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Supplemental Texts 
 

1. Network architecture, training, and tuning of MB-SupCon models for T2D study 

1.1 Overview 

We implemented MB-SupCon, a supervised contrastive learning model for microbiome data and 

metabolomics data. In the supplemental texts, we provide additional implementation details on 

the network architecture and training process.  The source codes are also available at: 

https://github.com/ya61sen/MB-SupCon .  

1.2 Encoder networks  

We designed encoder networks for microbiome and metabolome data, denoted as microbiome 

encoder 𝑓!(⋅) and metabolome encoder 𝑓"(⋅) (Figure 1, Supplementary Figure 1). The 

network architecture is similar to a 3-layer perceptron network. After each fully connected layer, 

we added batch normalization layers to improve stability and dropout layers to remedy 

overfitting.  

1.3 Training and tuning procedure  

We used 12 random seeds to randomly split the paired 16S gut microbiome and metabolome data 

into training dataset (70%), validation dataset (15%), and test dataset (15%). For each split, we 

trained three supervised contrastive learning models for three tasks: insulin resistant, sex, and 

race. For each model, we removed data rows with missing labels. The main differences among 

these three models were the covariates used for prediction labels, which means different 

supervised contrastive losses were calculated in training, and different encoder networks were 

obtained.  

We set 1,000 iterations of training with a batch size of 32. The structure of encoders for 

microbiome and metabolome are described in Methods and Supplementary Figure 1. We used 

dropout to reduce overfitting. Stochastic gradient descent (SGD) method with a learning rate of 

0.001, a momentum of 0.9, and a weight decay (𝑙2 regularization) after tunning was used as the 

optimizer. To avoid gradient explosion, we also clipped the gradient of the model parameter by 

restraining the norm of the gradient within (−3, 3) during each iteration. 



Model tuning was based on validation datasets. Average accuracy on validation data among all 

12 splits was used as the evaluation metric. We tuned the model regarding 3 hyperparameters: 

dropout rate of the encoder, weight decay of the stochastic gradient descent (SGD) optimizer, 

and the temperature coefficient in calculating contrastive losses. The value set of each 

hyperparameter for tuning is as follows. 

(1) Dropout rate of the encoder. The set of dropout rate for tuning is {0.2, 0.4, 0.6, 0.8}. 

(2) Weight decay (l2 penalty). The set of weight decay for tuning is {0.0025, 0.005, 0.01, 

0.02, 0.04, 0.08, 0.16, 0.32}. 

(3) Temperature. The set of temperature for tuning is {0.125, 0.25, 0.5, 1, 2}. 

For each model, we predicted the covariate based on the embeddings from the validation 

datasets. We chose one predictor among logistic regression with an elastic net penalty, support 

vector machine, random forest, and a one-layer MLP. The best combination of hyperparameters 

was then determined by their average accuracies. Then this best model was used for subsequent 

prediction tasks. The detailed tuning results are shown in Supplementary Figure 2.  

For each covariate, the best combinations of hyperparameters are listed as follows. 

Prediction  

Task 
Dropout Rate  Weight decay Temperature 

Insulin resistance 0.6 0.08 0.25 

Sex 0.4 0.04 0.125 

Race 0.2 0.01 0.125 

 

1.4 Key differences to MLP (multi-layer perceptron) model 

Here we provide critical differences between the MB-SupCon prediction model and the MLP 

model.  In MB-SupCon, the prediction model utilized the microbiome embedding, and the 

embedding was then fed to a predictor (among 4 options: logistic regression with an elastic net 

penalty, support vector machine, random forest, and a one-layer MLP). This may be seen to be 

very similar to an MLP model at the first glance, especially the encoder part from MB-SupCon. 

