Environ Health Perspect

DOI: 10.1289/EHP12034

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Effects of Cyanobacterial Harmful Algal Bloom Toxin Microcystin-LR on Gonadotropin-Dependent Ovarian Follicle Maturation and Ovulation in Mice

Yingzheng Wang, Pawat Pattarawat, Jiyang Zhang, Eunchong Kim, Delong Zhang, Mingzhu Fang, Elizabeth A. Jannaman, Ye Yuan, Saurabh Chatterjee, Ji-Yong Julie Kim, Geoffrey I. Scott, Qiang Zhang, and Shuo Xiao

Table of Contents

Figure S1. Detection of non-specific antibody binding in mouse ovary for the immunohistochemistry using normal rabbit IgG.

Figure S2. The *ex vivo* point of departure of MC-LR on failed follicle rupture and oocyte meiosis based on benchmark dose modeling. (A) Frequentist quantal linear model with BMR of 10% extra risk for the BMC and 95% lower confidence limit for the BMCL. (B) Frequentist Log-Probit model with BMR of 10% extra risk for the BMC and 95% lower confidence limit for the BMCL. BMR: benchmark response; BMC: benchmark concentration; BMCL: 95% lower confidence limit of BMC.

Figure S3. Quality control of single-follicle RNA sequencing reveals good sequencing quality, including sequencing read quality, number of detected genes, and read alignments. Data for Figure S3 can also be found in Table S26.

Table S1. Primer sequences used for RT-qPCR in this study.

Table S2. Numeric data for Figure 1B: body weight (g).

Table S3. Numeric data for Figure 1C: estrous cycle days.

Table S4. Numeric data for Figure 1E: total numbers of various stages of follicles per ovary in 1xPBS or MC-LR treated mice.

Table S5. Numeric data for Figure 1F: total numbers of corpora lutea (CL) per ovary in 1xPBS or MC-LR treated mice.

Table S6. Numeric data for Figure 2B: total numbers of ovulated oocytes from mice treated with 1xPBS or MC-LR.

Table S7. Numeric data for Figure 2D: percentages of ovulated MII oocytes (%) in mice treated with 1xPBS or MC-LR.

Table S8. Numeric data for Figure 2F: total numbers of un-ovulated late-staged antral follicles per mouse in 1xPBS or MC-LR treatment groups.

Table S9. Numeric data for Figure 3A: total numbers of ovulated oocytes and percentages of MII oocytes from mice treated with 1xPBS or MC-LR at 1 hour before hCG injection.

Table S10. Numeric data for Figure 3B: total numbers of ovulated oocytes and percentages of MII oocytes from mice treated with 1xPBS or MC-LR during follicle maturation window.

Table S11. Numeric data for Figure 4B: follicle diameter (μm).

Table S12. Established follicle maturation-related genes and their functions.

Table S13. Numeric data for Figure 4D: gene expression.

Table S14. Numeric data for Figure 4E: Immunohistochemistry quantification for LHCGR.

Table S15. Numeric data for Figure 4F: Immunohistochemistry quantification for PAPPA.

 Table S16.
 Numeric data for Figure 5B: follicle survival rate (%) upon MC-LR treatment.

Table S17. Numeric data for Figure 5C: follicle diameter (µm) upon MC-LR treatment.

Table S18. Numeric data for Figure 5D: estradiol concentration (ng/mL) upon MC-LR treatment.

Table S19. Numeric data for Figure 5E: testosterone concentration (pg/mL) upon MC-LR treatment.

Table S20. Numeric data for Figure 5G: follicle rupture percentage (%) and MII oocyte percentage (%) upon MC-LR treatment.

Table S21. Numeric data for Figure 5H: progesterone concentration (ng/mL) upon MC-LR treatment.

Table S22. Numeric data for Figure 6B: expression of follicle maturation-related genes.

Table S23. Numeric data for Figure 6C: expression of follicle maturation-related genes in isolated mural granulosa cells.

Table S24. Established ovulatory genes and their identified functions in ovulation.

Table S25. Numeric data for Figure 6D: expression of established ovulatory genes in vehicle or MC-LR treated follicles.

Table S26. Quality control analysis of single-follicle RNA sequencing, including sequencing read quality and number of detected genes in control and MC-LR treated follicles.

Table S27. Original data for Figure 7C: Gene Ontology (GO) analysis of differentially expressed genes; Top 10 biological process (BP) enrichment results.

Table S28. Original data for Figure 7D: Gene Ontology (GO) analysis of differentially expressed genes; Top 10 molecular function (MF) enrichment results.

Table S29. Original data for Figure 7E: Gene Ontology (GO) analysis of differentially expressed genes; Top 10 cellular component (CC) enrichment results.

Table S30. Original data for Figure 7F: Top 10 KEGG pathway enrichment results of differentially expressed genes. KEGG: Kyoto Encyclopedia of Genes and Genomes.

Table S31. A summary of all overlapped 315 genes between MC-LR induced DEGs and previously identified FOXO1 target genes in the granulosa cells.

Table S32. Original data for Figure 7G: representative overlapped genes between differentially expressed genes identified in MC-LR treated murine follicles and FOXO1 target genes identified in rat granulosa cells.

Table S33. Numeric data for Figure 8A: PP1 phosphatase activity (picomoles) in vehicle or 10 μ M MC-LR treated follicles.

Table S34. Numeric data for Figure 8B: PP2A phosphatase activity (picomoles) in vehicle or 10 μ M MC-LR treated follicles.

Table S35. Numeric data for Figure 8D: quantification of examined proteins by western blotting.

Table S36. Numeric data for Figure 8E: diameters (μ m) of follicles treated with vehicle or 10 μ M MC-LR in the presence or absence of 25 μ g/mL 740-YP.

Table S37. Numeric data for Figure 8F: survival rates (%) of follicles treated with vehicle or 10 μ M MC-LR in the presence or absence of 25 μ g/mL 740-YP.

Table S38. Numeric data for Figure 8G: expression of follicle maturation-related genes in follicles.

Table S39. Numeric data for Figure 8H: percentages of ruptured follicles at 16 hours post-hCG.

Table S40. Numeric data for Figure 9A: PP1 phosphatase activities in vehicle or $10 \mu M$ MC-LR treated human primary granulosa cells.

Table S41. Numeric data for Figure 9B: PP2A phosphatase activities in vehicle or $10 \,\mu M$ MC-LR treated human primary granulosa cells.

Table S42. Numeric data for Figure 9C: quantification of western blotting for phosphorylated FOXO1 in human primary granulosa cells.

Table S43. Numeric data for Figure 9D: expression of follicle maturation-related genes in vehicle or $10 \,\mu M$ MC-LR treated human primary granulosa cells.

Table S44. Differential gene expression of oxidative stress genes induced by MC-LR using single-follicle RNA-seq.

Table S45. Differential gene expression of autophagy related genes induced by MC-LR using single-follicle RNA-seq.

Table S46. Differential gene expression of inflammation related genes induced by MC-LR using single-follicle RNA-seq.

References