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Fig. S1. Schematic mechanistic pipeline workflow. The three pieces of our pipeline (black dashed boxes) are illustrated and what input they get

from external data sources (orange colored) or from the output of earlier parts of the pipeline (blue arrows). The t0 close to the orange arrows means

that data from the external sources is used at or prior to t0, which is the estimated time of the most recent ancestor (the output of the first part of the

pipeline, the phylogenetic reconstruction).

Materials and Methods

Phylogenetic Reconstruction

Genomic dataset compilation

We retrieved all SARS-CoV-2 sequences belonging to the Alpha B.1.1.7, Delta B.1.617.2, Omicron B.1.1.529 (BA.1), BA.2, BA.5,

and BA.2.75 lineages from GISAID. Each genomic dataset was filtered by only retaining those sequences that were generated from

cases reported during the initial wave and from the country of evolutionary origin, up to a total of 100 sequences per lineage. We

then generated 3 alignments using MAFFT 7.505 [1], each comprised of 20%, 50% and 100% of the total number of sequences,

which were subsequently cleaned by trimming the 50 and 30 untranslated regions and gap-only sites.

Phylogenetic estimates of epidemiological parameters

We performed a common Bayesian evolutionary reconstruction of timed phylogenetic history using BEAST 1.10.5 [2] that was

source compiled from its GitHub repository (https://github.com/beast-dev/beast-mcmc). We modelled the nucleotide substitution

process according to a HKY 85+� parameterisation, setting a strict molecular clock and an exponential growth model as coalescent

prior. We used a Lognormal(µ = 9 ⇥ 10�4
,�

2 = 1 ⇥ 10�5) prior for the molecular rate of evolution, a Laplace(µ = 0, b = 100)

prior for the rate of exponential growth and a Lognormal(µ = 5.7,�2 = 2.3) prior for the exponentially growing viral population

size. We further set an initial calibration for the time of the most recent common ancestor (tMRCA) at an age of ⇠ 6 months

before the most recent sample included in the alignment. All the remaining priors were left at their default values.

Bayesian inference through Markov chain Monte Carlo (MCMC) was performed for 2⇥ 108 generations, sampling every 20,000

generations and using the BEAGLE 3.1.2 library to increase computational performance [3]. MCMC convergence and mixing

properties were inspected using Tracer 1.7.2 [4] to ensure that e↵ective sample size (ESS) values associated with estimated

parameters were all >200. After discarding 10% of sampled trees as burn-in, estimates of the growth rate, molecular clock and

tMRCA were extracted along with their posterior distributions (Figure S2).

Estimates based on epidemic modeling

We obtain an independent estimate for t0, the time of the first unreported case, and for other epidemic parameters, such as the

e↵ective reproduction number and the generation interval. By indicating with I(t) the number of infected individuals at time t

and with D(t) the number of deaths, we consider the stage with the co-circulation of an existing variant v and the emerging one

!. Since we consider the final stage of the contagions due to v and the early stage of the contagions due to !, we approximate the

https://github.com/beast-dev/beast-mcmc
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Fig. S2. Pan-variant phylogenetic analysis. Posterior distributions of the time of the most recent common ancestor (tMRCA), daily growth rate

and doubling time estimated for each of the Alpha B.1.1.7, Delta B.1.617.2, Omicron B.1.1.529 (BA.1), BA.2, BA.5, and BA.2.75 SARS-Cov-2 lineages

using alignments of 20, 50 and 100 sequences.

epidemic evolution by

I(t0 + �t) = Iv(t0 + �t) + I!(t0 + �t)

= Iv(t0)Rv(t0)
�t/GIv + Iw(t0)Rw(t0)

�t/GI!
, (S1)
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where Ix(t) is the number of infections due to variant x at time t, Rx(t0) is the e↵ective reproduction number at time t0 and GIx
is the generation interval. Similarly, the deaths due to the co-circulating variants are approximated by

Dv(t0 + �t + ⌧v) = Iv(t0 + �t) ⇥ IFRv, (S2)

D!(t0 + �t + ⌧!) = Iv(t0 + �t) ⇥ IFRw, (S3)

D(t) = Dv(t) + D!(t) (S4)

where IFRx denotes the infection fatality rate of variant x and ⌧x is the lag between infection and death. To fit the unknown

parameters, i.e. the ones related to variant !, we use particle swarm optimization [5] to minimize the loss function

�(✓) =
1

2

p
Var[log(1 + I(t)) � log(1 + Iobs(t))]p

Var[log(1 + Iobs(t))]
+

1

2

p
Var[D(t) � Dobs(t)]p

Var[Dobs(t)]
, (S5)

where Iobs(t) and Dobs(t) are the number of infected individuals and deaths from empirical data [6], Var indicates the variance in

time and ✓ = {t0;R!(t0); GI!; IFR!; ⌧!} is the vector of the epidemiological parameters characterizing the emerging variant, for

which we obtain a joint probability distribution.