However, the key differences remain. First, the training of the MB-SupCon encoder is governed 

by supervised contrastive loss, which integrates the information from metabolome data and 



differs from the usual cross-entropy loss used by MLP. Second, we observe that the MB-SupCon 

model has better or similar performance in all three prediction models (As shown in Table 1, the 

average accuracies for MLP on original data are 83.73%, 78.94%, and 75.60% for insulin 

resistance, sex, and race, respectively). Third, MB-SupCon shows smooth loss curves in the 

training stage. The loss curve decreases as the epoch increases for MB-SupCon. In contrast, the 

loss curve for MLP often varies at large epochs. Thus, we observe the MB-SupCon model is 

robust to train probably, which confirms that contrastive learning usually requires fewer training 

samples.  

2. Network architecture and training of MB-SupCon model for IBD study 

For the IBD study, we also used MLP as the encoders. For the metagenomics encoder, the 

architecture is as follows: 1479- 512-128-32-10; for the metabolomics encoder, the architecture 

is as follows: 5084-2048-512-128-32-10. Here, each number represents neuron counts in each 

layer. Similarly, we also added batch normalization layers and dropout layers after each fully 

connected layer. 

Twelve random training-validation-testing splits were applied to the paired metagenomics and 

metabolomics data (70%, 15%, and 15% for training, validation, and testing data, respectively). 

The model performance was evaluated based on the average prediction accuracy on the testing 

data from all splits.  

We also set 1,000 iterations of training with a batch size of 32. For covariate “diagnosis”, the 

dropout rate was set to 0.4. Stochastic gradient descent (SGD) method with a learning rate of 

0.001, a momentum of 0.9, and a weight decay (l2 regularization) of 0.04 was used as the 

optimizer. We also clipped the gradient of the model parameter by restraining the norm of the 

gradient within (−3, 3)	during each iteration. 

3. Calculation of the microbiome embedding 

The embeddings (representations) of the microbiome (or metabolome) data can be computed 

from original microbiome (or metabolome) data, respectively. Suppose the original microbiome 

data for sample 𝑖 is 𝑥#
!  and the microbiome encoder is 𝑓!(⋅), then the microbiome embedding is 



𝑧#
! = 𝑓!/𝑥#

!0. It is important to note that the network weights were determined in the training 

process where no test data were used.  

Based on these embedding, we conducted two types of analysis:  

(1) build a microbiome-based prediction model for different outcomes. We used one of the 

predictors among logistic regression with an elastic net penalty, support vector machine, 

random forest, and a one-layer MLP. All these models were trained on the embedding of 

the training dataset. We then calculated accuracies from the embedding of the test 

dataset. The average accuracies on test data from 12 random training-validation-testing 

splits are reported as the outcome. 

(2) visualize the embedding in lower dimensions with colors representing different outcomes 

(or covariates). We applied principal component analysis (PCA) to the embedding of the 

test dataset to avoid overfitting. Other dimensionality reduction techniques (e.g., t-SNE, 

UMAP) were also applicable for data visualization. 

4. The implementation of sPLSDA, sPLS, and DIABLO analysis based on the 

“mixOmics” platform 

sPLSDA, sPLS, and DIABLO analysis were all based on the “mixOmics” platform (R package 

“mixOmics”) [1]. To compare the ability in distinguishing clusters of covariate groups, we used 

the same training-validation-testing split (by random seed 1) as MB-SupCon presented in Figure 

2A.  

sPLSDA [2] predicted covariates using microbiome data only. In R, we used the “splsda” 

function to build the model. The first two components were included for visualization and all 

other arguments are kept as default. sPLS [3] used microbiome data as predictors and 

metabolome data as responses. Covariate information was not used during training. In R, we 

used the “spls” function to build the model. The first two components were used for visualization 

and all other arguments are kept as default. DIABLO [4] used multiple omics data from the same 

samples to be blocks and covariate values to be the outcome. In R, we used the “block.splsda” 

function to build the model. We assumed microbiome and metabolome data were fully connected 

and the design matrix was set to be “full”. The first two components were used for visualization 

and all other arguments are kept as default. 
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