S22 becomes:  

𝑝𝑖
𝑗+

=
1

𝑘𝑖
+ +

𝑝𝑖+1
𝑗+

𝑒𝛥𝐺𝑖/𝑘𝐵𝑇 . (S25) 

In a recursive manner we can obtain all 𝑝𝑖/𝑗+ as above, for which we obtain the following form final form: 
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𝑝𝑁−𝑖
𝑗+

=∑
1

𝑘𝑁−𝑗
+

𝑖

𝑗=1

 𝑒(G𝑁−𝑗−𝐺𝑁−𝑖)/𝑘𝐵𝑇    . (S26) 

Using this expression, we obtain 𝑝1/𝑗+ and obtain after transformation: 

𝑗+ =
𝑝1

∑
1

𝑘𝑁−𝑖
+ exp(𝐺𝑁−𝑖 − 𝐺1)/𝑘𝐵𝑇

𝑁−1
𝑖=1

=
𝑝1

∑
1
𝑘𝑖
+ exp(𝐺𝑖 − 𝐺1)/𝑘𝐵𝑇

𝑁−1
𝑖=1

   . 
(S27) 

With 𝑗− = 𝑘1
−𝑝1, we get for the success probability of the random walk: 

𝑝𝑝𝑎𝑠𝑠 =
1

1 + 𝑘1
−∑

1
𝑘𝑖
+ exp

𝐺𝑖 − 𝐺1
𝑘𝐵𝑇

𝑁−1
𝑖=1

 . 
(S28) 

  

Formation probability of a matching R-loop of N base pairs under constant bias 

To derive an expression for the formation probability of an (unlocked) R-loop of length 𝑁 following PAM 

binding, we assume a constant bias for the energy landscape for all R-loop states such that  

𝐺𝑖+1 − 𝐺𝑖 = 𝐸𝑏𝑖𝑎𝑠 for 1 ≤ 𝑖 < 𝑁. The energy difference between position 𝑖 and 1 is given as  

𝐺𝑖 − 𝐺1 = (𝑖 − 1)𝐸𝑏𝑖𝑎𝑠. Furthermore, we assume position-independent values for the forward and 

backward stepping rates. Simplifying the exponential terms of the bias energy in Eq. S28 with the rate 

ratio between the backward and the forward stepping rate 

𝑠 =
𝑘−

𝑘+
= 𝑒𝐸𝑏𝑖𝑎𝑠/𝑘𝐵𝑇 (S29) 

yields for the R-loop formation probability: 

𝑝𝑅𝑙𝑜𝑜𝑝 =
1

1 + 𝑒𝐸𝑏𝑖𝑎𝑠/𝑘𝐵𝑇 ∑ 𝑒(𝑖−1)⋅𝐸𝑏𝑖𝑎𝑠/𝑘𝐵𝑇𝑁−1
𝑖=1

=
1

1 + ∑ 𝑠𝑖𝑁−1
𝑖=1

 (S30) 

Using the sum formula of the geometric series, one gets 

𝑝𝑅𝑙𝑜𝑜𝑝 =
1

1 + 𝑠
𝑠𝑁−1 − 1
𝑠 − 1

=
𝑠 − 1

𝑠𝑁 − 1
 (S31) 

 

Locked R-loop formation under constant bias 

We further consider ‘locking’ to derive a more realistic target recognition probability that includes the 

effects of the conformational changes during locking, which are slow compared to the single base pair 

steps. To this end, we introduce an additional locking step from position 𝑁 to 𝑁 + 1 with the rate constant 

𝑘𝑁
+ = 𝑘𝐿. The target recognition probability then becomes 
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𝑝𝑟𝑒𝑐𝑜𝑔 =
1

1 + 𝑘−∑
1
𝑘𝑖
+ 𝑒

(𝑖−1) 𝐸𝑏𝑖𝑎𝑠/𝑘𝐵𝑇𝑁
𝑖=1

=
1

1 + ∑ 𝑠𝑖𝑁−1
𝑖=1 +

𝑘+

𝑘𝐿
𝑠𝑁

 
(S32) 

This can be further transformed to: 

𝑝𝑟𝑒𝑐𝑜𝑔 =
1

1 + 𝑠 ⋅
𝑠𝑁−1 − 1
𝑠 − 1

+
𝑘+

𝑘𝐿
𝑠𝑁

=
𝑠 − 1

𝑠𝑁 [1 + (𝑠 − 1) (
𝑘+

𝑘𝐿
)] − 1

 
(S33) 