Enhancing global preparedness from partial data S5

Import Risk estimation

International travel dataset compilation

We retrieve the monthly seat capacities between airports from the OAG (O�cial Airline Guide). Note, that it does not represent

the actual passengers that flew from airport A to B in one month, but the maximal capacity, i.e. how many could have travelled

if all seats were occupied. It is therefore an upper limit for the passenger flux and we refer to it as the flow matrix F, where Fij

describes the maximal passenger flow to i from j. We estimate the travelling population in the catchment area of an airport by

Ni = Fi, with Fi =
P

j Fji, i.e. we assume that the population is proportional to the outflux of the airport. For each variant, we

use the world air-transportation network (WAN) at the month of the outbreak day of the respective variant.

Fig. S3. Distance measures vs. arrivals for Alpha variant. The distance measures are the geographic distance Dgeo (A), the import risk distance

DIR (B), the e↵ective distance D(N)
eff,MP (C), the random walk distance D(N)

RW,MP (D) and the information di↵usion distance D(N)
ID,MP (E) whereby the

latter three (C, D, E) are generalized to weighted multiple paths.

Fig. S4. Correlation comparison between di↵erent distance measures. The distance measures are the geographic distance Dgeo, the import risk

distance DIR, the e↵ective distance D(N)
eff,MP , the random walk distance D(N)

RW,MP and the information di↵usion distance D(N)
ID,MP whereby the latter

three are generalized to weighted multiple paths.
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Fig. S5. Correlation of arrival times of variants with the import risk distance DIR. For the import risk distance DIR(m|n0) = � log(p1(m|n0))

the WAN of the WHO outbreak month is used and the WHO outbreak location as source country. The arrival times are taken from the ”cov-lineages.org”

[7, 8] project.

Fig. S6. Arrival prediction (r-value) for the 10 best outbreak candidate. The r-value between the import risk distance DIR(m|n0) =

� log(p1(m|n0)) and the arrival time for the 10 best ranked outbreak countries (n0). The 2 Letters in the circles are the countries ISO alpha-2

codes. The red circle marks the country declared as outbreak country by the WHO.

Quantifying the Import Risk

The import risk method is introduced in a separate study [9] where it is compared to another data-driven estimate. Here we

present a short outline of the method. To know how many passengers leave at node j given they started at node i, we introduce

the shortest path exit probability q(j|i) (SPEx). It is based on the shortest path tree of the e↵ective distance [10], and combines

the exit probability with all possible paths that end in j. The resulting import risk is therefore an extension of the SPEx.

In order to compute the SPEx we first define, with the flow matrix (maximal passenger flux) F and the travelling population

of the catchment area Ni, the transition matrix P, where the element Pij = Fij/
P

i Fij = Fij/Fj is the probability to transition

to i from j. Now, the e↵ective distance graph [10] is Dij = d0 � log(Pij), with d0 as the distance o↵set which we set to d0 = 1 (the

larger d0 the more Dij increases with increasing hop-distance). Let T(n0) be the shortest path tree on D for the point of origin

n0. With respect to node n the downstream nodes ⌦(n|n0) are those nodes that can be reached from the source n0 through node

n on T(n0).
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Fig. S7. Arrival prediction performance (r-value) for the outbreak country candidates. The frequency of the r-value between the import

risk distance DIR(m|n0) = � log(p1(m|n0)) and the arrival time for all possible outbreak countries. The red vertical line marks the r-value using the

country declared as outbreak country by the WHO.

Now we compute the SPEx q(i|n0) by assuming that all passenger that start at n0, travel along the shortest path tree T(n0) and

distribute to other airports according to their respective populations Nn. We assume that the exit probability at i is proportional

to the ratio of the population at i (i.e. Ni) to the population of all of i’s downstream nodes
P

n2⌦(i|n0)
Nn plus Ni:

q(i|n0) =
Ni

Ni +
P

n2⌦(i|n0)
Nn

. (S6)

Now, we use the SPEx on a random walk that starts at n0 and the walker exits at node i with probability q(i|n0) or continues

its walk with probability 1 � q(i|n0). Thus, the probability to be at node m if the walker was before at node m � 1 is

S(m,m � 1|n0) = Pm,m�1(1 � q(m � 1|n0)) . (S7)

Consequently, the probability to take a path � starting at n0 and exiting at m is

p(�) = q(m|n0)
Y

(i,j)2�

S(i, j|n0) . (S8)

The probability to exit at node m from all possible paths (of all possible lenghts) is

p1(m|n0) = q(m|n0)

" 1X

k=1

Sk(n0)

#

m,n0

(S9)

= q(m|n0)
h
(1 � S(n0))

�1 � 1
i

m,n0

. (S10)

Note that Sk(n0)m,n0
is the probability sum of all paths that started in n0 and end after k steps in m. We aggregate all airports

of the same country by computing the weighted mean with weights

wn =
NnP

m2C(i) Nm
(S11)

with C(n) as the set of airports that belong the same country as node n does.

