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Fig. S1. SOM training over time.  
Training (Initialization and Fine-tuning) stages of the SOM. In each row we visualize the simulated 
cortex in context of the input data’s PC-space – the green points depict the location of images in the 
input feature space (dnn features) and the black connected points depict the tuning of SOM map 
units in this PC-space. We also visualize the animacy and size preference, and face- and scene-
selectivity on this simulated cortex for every stage in the training process.  



 
 

 

 

  
 
Fig. S2. SOM Quality Metrics. 
(A) Quantization error of the SOM as a function of training epochs (B) Pairwise tuning similarity 
between one example SOM unit with all other units on the SOM, plotted as a heat map (top) and a 
scatter plot (below), with tuning similarity (correlation) along the y-axis, plotted as a function of 
map distance between units (euclidean) on the x-axis (C) Scatter plot with tuning similarity between 
every pair of units on the SOM on the y-axis and the map distance (euclidean) between pair of units 
on the x-axis. 
  



 
 

 

 
 

 
 
Fig. S3. Control SOMs. 
(A) A new SOM was fit into the relu7 (ℝ!"#$) feature space of an untrained Alexnet which resulted 
in an 9x38 SOM. Animacy (animals vs objects) and Size (big vs small entities) preference on this 
map. (B) Animacy and size preference on a 20*20 SOM when the map is randomly tuned in the 
4096-dimensional relu7 space of a trained Alexnet. 



 
 

 

 
Fig. S4. Pixel-based vs Relu7 SOM comparisons. 
(A) First subplot: A plot of the first 3 principal components of the pixel-space representation. 
Colored dots reflect the images: purple dots reflect animate images; green dots reflect inanimate 
images; gray dots reflect a sample of 400 ImageNet images. The black grid is the SOM, projected 
into the pixel-space.  Second subplot:  Preference map showing the difference in average activation 
for animate and inanimate images for each SOM unit. Third subplot: T-map visualize the 
separability of animate vs inanimate images for each SOM unit.  Fourth subplot:  Two units were 



 
 

 

selected from the t-map, which show the maximum t-values for an animate preference or inanimate.  
For both of these units, the degree of activation (y-axis) is plotted for all 240 localizer images (x-
axis), sorted by their activation. Animate images are colored with purple lines, and inanimate 
images are colored with green lines.  The top plot shows the unit with the strongest animacy 
preference, the bottom plot show the unit with the strongest inanimate object preference. (B) The 
same four subplots are show, here for the Relu7 feature space of a pre-trained Alexnet.  A clearer 
distinction between animate and inanimate images is seen on the preference and the t-maps. (C) The 
same four subplots are shown, here for the pixel-space representation, considering the real-world 
size distinction between images of big and small entities. Across all plots, orange reflects images of 
small entities, while blue reflects images of big entities. (D) The same four subplots are shown, here 
for the Relu7 feature space of a pre-trained Alexnet, now focusing on the real-world size distinction.  
A clearer distinction between big and small images is seen on the preference and the t-maps in this 
trained feature space. See supplementary analysis section for details and discussions of these 
results. 

  



 
 

 

 
 
Fig. S5. Face and Place Selectivity with D’ and Selectivity Index comparisons.  
Category selectivity for faces and scenes within the two stimuli sets, measured using Selectivity 
Index (SI) and D-prime measure. 
  



 
 

 

 

   
 
Fig. S6. SOMs trained on different visual diets. 
Comparing the large-scale organization between models (deepnet and SOM) trained on different 
visual diets – imagenet vs ecoset. For each visual experience, we visualize: (i) Representational 
Geometry of images (stimuli from (9)) in the deep net feature space. (Left) RDMs based on 
correlational distance. (Right) Bar plots showing the image-level pairwise correlational distance 



 
 

 

between dnn features of  big and small animals, and dnn features of big and small objects. (ii) (Left) 
4-way preference map on the simulated cortex among big objects, small objects, big animals, and 
small animals and (Right) Bar plots showing the image-level pairwise euclidean distance between 
simulated cortical activations of big and small animals, and simulated cortical activations of big 
and small objects using the same stimuli as in (i). (iii) Heatmaps showing the absolute difference of 
mean simulated cortical activations based on size for animals (i.e. big animals vs. small animals) 
and objects (i.e. big objects vs. small objects) (iv) Animacy (animals vs. objects) and Size (small vs. 
big) preferences on the simulated cortex. (v) Face-, Scene-, and Body-selectivity on the simulated 
cortex measured using the d-prime measure. Stimulus from (59) were used to compute the selectivity 
maps. 
  



 
 

 

 
 
Fig. S7.  Body selectivity with faces included and excluded. 
(A and B) Body-selectivity on the simulated cortex with faces included and excluded while 
computing the d-prime selectivity map. (C) Face-selectivity on the simulated cortex (D) Mean 
Absolute difference between (A) and (B). The white lines demarcate the most face-selective zone. 
 
 

  
  



 
 

 

 
 
Fig. S8. Maximally activating images. 
Map of images that maximally drive map units on the 20*20 grid computed over different stimulus 
sets: (A) ImageNet validation set (B) stimuli used in Bao et al., 2020 (26) (C,D) two localizer sets 
used in this study. Face images replaced with letter F.  



 
 

 

 
Fig. S9. Maximally activating synthetic images. 
Synthesized maximally activating images, generated using gradient ascent, for all map units on the 
20*20 grid. 