Assuming that the activation barriers for single base pair steps of R-loop formation are centered between 

subsequent R-loop positions, the bias-dependent forward and the backward stepping rates for R-loop 

formation can be expressed using Arrhenius-like terms: 

𝑘± = 𝑘𝑏𝑝 𝑒
∓
𝐸𝑏𝑖𝑎𝑠
2 = 𝑘𝑏𝑝 𝑠

∓
1
2 (S34) 

with 𝑘𝑏𝑝 being the forward and backward stepping rate in absence of bias. When plotting the target 

recognition probability as function of the (negative) bias of the energy landscape as applied by the 

supercoiling, one sees that it strongly increases with the applied bias, similar to the first passage time of 

R-loop formation (Supplementary Fig. 11). Reducing the locking rate reduces the target recognition 

probability only for weak but not for strong biases (Supplementary Fig. 11a). This can be better 

understood by looking at the probabilities of (unlocked) R-loop formation and locked R-loop formation as 

function of the R-loop length (Supplementary Fig. 12). For an unlocked R-loop formation we have high 

probabilities to form short R-loops due to the limited length of the random walk which drop with 

increasing R-loop lengths (Supplementary Fig. 12a). It is important to note that even for a mild downhill 

bias, the R-loop formation probability saturates at a minimum value already at short R-loop lengths. This 

means that the decision for formation or collapse of an R-loop is taken at the beginning of the random 

walk. Once the R-loop has been further expanded, it will for the given bias practically always form but not 

collapse anymore. This changes somewhat if a considerably slower locking step is added. Locked R-loop 

formation is particularly disfavored at short lengths, since the slow step represents a high kinetic 

(activation) barrier that needs to be overcome. The probability then increases with length in presence of 

a negative bias, reaching the same saturation values as for unlocked R-loops (Supplementary Fig. 12b). 

Due to the negative bias, the unlocked R-loops are already sufficiently stabilized compared to the 

activation barrier for locking. Locking is then just an additional step after R-loop formation and occurs 

without an additional collapse. By contrast, at zero or mild bias, the locking barrier still represents an 

additional hurdle that can promote R-loop collapse such that the locked R-loop formation is less likely 

than unlocked R-loop formation.  
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6 Determination of the apparent locking rate from magnetic tweezers trajectories 

In the following we derive a simple formula to calculate the apparent locking rate from the magnetic 

tweezers trajectory in Fig. 5, main text. When the R-loop is in the full state 𝐹, R-loop collapse to the 

intermediate state 𝐼 and locking state 𝐿 are competing: 

𝐼
      𝑘𝐼         
←     𝐹

𝑘𝑙𝑜𝑐𝑘,𝑎𝑝𝑝
→      𝐿 (S35) 

This kinetic scheme can be described by the following set of differential equations: 

𝑑𝑝𝐹
𝑑𝑡

= −𝑘𝐼𝑝𝐹 − 𝑘𝐿𝑝𝐹 

𝑑𝑝𝐼
𝑑𝑡

= 𝑘𝐼𝑝𝐹 

𝑑𝑝𝐿
𝑑𝑡

= 𝑘𝐿𝑝𝐹 , 

(S36) 

where 𝑝𝐹, 𝑝𝐼 and 𝑝𝐿 are the probabilities that the R-loop is in the full, intermediate and locked state 

respectively. At 𝑡 = 0, i.e. when the full state has just formed, we have the following starting conditions: 

𝑝𝐹(0) = 1 

𝑝𝐼(0) = 𝑝𝐿(0) = 0 
(S37) 

The first differential equation is a simple first order decay, such that we get with the starting conditions: 

𝑝𝐹(𝑡) = 𝑒−(𝑘𝐼+𝑘𝐿)𝑡 (S38) 

Inserting into the second equation gives: 

𝑑𝑝𝐼
𝑑𝑡

= 𝑘𝐼𝑒
−(𝑘𝐼+𝑘𝐿)𝑡 (S39) 

Integration gives for the time-dependent probability 𝑝𝐼 that a full R-loop has collapsed to the intermediate 

state: 