Relation to distance and arrival time

In order to assess the quality of the import risk, we compare it with the arrival time of past variants. Clearly, the higher the import

risk to a country, the earlier it is to arrive and the direct relation between the probability of travel to a city m from a city n0 and
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the mean first arrival time t1 is

t1(m|n0) = d0 � c log(P (m|n0)) (S12)

which is the e↵ective distance [10, 11]. Thus, we define the import risk distance as

D
IR(m|n0) = � log(p1(m|n0)) (S13)

which is proportional to the mean first arrival time.

Alternative distance measures

There are alternative measures to estimate the arrival time [10, 12, 13], and we want to compare our import risk distance to these

established measures. However, please note that the alternative measures have a clear qualitative relation to the arrival time, but it

is not possible to directly infer the number of passengers that travel between airports from them (what the import risk is especially

designed for). The already introduced alternative measure is the e↵ective distance [10] that uses the flow between airports to

estimate the probability to travel from airport n to m

deff (m,n) = d0 � log(Pm,n) . (S14)

Now, the distance along a specific path � that connects m and n0 is the sum of the path elements distances

deff (�) =
X

(m,n)2�

deff (m,n) . (S15)

Finally the e↵ective distance from airport n0 to m, also not directly connected airports, is the minimal e↵ective distance of all

possible paths ⌦(m,n0) they are connected through

Deff (m|n0) = min
�2⌦(m,n0)

(deff (�)) . (S16)

An extension to the e↵ective distance is the random-walk e↵ective distance [13] that considers all possible paths connecting two

airports ⌦(m,n0) instead of only taking the dominant path with the shortest distance:

DRW (m|n0) = � ln

0

@
X

�2⌦(m,n0)

e
�deff (�)

1

A . (S17)

Note that the sum of path distances via their exponential is due to the linkage to the arrival time as explained in [13].

We also add a comparison with a metric derived from Di↵usion Distance [12] which exploits the definition of a random walk

Laplacian on top of the WAN. We further explain this Information Distance D
ID in the dedicated section V.

Country-Level aggregation.

The country-level aggregation of the import risk distance D
IR is done by first aggregating the import risk on country-level (as

described in Sect. II.2) and then applying Eq. S13.

To aggregate the other distances (Deff , DRW ) we could either take (along the line of Deff ) the minimal distance between two

countries (of all relevant airport pairs), or use a weighted multipath approach as used in the derivation of DRW . We will highlight

the latter in the following; however, we also computed the minimal measure and found that it is outperformed by the multipath

distance (not shown, but it is the basic finding in [13]).

As shown in [11], the e↵ective distance of two paths combined is

e
�Deff ({�a,�b}) = e

�deff (�a) + e
�deff (�b)

. (S18)

Thus, the multipath (MP) e↵ective distance that considers all shortest paths from country S to M is:

Deff,MP (M |S) = � ln

0

@
X

m2M,s2S

e
�Deff (m|s)

1

A (S19)

with M as the set of all target airports in country M and S all source airports of country S.

Since the distance of source airports with a larger population are more important, we additionally weight the source airport

with wi = Fi/
P

s2s Fs, which represents the probability of an infected to start in location n. Now, we compute the population

weighted multipath e↵ective distance by

D
(N)
eff,MP (M |S) = � ln

0

@
X

m2M,s2S

wse
�Deff (m|s)

1

A . (S20)

Note that the weighting for the e↵ective distance can be reformulated to

D
(N)
eff,MP (M |S) = � ln

0

@
X

m2M,s2S

ws

Y

k,l2�m,s

e
�d0

Pk,l

1

A (S21)

which corresponds to multiplying the probability to start at the source airport s to the first step of each path. Analogously the
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Fig. S8. Outbreak defined by fraction of all sequenced probes. The outbreak date (black dashed vertical line) of a variant can be defined by the

first time the fraction of a variant X of all sequenced probes reaches 2.5% of its current worldwide peak. To exclude maldetections of 1st. arrival times

in countries, we exclude all arrival times (blue short vertical lines) that are before the outbreak date and set the arrival time as the first detection in

the respective country after the outbreak date. The o�cial outbreak date by WHO is marked by a red dashed vertical line.

Data for arrival time and outbreak region

We compare the import risk to measured arrival times of di↵erent variants. Therefore, we need to define the outbreak-country and

-month and the arrival times. We defined these variables in di↵erent ways.

