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Supplementary Materials
Supplementary Tables

Table S1. SARS-CoV-2 target protein sequences. The amino acid sequences of the protein targets used in the generation
pipeline

Target Sequence

Mpro SGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVYCPRHVICTSEDMLNPNYEDLLIRKSNHNFL
VQAGNVQLRVIGHSMQNCVLKLKVDTANPKTPKYKFVRIQPGQTFSVLACYNGSPSGVYQCAMRPNF
TIKGSFLNGSCGSVGFNIDYDCVSFCYMHHMELPTGVHAGTDLEGNFYGPFVDRQTAQAAGTDTTIT
VNVLAWLYAAVINGDRWFLNRFTTTLNDFNLVAMKYNYEPLTQDHVDILGPLSAQTGIAVLDMCASL
KELLQNGMNGRTILGSALLEDEFTPFDVVRQCSGVTFQ

Chimeric RBD RVVPSGDVVRFPNITNLCPFGEVFNATKFPSVYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSAT
KLNDLCFSNVYADSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATSTGNYNYK
YRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLN
APATVCGPKLSTDLIK

Table S2. Predicted and estimated properties of de novo compounds targeting Mpro. See the Ranking and prioritization
section for explanations of the column headers.

ID AFF SEL TOX QED SA logP MW docking dist. to pocket
(pIC50) (pIC50) (Da) (kcal/mol) (Å)

GXA56 8.050 0.646 0 0.695 2.562 3.337 404.305 �9.2 3.88
GXA70 8.162 0.744 0 0.771 2.774 3.301 430.503 �9.1 6.77
GXA104 8.16 1.112 0 0.730 2.417 3.484 376.460 �8.9 6.65
GXA112 8.280 0.721 0 0.610 2.934 0.943 488.618 �8.8 4.97

Table S3. Predicted and estimated properties of de novo compounds targeting spike RBD. See the Ranking and
prioritization section for explanations of the column headers.

ID AFF SEL TOX QED SA logP MW docking dist. to pocket
(pIC50) (pIC50) (Da) (kcal/mol) (Å)

GEN626 7.077 0.754 0 0.829 2.392 1.773 317.311 �7.6 1.93
GEN725 8.140 0.752 0 0.704 1.951 3.197 403.481 �8.8 2.06
GEN727 7.920 0.826 0 0.857 2.322 3.382 293.414 �8.1 2.69
GEN777 7.513 0.834 0 0.819 2.603 2.333 248.717 �7.9 3.36



Table S4. Consolidated results comparing predicted and actual synthesis paths. The top 6 predicted retrosynthesis paths
(by confidence) are considered and the path with the best agreement is shown. “Steps” is simply the number of reaction steps
actual / predicted number of reaction steps. “Products” shows the intermediate (not including the final molecule) reaction
products overlap in terms of recall (with respect to the predicted path) while “reactants” similarly shows the overlap of
reactants from all steps in terms of recall. The “success” column shows whether the given predicted path was successfully
synthesized as is or with minor changes or failed (but still synthesized via an alternative method devised by Enamine).

path conf. steps products reactants success comments

GEN626 5 1.0 150% 50.0% 62.5% 7

GEN725 5 1.0 66.7% 50.0% 50.0% 3 minor changes; moderate
yield

GEN727 5 1.0 100% 100% 70.0% 3 followed top prediction

GEN777 3 1.0 200% 33.3% 75.0% 7

GXA56 0 1.0 100% 100% 52.9% 3 followed top prediction

GXA70 2 1.0 100% 100% 38.5% 3 minor changes to top pre-
diction

GXA104 0 0.88 66.7% 0% 35.7% – reactant unavailable

GXA112 4 1.0 140% 75.0% 62.5% 3 low yield



Table S5. Crystallographic data collection and refinement statistics. Values in parentheses refer to the highest resolution
shell.