𝑝𝐼(𝑡) = 𝑝𝐼(0) + ∫ 𝑘𝐼𝑒
−(𝑘𝐼+𝑘𝐿)𝑡𝑑𝑡

𝑡

0

=
𝑘𝐼

𝑘𝐼 + 𝑘𝐿
(1 − 𝑒−(𝑘𝐼+𝑘𝐿)𝑡) (S40) 

as the only measurable probability. The probability 𝑝𝐼(𝑡) rises only to the amplitude: 

𝑘𝐼
𝑘𝐼 + 𝑘𝐿⏟    
𝑝𝑐𝑜𝑙𝑙

= 1 −
𝑘𝐿

𝑘𝐼 + 𝑘𝐿⏟    
𝑝𝑙𝑜𝑐𝑘

 (S42) 

With 𝑝𝑐𝑜𝑙𝑙 or 𝑝𝑙𝑜𝑐𝑘 being the probabilities that a formed full R-loop collapses or becomes locked, 

respectively. The collapse occurs with the rate constant 

𝑘𝑐𝑜𝑙𝑙 = 𝑘𝐼 + 𝑘𝐿 (S43) 

 If one determines 𝑝𝑙𝑜𝑐𝑘 from the fraction of events that successfully get locked and 𝑘𝑐𝑜𝑙𝑙 from fitting the 

probability of collapse for fully formed R-loop (Supplementary Fig. 13) using Eq. S40, one can calculate 𝑘𝐼 

and 𝑘𝐿 from: 

𝑘𝐼 = (1 − 𝑝𝑙𝑜𝑐𝑘)𝑘𝑐𝑜𝑙𝑙 

𝑘𝐿 = 𝑝𝑙𝑜𝑐𝑘 𝑘𝑐𝑜𝑙𝑙 
(S44) 
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7 Estimation of the ‘real’ locking rate 

Due to their reversibility, unlocked R-loops do not possess a fixed length but rather sample different 

lengths dependent on the energy landscape of R-loop formation. The results of our experiments 

suggested (see main text) that R-loop locking is only triggered if the R-loop extends over its full length. 

Given that the unlocked R-loop samples the full length only for a fraction of the time, the measured 

torque-dependent apparent locking rate would be considerably lower than the real locking rate 𝑘𝑙𝑜𝑐𝑘, i.e., 

the rate at which the locking transition occurs, once a full R-loop has been formed. The relation between 

both rates would be given as:  

𝑘𝑙𝑜𝑐𝑘,𝑎𝑝𝑝 = 𝑝32 𝑘𝑙𝑜𝑐𝑘  , (S45) 

where 𝑝32 is the probability that the R-loop extends all the way to the last base pair. The probabilities 𝑝𝑖  

that an R-loop extends over 𝑖 base pairs can be determined from the energy landscape of R-loop formation 

using the Boltzmann distribution: 

𝑝𝑖 =
1

𝑍
𝑒−𝐺𝑖/𝑘𝐵𝑇         with      𝑍 = ∑𝑒−𝐺𝑖/𝑘𝐵𝑇

32

𝑖=1

 (S46) 

being the partition function 𝑍 that ensures normalization of the probabilities for all states. As described 

above, we assumed an energy landscape with a constant negative bias from the applied supercoiling. For 

each PAM-distal mismatch, a (positive) free energy penalty was introduced at its position7,8 since 

disrupted base pairing is not compensated by base pairing between guide RNA and DNA target strand. No 

penalty was introduced for a target mutation at position 30 due to the base flips at this position observed 

in the Cascade structure9. Resulting model energy landscapes are shown in Supplementary Fig. 14a for 

different numbers of terminal mismatches and applied negative torque. Elevated negative torque 

increases the occupancy of the full R-loops state as it becomes energetically favored, while PAM distal 

penalties decrease the occupancy of the full R-loop state drastically (Supplementary Fig. 14b, c). Finally, 

using the simplified model for 𝑘𝑙𝑜𝑐𝑘,𝑎𝑝𝑝, the measured apparent locking rate data could be globally fitted 

using 𝑘𝑙𝑜𝑐𝑘and a base-pair independent mismatch penalty as fit parameters (Fig. 5, main text). Agreement 

between data and model supported the idea that R-loop locking only occurs for a fully extended R-loop 

and that the torque dependence of the 𝑘𝑙𝑜𝑐𝑘,𝑎𝑝𝑝 is mainly due to an increasing confinement of the R-loop 

to its full length with increasing negative supercoiling.  
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