(I) external sources Here we rely on peer reviewed [8] or o�cial [14] sources. The outbreak country and the outbreak month

are taken from the website of the World Health Organization (WHO) ”Tracking SARS-CoV-2 variants”[14] and the arrival times

of the variants Alpha, Beta, Delta, Gamma and Omicron were externally computed with ”grinch”[8] and taken from their project

website[7]. If arrival times are before the o�cial outbreak they are removed from the analysis (for Delta=1, Gamma=1 and

Omicron=19 countries are removed).

(II) GISAID data To also use the other variants to validate our import risk method we design a simple arrival time algorithm.

First, we need to define the outbreak day. Instead of relying on an o�cial definition from the WHO, we use GISAID data. The

outbreak time TX,out of variant X is defined by

TX,out = T (FX(t) � g · max(FX)) � 30days (S22)

with FX(t) being the fraction of variant X to all sequenced probes at time t and T (FX(t) � g · max(FX)) the time when FX(t)

crosses the first time the threshold gcdotmax(FX) where g 2]0, 1[ and we set g = 0.025. In other words, the outbreak is defined by

30 days before the variant reached 2.5% of its worldwide peak. We estimate the arrival time of variant X in an country by the most

simple way: the first time the variant is detected (according to GISAID data). In Fig. S8 the estimated outbreak time, o�cial WHO

and arrival times of each country are shown. Since for some variants (Alpha, Delta, BA.2) many arrival times fall clearly before

our estimated and even the o�cial outbreak date, we recomputed for these countries the arrival time to the first GISAID-detection

after the outbreak date. We argue that either (i) the sequencing of the variant in these countries was error-prone (1. count is very

sensitive to any wrong detection) or (ii) the spreading was slow and the variant did not dominate the local epidemic until it reached

a susceptible country (low NPIs) from where it did spread more easily (probably the case for Delta).

Outbreak detection based on 1st count GISAID data

If we repeat the outbreak detection method using all variants and the arrival times estimated via GISAID data (arrival by first

detection, Fig. S8), we see that the outbreak detection via the best correlation between import risk distance D
IR and arrival times

Tarrival in general confirms the outbreak regions declared by the WHO (see Figs. S10, S9). There is a discrepancy for Delta. While

using WHO and ”cov-lineages.org” data, the o�cial outbreak country India (IN) was second best, it is only on rank 12 if our

GISAID estimates are used. A possible explanation is, that our outbreak date estimation is 5 months after the WHO date. In order

to not lose the countries with arrivals before the outbreak date, we recompute the arrivals by the first count after the estimated

outbreak date. One can argue that Delta did locally spread much stronger in South Africa (ZA, the top ranked country), and

therefore is ZA for the worldwide distribution of larger importance than India. An alternative explanation is that the passenger

flow in the WAN was too low and when it increased, ZA had a more active Delta epidemic.
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Fig. S9. Arrival prediction (r-value) for the 10 best outbreak candidate. The r-value between the import risk distance d1(m|n0) =

� log(p1(m|n0)) and the arrival time for the 10 best ranked outbreak countries (n0). The 2 Letters in the circles are the countries ISO alpha-2

codes. The red circle marks the country estimated as outbreak country based on GISAID arrival times. In contrast to Fig. S6: the arrival times and

outbreak dates are estimated via GISAID data (arrival by first count, outbreak date by reaching the first time 2.5% of worldwide peak of the respective

variant).
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Fig. S10. Arrival prediction performance (r-value) for the outbreak country candidates. The frequency of the r-value between the import

risk distance DIR(m|n0) = � log(p1(m|n0)) and the arrival time for all possible outbreak countries. The red vertical line marks the r-value using the

country estimated as outbreak country based on GISAID arrival times. In contrast to Fig. S7: the arrival times and outbreak dates are estimated via

GISAID data (arrival by first count, outbreak date by reaching the first time 2.5% of worldwide peak of the respective variant).
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Epidemic Scenarios

We consider two distinct models to project the number of daily new infected people, namely, a renewal equation based model and

a multi-strain SIR-like model. The first one is actually part of the pipeline, while the second one is used as validation.

Renewal equation

The renewal equation approach is a well-known technique, widely used in epidemiology [15, 16, 17]. The reason why renewal

equations are such strong candidates for early projection of new cases, is the fact that informing them requires only the reproduction

number of the new variant of concern, its generation interval distribution, and the number of people infected by the new variant who

travel into the target country from the source country. This allows easily to explore scenarios with di↵erent values of epidemiological

quantities of interest, such as the e↵ective reproduction number of a new variant as it spreads from the source country to others

through travelers.

For now, we assume that the susceptible population is much larger than the number of active cases, and that the mixing between

the infected and the susceptible is homogeneous. This allows to exclude feedback loops in the dynamics, e.g. the fact that immunity

to the new variant builds up through infection, which would modify the dynamics itself. Such strong assumptions are acceptable

as long as we restrict our projections to the very first few weeks from the introduction of the new variant in the target country.