Z68337194 Z1633315555 Z1365651030
5SML 5SMM 5SMN

Data Collection

Wavelength (Å) 0.9126 0.9126 0.9126
Resolution range (Å) 47.57-1.53 (1.585-1.53) 47.8-1.58 (1.64-1.58) 47.36-1.36 (1.41-1.36)
Space group C2 C2 C2
Unit cell

a,b,c (Å) 112.12, 52.83, 44.46 113.12, 53.04, 44.38 111.93, 52.57, 44.59
a,b ,g (�) 90.00, 102.99, 90.00 90.00, 102.90, 90.00 90.00, 102.94, 90.00

Total reflections 119085 (10469) 112151 (10502) 158637 (10806)
Unique reflections 38187 (3690) 35130 (3385) 53606 (4976)
Multiplicity 3.1 (2.7) 3.2 (3.0) 3.0 (2.1)
Completeness (%) 98.88 (95.80) 99.16 (96.18) 98.60 (92.03)
Mean I/s I 11.16 (0.81) 12.16 (0.76) 14.56 (0.77)
Rmerge 0.088 (0.937) 0.097 (1.38) 0.068 (1.02)
Rmeas 0.106 (1.164) 0.117 (1.68) 0.082 (1.32)
CC1/2 0.995 (0.342) 0.997 (0.336) 0.998 (0.347)

Refinement

Reflections used in refinement 37923 (3674) 34946 (3378) 53514 (4976)
Rwork 0.1962 (0.3414) 0.1966 (0.3680) 0.1934 (0.3734)
Rfree 0.2250 (0.3324) 0.2322 (0.3891) 0.2181 (0.3577)
Number of non-hydrogen atoms 4084 3818 3304

Protein 3598 3412 2935
Ligands 54 76 54
Solvent 432 330 315

RMSD bond lengths (Å) 0.013 0.013 0.014
RMSD bond angles (�) 1.73 1.77 1.81
Ramachandran favored (%) 97.35 97.68 97.68
Ramachandran allowed (%) 2.32 1.99 1.99
Ramachandran outliers (%) 0.33 0.33 0.33
Rotamer outliers (%) 1.00 2.08 0.31
Clashscore 5.4 3.91 3.74
Average B-factors (Å2)

All 23.19 23.55 18.92
Protein 22.21 22.55 17.82
Solvent 31.33 32.25 27.53



Table S6. Molecular similarity with existing inhibitors. Tanimoto similarity of the validated candidate hits (columns) to
existing SARS-CoV-2 Mpro inhibitors (rows). We considered the following inhibitors for comparison: an aminipyridine hit
identified in the COVID-19 Moonshot initiative86, X77 identified using ultralarge docking38, the oral inhibitor S-217622 from
reference87 Nirmatrelvir in PAXLOVID32, an a-ketoamide inhibitor (Compound 21 from Zhang, et al.28), and Molnupiravir88.
Consistently, the CogMol-designed inhibitors show high dissimilarity (as indicated by a low Tanimoto similarity around 0.1) to
existing SARS-CoV-2 Mpro inhibitors.

GXA70 GXA112 Z68337194

TRY-UNI-714a760b-686 0.101 0.091 0.200

X7738 0.116 0.150 0.115

Ensitrelvir (S-217622)87 0.093 0.075 0.128

Nirmatrelvir (PF-07321332)32 0.109 0.100 0.051

Compound 2128 0.077 0.080 0.132

Molnupiravir88 0.146 0.170 0.118

Table S7. ADME properties of validated hits. Drug-likeness (as estimated using number of violations according to
Lipinski’s89, Ghose’s90, Veber’s91, Egan’s92, and Muegge’s93 criteria), bioavailability94 (Low below 0.25, Medium between
0.25 and 0.75, and High above 0.75), number of medicinal chemistry (PAINS95 and BRENK96) alerts and Leadlikeness97

(number of violations: 250 g/mol  molecular weight  400 g/mol, xlogP  3.5, number of rotatable bonds  7) are estimated
using SwissADME software36.

ID Lipinski Ghose Veber Egan Muegge Bioavailability PAINS BRENK Leadlikeness

Z68337194 0 0 0 0 0 Medium 0 0 0
GXA70 0 0 0 0 0 Medium 0 0 2
GXA56 0 0 0 0 0 Medium 0 0 1
GEN725 0 0 0 0 0 Medium 0 0 1
GEN727 0 0 0 0 0 Medium 0 1 0



Table S8. Comparison of generated molecules in terms of fraction of valid, unique (out of 1,000 and 10,000 generated),
internal diversity, and passing filters (medicinal chemistry filters, PAINS, ring sizes, charges, atom type). All generative
models were trained and tested on MOSES benchmark55. Performances of baseline models are from Polykovskiy, et al.55.