 
 

 

 
Fig. S10. Varying images used to initialize SOM. 
Each column is a trained map initialized with different images from the SRS/Imagenet validation set. 
First column uses 400 images (same as the ones reported in the main figures), the second column 
uses 400 different images, and the third column uses 800 images. The training images remain the 
same for all 3 variations.  Top and Second row: Visualization of the map units projected into the 
first three principal components of the input space before (epoch 0) and after training (epoch 100). 
Third row: Large-scale organization of animacy and size after training. Bottom row: Category 
selectivity for faces and scenes after training. 
  



 
 

 

 
 
Fig. S11. Varying the SOM size. 
Each column is a trained map. The size of the map varies from small to large, from left to right. Top 
row: Large-scale organization of animacy and size. Bottom row: Category selectivity for faces and 
scenes. 

 
  



 
 

 

 
 
Fig. S12. Topographic motifs in a self-supervised DNN (Barlow Twins). 
(A) Animacy and size distinctions on the SOM for images containing animals and objects of different 
sizes (left). Each unit on the SOM is colored by its response preference (t-statistic) to either animal 



 
 

 
 

or object images (center) and to images of either big or small entities (right). (B) The same three 
subplots, here shown for grayscaled original and texform images. (C, D) Example images from each 
category in Set 1and 2 and the corresponding category-selective maps computed using the d-prime 
metric. 
 

 
  



 
 

 

 
 

Fig. S13. Topographic motifs in a self-supervised DNN (IPCL). 
(A) Animacy and size distinctions on the SOM for images containing animals and objects of different 
sizes (left). Each unit on the SOM is colored by its response preference (t-statistic) to either animal 



 
 

 

or object images (center) and to images of either big or small entities (right). (B) The same three 
subplots, here shown for grayscaled original and texform images. (C, D) Example images from each 
category in Set 1 and 2 and the corresponding category-selective maps computed using the d-prime 
metric. 
  



 
 

 

 
Supplementary Analysis – Pixel Space Representation 
 
In Supplementary set of analyses, we examined whether the distinctions for animate vs inanimate 
and big vs small objects emerge in a pixel space representation.  That is, without the deep-neural 
network untangling that has been learned in a pre-trained Alexnet, do we already see these 
distinctions in pixel space, and to what degree?   
 
To test this, we fit an SOM to the pixel space of the validation images of the ImageNet database, 
yielding an input matrix of 50,000 images x 150,528 dimensions (reflecting the RGB encoding of 
each image in 224 pixels * 224 pixels * 3 channels).  The pixel-SOM shape was automatically set to 
14 x 28 units. This is the largest map size that is <= 400 units, that preserves the ratio of the first two 
eigenvalues of the sample of 400 images). Next, we probed the pixel-SOM with the same animal and 
object images (Konkle & Caramazza, 2013 (9)). The results are shown in Supplementary Figure 4.  
 
We find that in the preference maps for the pixel-SOM, most units had a stronger activation on 
average to animal images (Supplementary Figure 4A).  When we quantify the separability between 
animals and object images with an independent 2-sample t-statistic, however, we find only weak 
separability between these two classes of images, as evident in the plotted t-maps (e.g., the average 
absolute value of the t-statistics across the map is |t|=1.29, the max is t=2.38).  For comparison, 
when we compute the t-maps over the relu7 space, we see clearer separability between animal vs 
object image responses in each unit (average |t|=6.54, max |t|=16.12; (Supplementary Figure 4B). 
Thus, the animal and object images are dramatically more entangled in the pixel space than in the 
trained relu-7 space.   
 
Next, considering the big vs small distinction, we find that in the pixel-SOM, most units have a 
stronger activation on average to small objects (Supplementary Figure 4C). However, as before, 
there is only weak separability between big vs small entities (average |t| = 1.98, max |t|=2.37).  In 
contrast, the relu7 space t-maps show clear separability between animal and object images (average 
|t|=3.25, max |t|=11.97; (Supplementary Figure 4D).  Thus, images of big and small entities are 
also dramatically more entangled in the pixel space than in the trained relu-7 space.   
 
In doing these analyses, we noticed the localizer images were dramatically out-of-distribution 
compared to the ImageNet validation images in pixel space (e.g. the localizer images are on a white 
background, affecting many of the pixel dimensions). So, in a exploratory analysis, we additionally 
trained a pixel-SOM directly on the localizer image set (240 images x 150,528 dimensions, yielding 
a 20x20 localizer-pixel-SOM). And, we probed it with the same images. We again find the animal 
preferences and small preferences were found across the entire map, and again that t-maps showed 
minimal separability between these classes (animacy: average |t|=2.19, max |t| = 2.91, size: average 
|t| = 2.94, max |t| = 3.22).  In contrast, an SOM trained only on these 240 images as they are 
embedded in the relu7 space (240 x 4096) showed clear animacy and object size organizations 
(animacy: average |t|=7.59, max |t| - 17.2; size: average |t| = 3.64, max |t| = 8.04).  Thus, even in the 
context of just the localizer images, the animacy distinction is untangled in the pixel space of this 
image set, which has become untangled by the relu7 stage of the deep neural network.   
 
A further question we wondered was whether is it always the case that animals and small object 
images a stronger preference in pixel space, or are these preferences a property of this particular set 
of 240 color images? We next probed the ImageNet-Pixel-SOM with the gray-scaled versions of 



 
 

 

these same images, as well as the texforms (stimulus set from Long et al. (11)). Here, units showed 
both animate and inanimate preferences, and big and small preferences, on average, though again 
with all t<s very low. Thus, this additional exploratory analysis implies that it is not a general case 
that animals and small objects are more extreme in pixel space.   
 
Taken together, these analyses demonstrate that the distinctions between animals and objects and big 
and small entities are very entangled in pixel space. And, the reformatting of image information 
through hierarchical stages of a deep neural network is critical to see these distinctions emerge.  
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