The model assumes that the number of newly infected people at day t, I(t), is given by two distinct processes: a) the arrival

of infected individuals from the source country (Iout(t)) and b) the daily new infections (Iin(t)) happening in the target country

due to the endogenous spreading. The former is estimated from section II, while the latter can be estimated through the renewal

equation

Iin(t) =
tX

s=t0

�sRsI(s), (S23)

where t0 is the day the first infected cases arrived in the target country, Rs is the daily reproductive number on day s, and �s

is the generation time distribution, i.e. the fraction of transmissions that would occur on day s after infection. Finally I(t) =

Iout(t) + Iin(t). This is the simplest renewal process, which does not include the fact that the target population might have an

inhomogeneous immunological landscape, due to previous infections or vaccination. To model this phenomenon, we reinterpret the

term on the right side of equation (S23) as the number of inoculations spreading from currently infecting people, which will turn

into infections depending on the susceptibility of the recipients. If we assume that previous infections (with other variants) protect

against reinfection with an e�cacy of ne, and, analogously, vaccination has an e↵ectiveness of ⌫e, then we can explicitly account

for removals by modifying equation (S23) into

Iin(t) =
tX

s=t0

�sRsI(s)

 
1 � ne

R
(old)(t)

N

!✓
1 � ⌫e

V (t)

N

◆
, (S24)

where R
old(t) is the number of recovered people from previous variants that still have some protection against infections, and V (t)

is the total number of vaccinated people. This assumes that the number of recovered or vaccinated people is uniformly distributed

across the population, and that the events ’being vaccinated’ and ’having been infected’ are independent. This also assumes no

gradual waning of protection against infection. However, we can consider as recovered or vaccinated only people who were infected

or vaccinated recently, rather than from the beginning of the pandemic. For instance, considering only people who got either

infected or their second dose up to six months prior to t is equivalent to assuming that there is an abrupt waning of e�cacy against

protection six months after getting infected or vaccinated.

Although these hypotheses might seem unrealistic, the lack of readily available data about waning and immunological landscapes

of various countries, and the fact that this should be used only for short-term scenario explorations, allow us to avoid introducing

further complexity into the model.

The cumulative number of cases and amount of fully vaccinated individuals at each day are the ones reported in the public

repository at 1. We select the values for vaccine e�cacy and protection from previous infection from available works. In particular

we set the vaccine e�cacy ⌫e to 0 for Alpha, 0.5 for Delta, BA1 and BA2 and to 0.12 for BA.5 ( [18, 19, 20, 21]). The selected

protection against reinfection ne is 1 for Delta, 0.56 for BA.1 and BA.2 Omicron lineages and 0.13 for BA.5 ( [22, 23, 21]).

The second model is a multi-strain SIR inspired by [24]. This is a two-strain model in which people who recover after being

infected with the former variant are not completely immune to infection from the latter variant. The equations governing this

system are

8
>>>>>>><

>>>>>>>:

dS
dt = �(�0(t) + �1(t))S(t)
dI(0)

dt = �0S(t) � �I
(0)(t)

dI(1)

dt = �1S(t) + (1 � ne↵)�1R
(1)(t) � �I

(1)(t)
dR(0)

dt = �I
(0)(t) � (1 � ne↵)�1R

(0)(t)
dR(1)

dt = �I
(1)(t)

(S25)

where �i(t) = �i
I(i)(t)

N , �i being the transmission rate of the variant i, and � being the recovery rate. The initial condition

S(t0), I0(t0), I1(t0), R0(t0), R1(t) =
n
S0, I

(0)
0 , Iout(t0) + I

(1)
0 , R

(0)
0 , R

(1)
0

o
. Note that, since I

out(t) represents the arrivals from the

1 https://ourworldindata.org/

https://ourworldindata.org/
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source country at the beginning of each day, the system is not closed. This is not a problem because we are considering countries,

so Iout(t)
N ⌧ 1. Since the dynamics does not include, per se, the fact that the initial condition changes every day due to arrivals,

we can solve this system on a daily basis, updating the initial condition and restarting the system accordingly. The advantage of

this system is that it includes feedback phenomena, which is good when validating the model, as it may need to run for more than

a few weeks. The drawbacks are that informing the model requires good point estimates of the various compartments, and the

interpretation of the transmissibility coe�cient related to the measured Rt, which may not be straight-forward. For such reasons,

this model is used to validate the renewal equation approach, in particular for countries where no new cases were observed after a

few weeks from their emergence (not shown). Projections errors valuated with the SIR model relative to Alpha lineage are shown

in

A fully worked out example: the Alpha variant

We apply our pipeline to a real case, the Alpha variant of concern (VOC), that was identified in the UK on 20 September 2020 [8].