Model Valid Unique@1k Unique@10k IntDiv1 IntDiv2 Filters

CogMol9 0.95 1.0 0.999 0.8578 0.8521 0.9888
CharRNN98 0.809 1.0 1.0 0.855 0.849 0.975

AAE99 0.997 1.0 0.995 0.857 0.85 0.997
VAE57 0.969 1.0 0.999 0.856 0.851 0.996

JT-VAE100 1.0 1.0 0.999 0.851 0.845 0.978
LatentGan101 0.8966 1.0 0.9968 0.8565 0.8505 0.9735

Training 1.0 1.0 1.0 0.857 0.851 1.0

Table S9. Compound characterization. Nuclear magnetic resonance (NMR) and high pressure liquid chromatography-mass
spectrometry (HPLC-MS).

GEN727 1H NMR (400 MHz, dmso) d 8.37 (d, J = 5.3 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.4 Hz,
1H), 7.59 (t, J = 7.6, 7.6 Hz, 1H), 7.40 (t, J = 7.6, 7.6 Hz, 1H), 7.08 (t, J = 5.4, 5.4 Hz, 1H), 6.42 (d, J
= 5.3 Hz, 1H), 3.29 (q, J = 6.7, 6.7, 6.4 Hz, 2H), 3.22 (d, J = 2.5 Hz, 2H), 3.10 (t, J = 2.5, 2.5 Hz,
1H), 2.76 (dt, J = 11.8, 3.4, 3.4 Hz, 2H), 2.08 (td, J = 11.5, 11.4, 2.6 Hz, 2H), 1.72 (m, 2H), 1.60 (q, J
= 7.1, 7.1, 7.1 Hz, 2H), 1.37 (m, 1H), 1.20 (qd, J = 12.0, 11.8, 11.8, 3.8 Hz, 2H).
HPLC-MS m/z [M+H]+ = 294.2 , purity 100%

GEN777 1H NMR (400 MHz, dmso) d 7.41 (m, 1H), 7.37 (m, 2H), 7.19 (d, J = 7.5 Hz, 1H), 3.64 (s, 3H), 2.94
(m, 2H), 2.75 (m, 2H), 1.98 (m, 2H).
HPLC-MS m/z [M+H]+ = 249.2 , purity 100%

GEN626 1H NMR (400 MHz, dmso) d 7.63 (d, J = 8.6 Hz, 1H), 7.28 (br s, 1H), 7.08 (br s, 1H), 6.28 (d, J =
2.0 Hz, 1H), 6.18 (dd, J = 8.5, 2.0 Hz, 1H), 5.65 (m, 2H), 4.42 (m, 1H), 3.20 (q, J = 10.3, 10.2, 10.2
Hz, 2H), 2.83 (m, 2H), 2.60 (m, 2H), 1.98 (m, 2H), 1.74 (m, 2H).
HPLC-MS m/z [M+H]+ = 318.2 , purity 100%

GEN725 1H NMR (400 MHz, dmso) d 7.97 (dd, J = 7.9, 1.8 Hz, 1H), 7.90 (m, 4H), 7.82 (d, J = 8.8 Hz, 2H),
7.73 (td, J = 7.9, 7.8, 1.8 Hz, 1H), 7.41 (m, 3H), 7.26 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.3 Hz, 1H),
3.38 (s, 3H).
HPLC-MS m/z [M+H]+ = 404.2 , purity 98.72%

GXA104 1H NMR (400 MHz, dmso) d 13.34 (s, 1H), 8.08 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.87
(s, 1H), 7.61 (d, J = 8.3 Hz, 2H), 7.42 (m, 1H), 7.36 (d, J = 7.7 Hz, 1H), 7.23 (m, 1H), 7.11 (br s, 1H),
6.59 (br s, 1H), 3.22 (s, 3H), 2.23 (m, 1H), 2.01 (m, 1H), 1.69 (m, 4H), 1.42 (m, 2H), 1.00 (m, 2H).
HPLC-MS m/z [M+H]+ = 377.2 , purity 100%

GXA112 1H NMR (500 MHz, dmso) d 8.18 (s, 1H), 7.18 (d, J = 7.1 Hz, 1H), 7.13 (t, J = 7.7, 7.7 Hz, 1H),
6.86 (m, 1H), 6.64 (m, 1H), 6.46 (m, 2H), 4.44 (m, 1H), 4.09 (m, 2H), 3.69 (m, 4H), 3.62 (m, 4H),
3.50 (m, 1H), 3.07 (m, 2H), 2.98 (m, 2H), 2.94 (m, 1H), 2.07 (m, 1H), 1.90 (m, 2H), 1.67 (m, 1H),
1.59 (m, 2H), 1.36 (m, 2H).
HPLC-MS m/z [M+H]+ = 489.2 , purity 100%

