Tb927.3.800			MSESE	KIDVSGARNY	KSISA	ARXKAFETGD
PBANKA 1438600				MGK	OKIID	ARXKAYYEGD
ETH 00007450			MAOLMGDE	ERRDVYSATT	NALOT	RFXYAMYIRA
TgVīt		МРА	SGAGYAGGSI	VPDGRTLVNC	RDLĤK	ARXDAYQLRD
NCLIV_039240		MPA	GGAGHAGGNI	VPDGRTLVNC	RDLNK	ARXDAYQLRD
ScCCC1	MSIVALKNAV	VTLIQKAKGS	GGTSELGGSE	STPLLRGSNS	NSSRHDNLSS	SSSDIIYGRX
AtVit1					XMS	SEEDKITRIS
EgVIT1					XMAD	GANDGGNPGA
61 Asp4						13 Gly44
Tb927.3.800	IEMSRMEHQK	HIYKEV	H	NPSASD	YVKSVVFGGL	DGXIITSFTV
PF3D7 1223700	VVLSKEAHDF	YHNL	DKHGEN	HNLDKD	NLKTIIFGSL	DGXIITIFAI
PBANKA_1438600	IEKSKEIHSH	YHNL	DKHAEH	HSLDKD	HLKTIIFGSL	D <mark>G</mark> XIITIFAI
ETH_00007450	AHQHNHHHSQ	NPGDYGELSG	VHTEAH	KKTSSD	YLKAIVFGGL	DGXIVTIFAI
TgVit	IEATRAAHSL	DLYRELTG	DHKENH	TNTSSD	YVKAVVFGGL	DGXIVTIFAI
NCLIV_039240	IEATRAAHSL	DLYRELAG	DHKESH	TNTSSD	YVKAVVFGGL	DGXIVTIFAL
$\Delta + V + 1$	NSAUDLENSP	MSVGKDNRNG	DUUTEV	LGFFQSVDPR	VISULIIGLS	DCXITUPFAL
ALVILI Faviri	TEPERQILL-	T		HFTAGE	TVRDITIGVS	DGXLTVPFAL
LYVIII			DQIINLA		IVRDIIIGVD	DGALIVITAL
121 Gly69 Glu72 Gly76 Met80 Glu102 Glu105						
Tb927.3.800	VSAAVGSNSS	VASVLIFGFS	NVIA <mark>D</mark> GFAMG	FGEYVSGEAE	RDNALSERXR	REEWEVENAF
PF3D7_1223700	VSGCVGAKIT	PTQVIIIGIG	NLFANAISMG	FSEYTSSTAQ	RDFMLAEKXK	REEWEIENCP
PBANKA 1438600	VSGCVGANIT	PAQVIIIGVG	NLFANAISMG	FSEYTSSTAQ	IDFMLAERXQ	REEWEIENCP
ETH_0000/450	VAGCVGANLH	PSKVVIIGIG	NLLADAISMG	FGEFVSSAAE	DDFVKSERAD	REEWEIENCP
$\frac{19VIL}{NCLIV} 039240$	VAGCVGADLS	CSOVEMVELG		FCEVUSAAAE	KDFVFAFKYO	REEWEVENCP
Seccc1	TAGLSSLG-D	AKLVITGGFA	ELISGAISMG	LGGYLGAKSE	SDYYHAEVXK	KEKEKEYDNS
AtVit1	AAGLSGANAS	SSTVLTAGTA	EVAAGATSMG	LGGYLAAKSE	EDHYAREMXK	REOFETVAVP
EqVIT1	AAGLSGANAS	SSIVLTAGIA	EVAAGAISMG	LGGYLAAKSE	ADNYARELXK	REOEEIIRVP
TA: TP027 2 000		VE MUCICU		פעסעד דעסעי		ד השפהשט ר מע
1D927.5.000 DF3D7 1223700	SEEKOEMIDI	IEMAGLON	EDAIIIVNII	SKUPKLF VUF	MMGEFICIXI	UTNEDKNECT
PRANKA 1438600	TEEKOEMIDI	YTN-KYKFDS	KDAKNLVEIT	FRNKHFFLEH	MMSEELGLXI	LTNEDKSEAF
ETH 00007450	DEEKOEMIEI	YRD-RYGFTE	EDADSLVNIT	FKYREFFVRH	MMVEELGLXM	-ATEGPS-PL
TaVit	EEEKREMVEI	YTE-KYGFSR	ADAOSMVDIT	FKYKKFFVOH	MMVEELGLXM	YGFDEPT-PI
NCLIV 039240	EEEKREMVEI	YTE-KYGFSR	ADAQSMVDIT	FKYKKFFVQH	MMVEELGLXM	YGFDEPT-PI
ScCCC1	NLINREIEDI	LLEINPNFSD	ETIVSFIKDL	QRTPELMVDF	IIRY <mark>G</mark> RGLX-	-DEPAENREL
AtVit1	ET <mark>E</mark> AAEVAEI	LAQYGIEP	HEYSPVVNAL	RKNPQAWLDF	MMRFELGLX-	-EKPDPKRAL
Eg_VIT	DTEAAEVAEI	LARYGIEP	HEYGPVVNAL	RKKPQAWLDF	MMKFELGLX-	-EKPDPKRAL
Asp175						
Tb927.3.800	KQGLVMFLSF	MFFGAVPLLA	YLPGK	GKGIDGVFAL	XSCFLATCAL	IVLGMLRGYL
PF3D7 1223700	KKGIIMFLSF	AVFGIIPLSA	YVAYTVFFG-	YTDYTTSFLV	XVFISTLTTL	FILGLFKSQF
PBANKA_1438600	KKGILMFLSF	CFFGMIPLFS	YVLYNLFFS-	AENYTSSFAV	XVFISTLITL	FILGLFKSQF
ETH_00007450	RRGAVMFASF	SIFGLLPLAG	FVAWLTLSGT	STDGHLAFAM	XACVVSGIAL	FILGFFKGRF
TgVit	KRGLVMFTAF	CFFGLLPLAG	FIGWVAAFGL	GAEADMAFLM	XACVVSIMTL	FILGFSKGKF
NCLIV_039240	KRGLVMFTAF	CFFGLLPLAG	FIGWVAAFGL	GAEADMAFLM	XACVVSILTL	FVLGFSKGKF
	ISAVTIGGGY	LLGGLVPLVP	YF'F'	VSDVGTGLIY	XSIIVMVVTL	FWFGYVKTKL
	QSAFTIAIAY	VLGGF IPLLP	YML		XSVVITLFAL	F IF GIAKGHF
EGVIII	QSAF I TATAT	VIGGIVFIIF	1PIF	IFVARKAVVA	X2ATTTTWAT	LIFGIARGIF
301	L					
Tb927.3.800	SGVS	MLRSAALMVF	NGVVSGLFSF	TXVGSLVEHA	LRSSIEVX-	
PF3D7_1223700	TNQK	PITCALYMVL	NGMIAGMVPF	LXLGVVLKNN	ISEX	
PBANKA_1438600	TTQK	PIVCALSMVL	NGSIAGMLPF	LXFGVLLKTN	SGDX	
ETH_00007450	VNQS	SLKSGLLMII	NGTCAGTVAY	TXVGAALEGV	VAGTLX	
TYVIT		DTKCACLMAN	NGGCAGTVAY	GANGSLLOLA	VGANLTAAX	
NCLIV_039240		FINGACUMAL	VCCVAACAAW	GVAGOTTÕTV	V GAMMADGX	
AtVit1		PLRSAFETAF	TGATASAAAF	CXLAKVVOHX		
EqVIT1	TDNK	PFKSALOTAL	IGAIASAAAF	GXMAKAVOSX		
-		~		-		