We assume that the UK is the source country and we demonstrate how the pipeline works. In the following, we consider as the

generation time interval distribution the one inferred from the literature [25].

Starting from the phylogenetic part of our pipeline, we take the time of emergence estimated when n = 20 sequences were

collected, to simulate a realistic scenario where only little information is available. This gives a central estimate for the time of

emergence of the Alpha variant around the 9th of November 2020. The daily growth rate estimated is r = 0.097 (95% HPD:

0.008–0.202). To translate this into Rt in the source country, we assume that all the growth rate advantage of Alpha relative to

the previous circulating variants is given only by transmission advantage (limited capacity of reinfections with Alpha). Further,

typical generation time distributions are Gammas, as in [25]. This allows us to estimate the Rt using formula 2.2 in [26]:

R =
(r + b)a

ba
, (S26)

where b and a are the shape and rate of the Gamma distribution generation time. In our case, a = 5.9, b = 1.13, therefore

Rt(↵) = 1.62(1.04, 2.63).

For any target country, the projection of the number of cases infected with Alpha in the next weeks is performed in two steps:

first, we estimate the number of infected travelers (referred to as seeds) who arrive in the target country from the source country,

then we use the renewal equation (S24) on each possible scenario, to account for endogenous transmission of the secondary cases

in the target country. The first step consists in using the import risk estimates described in section II to compute the number

of daily travelers from source country to other target countries. We use import risk probability from source to target times the

average daily outflow of passengers from source country using WAN data. We then determined the number of travelers infected

with Alpha. This is done by considering the proportion of sequenced cases that are Alpha times the 7 � day moving average of

daily incidence of new cases, assuming that sequences are taken randomly from the infected population. This estimate does not

include undercounting in the source country, which we can estimate as follows.

For a given country, we use the daily new estimated COVID-19 infections from the IHME model, which is a hybrid with two main

components: a statistical “death model” component produces death estimates that are used to fit an SEIR model component 2. For

a complete overview of this model and a comparison with other estimates, we refer to OWID3. The data we used for our estimation

are publicly available4. In a given temporal window, we integrate over time the confirmed number of cases (7d moving average) and

the estimated true number of cases, as well as the estimates for its lower and upper bounds defining the 95% uncertainty interval.

The mean undercounting factor is estimated by the ratio between the integrated estimate of the true cases and the confirmed ones

in the temporal window, and similarly we estimate the corresponding uncertainty interval. We show in Fig. SS11 the undercounting

factor obtained for all countries for which the data is available, whereas Fig. SS12 shows the evolution of this factor along periods

of 6 months for some representative countries.

To allow for variability in undercounting, we consider two extreme scenarios: the best one, where undercounting is assumed to

be 2.27, and the worst one, where undercounting is assumed to be 2.97. The number of infected travelers from the source country

to the target country is then computed by multiplying the number of travelers into the target country by the proportion of infected

people in the source country. This is often not a natural number. This is not a problem, as the renewal equation does not need

to use integer number of infected people, and we interpret this as the results of the various averaging performed through all the

steps. The model produces the total number of infected people in the target country given the seeds and the Rt by day of infection.

To validate the model, we need to estimate how many people infected with the VOC were present in the target country during

the considered period. We do so in the same way we estimate prevalence in the source country: by multiplying the proportion of

sequenced cases that turned out to be Alpha times the daily incidence in the target country, scaled by the estimated undercounting

factor.

The total number of di↵erent scenarios computed is, in this case 2 ⇥ 2 ⇥ 3: undercounting in both the source and the target

countries, and the di↵erent reproduction number of the VOC. Results are shown in Figure 3C and in Figure S13A.

2 https://covid19.healthdata.org/
3 https://ourworldindata.org/covid-models.
4 https://ourworldindata.org/grapher/daily-new-estimated-covid-19-infections-ihme-model.

https://covid19.healthdata.org/
https://ourworldindata.org/covid-models
https://ourworldindata.org/grapher/daily-new-estimated-covid-19-infections-ihme-model


S14 Klamser and d’Andrea et al.

Fig. S11. Undercounting factors by WHO region and income group. Estimates of the factor accounting for missing confirmed cases: values

larger than 1 indicate that a country is counting and confirming less COVID-19 cases than the real number. The reference period is the first semester

of 2022. See the text for further details.

Prediction error

For each lineage we evaluate di↵erent scenarios with a) low and high values of underreporting in both source and target country b)

three di↵erent basic reproduction numbers Rt that correspond to the range of growth rate values estimated from the phylogenetic

reconstruction.