GXA70 1H NMR (400 MHz, dmso) d 8.96 (s, 1H), 7.53 (s, 1H), 7.40 (dd, J = 8.0, 2.1 Hz, 1H), 7.08 (d, J =
8.1 Hz, 1H), 4.71 (d, J = 4.2 Hz, 1H), 4.23 (m, 2H), 3.84 (m, 4H), 3.71 (m, 1H), 3.22 (m, 2H), 2.79
(m, 4H), 1.97 (m, 6H), 1.75 (m, 2H), 1.32 (m, 2H).
HPLC-MS m/z [M+H]+ = 431.2 , purity 100%

GXA56 1H NMR (400 MHz, dmso) d 8.96 (s, 1H), 7.53 (s, 1H), 7.40 (dd, J = 8.0, 2.1 Hz, 1H), 7.08 (d, J =
8.1 Hz, 1H), 4.71 (d, J = 4.2 Hz, 1H), 4.23 (m, 2H), 3.84 (m, 4H), 3.71 (m, 1H), 3.22 (m, 2H), 2.79
(m, 4H), 1.97 (m, 6H), 1.75 (m, 2H), 1.48 (m, 2H).
HPLC-MS m/z [M+H]+ = 404.2 , purity 100%



Supplementary Figures

Fig. S1. GEN727 synthesis route (top) and RXN-predicted retrosynthetic pathway (bottom). (A) A mixture of compound
1 (0.5 g, 2.2 mmol), propargyl bromide (0.4 g, 3.3 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was suspended in
acetonitrile (20 mL) and the reaction mixture was heated to 60 �C for 18 h. The solids were removed via filtration and the
solvent was removed in vacuo. The residue was diluted with an aqueous NaHSO4 solution (50 mL) and washed with
dichloromethane (2 ⇥ 20 mL); the aqueous layer was basified with NaOH to pH=14, and extracted with dichloromethane (3 ⇥
30 mL). The organic extracts were combined, dried over Na2SO4 and concentrated in vacuo to obtain crude 2 (0.4 g) which
was used in the next step without purification. (B) Crude compound 2 (0.4 g) was dissolved in methanol (10 mL) and a
hydrogen chloride solution in dioxane (20 mL) was added. The reaction mixture was stirred for 18 h at 20 �C. The volatiles
were removed in vacuo to obtain crude 3 (0.32 g) as a hydrochloride salt. (C) Crude compound 3 (0.32 g) was dissolved in
DMSO (5 mL), 4-chloroquinoline (0.330 g, 2 mmol) and DIPEA (0.65 g, 5 mmol) were added to the solution. The reaction
mixture was stirred at 100 �C for 48 h and purified via preparative HPLC to obtain GEN727 (2 fractions: 0.0257 g and 0.0278
g, overall yield 9%) as brown solid.



Fig. S2. GEN725 synthesis route (top) and RXN-predicted retrosynthetic pathway (bottom). (K) To a suspension of NaH
(0.250 g, 6.31 mmol, 60% dispersion in mineral oil) in DMF (5 mL) was added dropwise a solution of 4-bromophenol (1.09 g,
6.31 mmol) in DMF (5 mL). The mixture was stirred for 1 h and compound 12 (1 g, 5.74 mmol) was added. The reaction
mixture was stirred at 100 �C overnight, cooled to r.t. and poured into ice (100 mL). The precipitate was filtered and washed
with water (3 ⇥ 10 mL) and with hexanes. The solid was dried in vacuo to give 13 (1.72 g, 92%). (L) To a mixture of
compound 13 (1 g, 3.06 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-benzenesulfonamide (1.04 g, 3.67 mmol) and
sodium carbonate (0.81 g, 7.65 mmol) in a mixture of dioxane and water (9:1, 10 mL) was added XPhos Pd G3 (0.260 g, 0.36
mmol) under an inert atmosphere. The reaction mixture was stirred for 16 h at 95 �C (oil bath), cooled to r.t., diluted with water
(10 mL) and extracted with EtOAc (2 ⇥ 10 mL). The combined organic layers were dried over Na2SO4 and evaporated under
reduced pressure. The residue was purified by preparative HPLC to give GEN725 (0.304 g, 25%).