1

Figure S1. Full alignment of *T. gondii* **VIT with VIT sequences from selected eukaryotes**. Blue boxes represent transmembrane domains, purple indicates Asp43 and Met80 which are conserved in all VIT members and important for iron binding. Light purple indicates residues important in EgVIT iron binding which are not conserved in apicomplexan sequences. Red indicates conserved residues in the MBD important for Zn coordination. Orange residues indicate conserved 'kink-inducing' residues, important for metal binding the cytoplasmic pocket. All residue numbers from EgVIT.

Figure S2. Complementation of yeast with TgVIT. Wild type or \triangle CCC1 yeast were transfected with the empty vector or a vector expressing VIT or sVIT₆₃₋₃₁₃ (an N-terminal truncation) and plated at the indicated OD₆₀₀ dilution. While the \triangle CCC1 strain behaved as expected and was unable to grow on plates containing high iron, expression of VIT or sVIT₆₃₋₃₁₃ did not complement the phenotype.

Figure S3. Complementation of Δ VIT parasite line and creation of new Δ Ku80 lines expressing mNeonGreen or tdTomato a. Schematic indicating the strategy used to replace the uprt gene with the pvit-vit-3'dhfr cassette. b. PCR confirmation of the presence of the vit complementation cassette and the disruption of the endogenous locus, expected sizes indicated in (a). Non-specific band marked with asterisk. c. qPCR of *vit* in the complemented line shows approximately double the expression compared to parental line. Results are mean ± SD from three independent experiments. Schematic indicating the strategy for replacement of *ku80* gene by mNeonGreen or tdTomato cassettes. e. PCR of region indicated in (d), confirming the loss of the endogenous gene. f. VIT was endogenously tagged at the C-terminal with 3xHA tags. A single band at the expected size (35 kDa) was obtained. g. Lysates of VIT-HA parasites treated or untreated for 1 h with FAC were subjected to a range of temperatures as indicated and western blots using anti-CDPK1 and anti-HA performed. Band density plotted, normalised to 37 °C samples, points from two independent experiments.

Figure S4. Construction of Δ **VIT::DHFRTS parasite line. a**. Schematic showing how *vit* was replaced with the DHFR cassette. **b.** PCR showing the 5' integration of the DHFR cassette. Plaque assays showing increased sensitivity of the Δ VIT::DHFR_{TS} line to excess ferric ammonium citrate (FAC) (c) and ferrous ammonium sulphate (FAS) (d) at the indicated concentration compared to the parental parasite line. Representative plaque assays from three independent replicates.