We infer from data the number of infected individuals with the emerging lineage in the target country m and we evaluate the

prediction error as zero if this estimated number is included in the range identified by di↵erent epidemic scenarios. If the number

of infected people evaluated from data is out of the range spanned by the epidemic curves, then the prediction error is evaluated

as the root-mean-square error, normalized to the range of the data observed in the target country m, between observed and the

closest simulated epidemic curve:

nRMSE(m) =
1

maxt

⇣
I
(data)
m

⌘
� mint

⇣
I
(data)
m

⌘

vuut 1

nt

ntX

t=1

h
I
(data)
m (t) � I

(model)
m (t)

i2
(S27)

where nt is the number of weeks with number of sequences greater than zero for the selected lineage in the considered country

m, that is nt is the number of available data points with not null infected people. Since the scenario simulations stop at the 3

week after sequencing was reported in country m, nt is always nt = 2. The idea behind the normalization by the data range is

that it reflects the noise of reported sequences, i.e. if the sequencing rate is low, we expect a large variation and the sequencing

data is less reliable. Prediction errors evaluated for all the considered lineages are shown in Figure 3 of the main document. All

the panels report the nRMSE in each country as a function of both the number of daily passengers normalized to the total country

population (x-axis, values for 100000 individuals) and the number of total collected daily sequences normalized to the total number

of confirmed cases (y-axis, values for 100000 cases). Insets show the evaluated error in each country. Results assess that, in most

of the country, the simulated scenarios encompass the data and the prediction error is evaluated as zero. Moreover, error values

greater than zero can be found for countries with higher passenger flows.
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Fig. S12. Undercounting factors over time. Estimates of the factor accounting for missing confirmed cases as in Fig. S11, where each panel describes

the evolution along periods of 6 months for some representative countries. The dashed line indicates the value 4. See the text for further details.

A B C

D E

Fig. S13. Epidemic prediction errors. Estimated errors between the number of individuals infected with an emerging lineage and the epidemic

curves simulated in the considered scenarios. X-axis show the number of daily passengers normalized to the population in each country (for 100, 000

individuals), y-axis report the number of collected daily sequences, without any classification per lineage, normalized to the total number of confirmed

cases (for 100, 000 cases). Inset panels show the map of prediction errors in each country. Panels A-E refer to, respectively, Alpha, Delta, BA.1, BA.2

and BA.5 lineages.
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Fig. S14. Epidemic prediction errors with SIR model, Alpha lineage. Estimated errors between the number of individuals infected with an

emerging lineage and the epidemic curves simulated in the considered scenarios. X-axis show the number of daily passengers normalized to the population

in each country (for 100, 000 individuals), y-axis report the number of collected daily sequences, without any classification per lineage, normalized to

the total number of confirmed cases (for 100, 000 cases). Inset panels show the map of prediction errors in each country.
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Pandemic delay

The pandemic delay estimates the time needed since tMRCA for a specific variant to reach a certain percentage y in a target

country. It depends in general on a large variety of factors as the reproduction number, the fraction of vaccinated, the variant’s

immune escape, season, weather conditions, the number, duration and strength of active non-pharmaceutical interventions (NPI),

the national and international mobility and the epidemic situation. In the following estimation of the pandemic delay, we assume

that the main driver/predictors for the pandemic risk are the international mobility, the e↵ective reproduction number and the

country specific epidemic situation.

We will use a simple framework to combine the measures that is based on the replicator equation [27], stating that the fraction

of a new variant can be described by a simple logistic growth equation (illustrated for Delta lineage in Figure S15). It assumes

that there are 2 competing populations, the mixed population of all preexisting variants of size Npre and the population of the

emergent variant Nx. According to the replicator equation, the evolution of the fraction x of the new variant in the whole population

corresponds to

dx

dt
= x(f � f̃) (S28)

with f as the fitness of the new variant x and f̃ as the mean fitness, i.e.

f̃ = xf + (1 � x)fv

= x(f � fv) + fv . (S29)

We can therefore rewrite the time-evolution to

dx

dt
= x(f � f̃)

= x(f � [x(f � fv) + fv])

= x([f � fv] � x[f � fv])

= �f(x � x
2) (S30)

that has the logistic function as general solution

x(t) =
1

1 + e��ftc
=

1

1 + [1/x0 � 1] e��ft
, (S31)

with x0 as initial condition being the imported infected cases from the country of origin n0 to the target country m

x(t0,m|n0) = x0 =
Ur(t0, n0)Ix(t0, n0)

Ur(t0,m)Iv(t0,m)
·
Fn0

Nn0

· p1(m|n0) , (S32)

with t0 = tMRCA, Ur(t0,m) as the underreporting factor of cases in country m (introduced in Sec. III.2),
Fn0
Nn0

as the probability

of leaving the country via the WAN and p1(m|n0) as the import risk (see Sec. II). Note that with Eqs. S31, S32 we assume that

the initial import x0 dominates, i.e. imports at later times can be neglected (otherwise a constant flux needs to be implemented).