Fig. S3. GEN626 synthesis route (top) and RXN-predicted retrosynthetic pathway (bottom). (H) To a solution of
compound 9 (0.55 g, 3 mmol) in dry DMF (15 mL), sodium hydride (as 60% suspension in mineral oil, 0.132 g, 3.3 mmol) was
added in one portion. The mixture was stirred at 40 �C for 30 min and compound 8 (0.5 g, 3 mmol) was added. The reaction
mixture was stirred at 20 �C for 18 h, diluted with water (100 mL), and extracted with ethyl acetate (3 ⇥ 30 mL). The
combined organic layers were washed with water (4 ⇥ 50 mL), dried over Na2SO4 and concentrated in vacuo to obtain the
crude material which was purified via column chromatography (CHCl3:MeOH 10:1 as eluent) to afford 10 (0.18 g, 0.55 mmol,
18% yield) as yellow oil. (I) Compound 10 (0.18 g, 0.55 mmol) was suspended in conc. H2SO4 (5 mL) and the reaction
mixture was heated to 60 �C for 2 h, cooled with ice and diluted with an aqueous Na2CO3 solution to basic pH. The resulting
mixture was extracted with ethyl acetate (3 ⇥ 30 mL); the organic layer was dried over Na2SO4 and concentrated in vacuo to
obtain 11 (0.16 g, 0.46 mmol, 84% yield) as yellow solid. (J) To a solution of compound 11 (0.16 g, 0.46 mmol) in methanol
(10 mL), Pd/C (10%w, 0.100 g) was added. The reaction mixture was evacuated and backfilled with hydrogen and then stirred
for 18 h. The catalyst was removed via filtration and the solvent was removed in vacuo to obtain the crude material which was
purified via preparative HPLC to obtain GEN626 (0.0614 mg, 42% yield) as white solid.



Fig. S4. GEN777 synthesis route (top) and RXN-predicted retrosynthetic pathway (bottom). (D) Thionyl chloride (3 g,
25.2 mmol) was added to a solution of compound 4 (1.7 g, 6.6 mmol) in dichloromethane (10 mL) and the mixture was
refluxed for 1 h and evaporated under reduced pressure to give compound 5. (E) To a saturated solution of aqueous
methylamine (5 g), cooled to 0 �C, was added compound 5 (1.8 g, 7.9 mmol). After the completion of the reaction was
confirmed, the resulting mixture was extracted with MTBE. The combined organic layers were washed with brine dried over
anhydrous Na2SO4 and evaporated under reduced pressure to obtain 1 g of compound 6, which was used in the next step
without further purification. (F) To a solution of compound 6 (1 g, 4.5 mmol) in dichloromethane (700 mL) was added PCl5
(1.4 g, 6.72 mmol). The reaction mixture was stirred for 2 h at r.t. to obtain the solution contained compound 7 which was not
isolated but directly used in the next step. (G) To the solution of compound 7 in dichloromethane (from Step F) was added
TMSN3 (2.5 g, 21.7 mmol). The reaction mixture was stirred overnight at r.t. and evaporated under reduced pressure. The
residue was purified by HPLC to give 0.130 g of GEN777.



Fig. S5. GXA104 synthesis route (top) and RXN-predicted retrosynthetic pathway (bottom). (P) To a solution of
compound 19 (0.975 g, 5.70 mmol), compound 20 (1.21 g, 5.18 mmol) and HOBt (0.775 g, 5.70 mmol) in dry DMA (10 mL),
cooled to 0 �C, was added dropwise EDC (0.964 g, 6.31 mmol) and the reaction mixture was stirred overnight at r.t., diluted
with water and extracted with ethyl acetate. The combined organic layers were washed with water, dried over anhydrous
Na2SO4 and evaporated under reduced pressure. The residue was crystallized from the minimum amount of ethyl acetate to
obtain 1.26 g of compound 21 (63% yield). (Q) A solution of compound 21 (0.410 g, 1.06 mmol), 3-iodo-1H-indazole (0.259 g,
1.06 mmol), Pd(PPh3)4 (0.061 g, 0.05 mmol) and Na2CO3 (0.225 g, 2.13 mmol) in a mixture of dioxane/water (4:1) (5 mL)
was stirred overnight at 90 �C under an argon atmosphere. The cooled mixture was diluted with water and extracted with
dichloromethane. The combined organic layers were washed with water, dried over anhydrous Na2SO4 and evaporated under
reduced pressure. The residue was purified by column chromatography to obtained by HPLC to afford 0.180 g of compound
GXA104 (45% yield).