Figure S5. Dose response curves of mNeon and Δ **VIT treated with excess metals.** As described above, parasites were treated with the indicated concentration of FAC (**a**) $ZnSO_4$ (**b**), $CuSO_4$ (**c**), $CdCl_2$ (**d**), or $MnCl_2$ (**e**). All experiments are the mean of six (FAC) four ($ZnSO_4$) or three ($CuSO_4$, $CdCl_2$, and $MnCl_2$) independent experiments performed in triplicate, ± SEM. **f.** Survival of uninfected HFF cells at the range of sodium arsenite concentrations used above. No change in fluorescence was seen at the concentrations used. Results are the mean n = 3 independent bioloical replicates, ± SEM. **g.** Treatment of mNeon and Δ VIT parasites with sodium arsenite, a ROS generator, showed no difference in sensitivity between the two lines. Points are the mean of n = 3 independent bioloical replicates, ± SEM. **h.** ICP-MS quantifying zinc (⁶⁶Zn) from parental and Δ VIT parasites. Each point represents an independent biological replicate, performed in technical duplicate. Bars at mean.

Figure S6. VIT-myc has a dynamic localisation. a. VIT-myc demonstrates a dynamic localisation throughout the cell cycle and fragments between 1 and 6 h post invasion. Cell periphery indicated by GAP45. Representative of three independent experiments. b. VIT-myc colocalizes with CPL in extracellular parasites. Representative of two independent experiments. c. VIT-HA does not colocalize with transiently overexpressed CRT-GFP or CRT-mCherry in extracellular parasites. Representative of a specific context of the extracellular parasites. Representative of the extracellular parasites. Representative of the extracellular parasites context of the extracellular parasites. Representative of the extracellular parasites context of the extracellular parasites. Representative of the extracellular parasites context of the extracellular parasites context of the extracellular parasites. Representative of the extracellular parasites context of the extracellular parasites context of the extracellular parasites. Representative of the extracellular parasites context of the extracellular parasites context of the extracellular parasites. Representative of the extracellular parasites context of the extracellular parasites context of the extracellular parasites. Representative of one experiment. Scale bar 5 μ m.

b

Figure S7. Heatmaps of genes from major iron pathways from parental and ΔVIT parasites a. Mapping of all reads from the parental and ΔVIT strains to the vit gene. As the 5' UTR of vit still exists, some reads map to this region, but no reads map to the coding regions. b. Genes involved in the heme biosynthesis pathway, read counts normalised across rows. * indicates adj. p value of < 0.05 between parental and Δ VIT strain. c. Genes involved in Fe-S biogenesis read counts, normalised across rows. * indicates adj. p value from Wald test with Benjamini and Hochberg correction of < 0.05 between parental and Δ VIT strain.

а

Figure S8. ΔVIT parasites do not alter transcription of oxidative stress genes a. Normalised read counts for *SOD* (TGME49_316310) and *SOD2* (TGME49_316330) from RNAseq. Each point represents an independent experiment, performed in duplicate. Line at mean \pm SD. *ns*-non significant from Wald test with Benjamini and Hochberg correction. **b.** Normalised read counts for catalase (TGME49_232250). Each point represents an independent experiment, performed in duplicate. Line at mean \pm SD. *p* value from Wald test with Benjamini and Hochberg correction . **c.** In gel activity assay for SOD, enzyme activity results in cleared areas on native gel. Host (HFF) and parasite enzymes indicated, CDPK used as a parasite loading control. No obvious differences were seen between the parental and Δ VIT parasite lines. Results representative of two independent experiments. **d.** Live mNeon parasites were co-stained with MitoSOX Red (cyan) and Mitotracker DeepRed (red) and imaged. MitoSOX and MitoTracker signals co-localised in the mitochondrion of the parasites. Scale bar 5 µm. **e.** MitoTracker signal was measured by flow cytometry and normalised to the mNeon untreated line. Although FAC treatment led to generally increased signal, no significant differences were seen (Kruskal-Wallis test, Dunns multiple comparison correction). Each point represents an independent experiment, *n* = 3, line at mean \pm SD.

Figure S9. Identification and characterisation of *T. gondii* mitochondrial iron transporter (MIT). a. Phylogenetic tree of MIT sequences from a variety of species. TGME49_235650 represents an unrelated mitochondrial solute carrier. Bootstraps determined from 100 simulations. Scale indicates substitutions per site. **b**. Diagram demonstrating C-terminal HA endogenous tagging strategy. **c.** PCR confirming the integration of HA into MIT locus in the parental (Δ ku80) and Δ VIT parasite lines.

Figure S10. Example gating strategy Δ ku80::mNeonGreen parasites were stained with MitoSOX as described. Gates were drawn as indicated to isolate parasites, remove doublets and select only mNeonGreen parasites to calculate geometric MFI.