The fitness di↵erence between the new variant vs. the already existing variant mix is approximated by

�f = lnR � ln (Rpre = 1) = lnR (S33)

i.e. we assume that the reproduction number of the preexisting variant mix is one, motivated by the observed fluctuations around

Rpre = 1 due to the behavioral and/or medical adaptation to the local epidemic situation.

The pandemic delay ty is the time needed for the new variant to reach the fraction y of the infected population, where ty(m)

for a specific country m is (rearranging Eq. S31)

ty(m) = �
1

�f
ln

✓
1 � y

[1/x0(m) � 1]y

◆
. (S34)

We can further simplify the pandemic delay by assuming that the initial import is small

ty(m) =
1

�f

✓
ln

✓
1 � x0

x0

◆
� ln

✓
1 � y

y

◆◆

/
1

�f

✓
ln

✓
1 � x0

x0

◆◆

/ �
ln x0

�f
. (S35)

However, this simplification is merely meant as a help to ease understanding of the functional relations. In the manuscript, we use

explicitly Eq. S34.
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Fig. S15. The fraction of seq. on GISAID attributed to the Delta variant for four example countries. As described for the Alpha variant by Fort [27],

the relative fraction of a new variant can be accurately described by a simple logistic growth equation (Eq. S31).
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Information Distance

We also devise an alternative definition of distance on top of a network which embeds information from multiple-pathways di↵usion

as an additional comparison to the import risk measure. Distances based on the di↵usive properties of the system have been of

interest in recent years [10, 13]. Another key example is the Di↵usion Distance [12] which estimates a metric distance between

nodes based on how similarly the random walkers explore the network by using those nodes as sources, under the assumption that

a mesoscale structure is recovered during the time scales in which the random walker explores its functional community.

Starting from Di↵usion Distance definition, we propose an educated rewrite of the measure that fits the problem under study

to predict arrival times of a random walker on the network, such as an infectious traveler from a source country. The probability

p(t | i) of a walker to be in any point in the network at time t, starting from node i, embeds information of multiple paths via

successive applications of the Laplacian operator. We introduce a new measure that merges this concept from Di↵usion Distance

and also embeds information from E↵ective Distance [10], namely, the idea that low probabilities pk(t | i) are associated with large

distances. This can be embedded by taking the negative of the logarithm of the probability, in analogy with Shannon’s entropy.

We now introduce this candidate measure for di↵usive dynamics which we define Information Distance:

D
ID
(s!k)(t) = � log10 pk (t | s) (S36)

in which pk (t | s) represents the k � th entry associated with node k of the probability state p(t | s) = vs · e�tLRW

. Here vs

is the initial condition probability for the walker starting from node s, the canonical vector with s-th component equal to 1. The

random walk normalized Laplacian (LRW ) [28] term encodes the probability to move from node i to node j in its matrix elements.

Its o↵-diagonal terms can be computed as the negative value of Pij , which is directly estimated from the WAN weighted links as

stated in subsection II.2. Given the multiple timescales involved in this definition, we evaluate the metric at di↵erent scales t to

find the timescale at which D
ID(t) performs better.

Lineage Source tMRCA t50S Underrep. Fact. Naive Seq. Rate [%] Seq. Rate [%]

Alpha GBR 13 Sep 2020 1 Nov 2020 2.6 0.19 0.075

Delta IND 30 Aug 2020 7 Feb 2021 28.9 2.49 0.086

BA.1 ZAF 31 Oct 2021 5 Dec 2021 19.7 51.8 2.623

BA.2 ZAF 24 Oct 2021 19 Dec 2021 19.7 1.1 0.056

BA.5 ZAF 16 Jan 2022 17 Apr 2022 31.6 2.94 0.093

BA.2.75 IND 10 Apr 2022 12 Jun 2022 76.4 0.41 0.005
Table S1. Sequencing rates in the outbreak countries (Source) of SARS-CoV-2 B.1.1.7 (Alpha), B.1.617.2 (Delta), B.1.1.529 (BA.1), BA.2,
BA.5 and BA.2.75 (Omicron) lineages. The outbreak countries (Source) are represented by their ISO alpha-3 codes (GBR: Great Britain,
IND: India, ZAF: South Africa). The naive sequencing rate (Naive Seq. Rate) was computed by the ratio between new weekly cases (based on
OWID-data [49]) and the weekly collected sequenced samples (based on GISAID-data [20]). We compute the final sequencing rate (Seq. Rate)
by dividing through the underreporting factor (Underrep. Fact.) whose estimation is described in Sec. III.2. Both estimates are averaged for
the lineage respective time-period between the median time of the most recent common ancestor (tMRCA) and the time when the first 50
samples got collected (t50S).
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