Fig. S6. GXA56 synthesis route (top) and RXN-predicted retrosynthetic pathway (bottom). (Y) Metallic sodium (0.47g,
2.2 eq) was dissolved portionwise in 50 mL of dry methanol. Then 31 (2g, 1eq) and diethylmalonate (1.43g, 1eq) were added
thereto. Resulting mixture was stirred at 60 �C overnight. Formed precipitate was filtered off, dissolved in water and acidified
with sodium hydrosulphate to pH 2, then stirred for 20 min and filtered to obtain compound 32 as yellow solid. Yield 66%, 1.8
g. (Z) To compound 32 (1.8g, 1 eq) in 15 mL of POCl3 was added 0.15 mL of DIPEA and resulting mixture was stirred at
reflux for 3 hours. The resulting mixture was evaporated, quenched with ice and saturated solution of anhydrous potassium
carbonate up to pH 12. Then the solution was left to stir at ambient temperature for 20 min. The resulting precipitate was
filtered off and washed with water several times to obtain compound 33. Yield 26%, 0.53 g. (AA)
1-Methyl-1H-pyrazol-3-amine (0.175 g, 1 eq), sodium iodide (0.27 g, 1 eq) and DIPEA (0.46 g, 2 eq) were added subsequently
to a solution of compound 33 (0.5 g, 1 eq) in 10 mL of dry DMF. The resulting mixture was stirred at 80 �C overnight. After
mixture was cooled to r.t. and then diluted with water, formed precipitate was filtered and washed with water to give compound
34. Yield 58%, 0.35g. (BB) Compound 34 (0.35 g, 1 eq) together with piperazine (0.17 g, 2 eq) and anhydrous potassium
carbonate (0.27 g, 2 eq) was mixed in 15 mL of dry DMF and heated up to 120 �C overnight. Thereafter a mixture was cooled,
and insoluble material was filtered out. Then organic layer was evaporated and purified by HPLC to give GXA56 as a white
solid. Yield 22.5%, 0.08g.



Fig. S7. GXA70 synthesis route (top) and RXN-predicted retrosynthetic pathway (bottom). (M) To the solution of
compound 14 (2.0 g, 10.8 mmol, 1 eq) in 30 mL of dichloromethane cooled to 0 �C, 1.2 equivalent of DIPEA was added
dropwise under continuous stirring. Thereafter 1 eq of 2,3-dihydro-1H-inden-5-amine dissolved in 10 mL of dichloromethane
was added. The resulting mixture was stirred at ambient temperature overnight. Thereafter resulting solution was washed with
water, 3 ⇥ 20 mL. Then organic layer was dried over anhydrous sodium sulfite and evaporated in vacuo. Resulting compound
15 with 90% purity was used in the next step without additional purification. Yield 92%, 2.8 g. (N) To the solution of
compound 15 (2.8 g, 9.7 mmol, 1 eq) in 40 mL of dichloromethane 2.2 equivalents of DIPEA was added dropwise at 0 �C
under continuous stirring. The resulting solution was stirred for additional 30 min and then 4,4-difluoropiperidine
hydrochloride was added portionwise (1.1 eq). The resulting mixture was left to stir at ambient temperature overnight. Next
day the reaction solution was washed with water, 3 ⇥ 20 mL. Resulting organic layer was dried with anhydrous sodium
disulfite and evaporated under reduced pressure. The resulting product 16 with 90%+ purity was used in the next step without
any additional purification. Yield 91%, 3.3 g. (O) To the solution of compound 16 (3.3 g, 9.1 mmol, 1 eq) in 40 mL of DMF
cooled to 0 �C. 1.2 eq of DIPEA was added dropwise under stirring. Then mixture was stirred for additional 30 min and 1.05
eq of the corresponding amine in 10 mL of DMF was added. Resulting reaction mixture was stirred at 80 �C overnight.
Thereafter all volatiles were evaporated in vacuo and residue was washed with water twice. Resulting precipitate was dissolved
in 50 mL of dichloromethane, dried with anhydrous sodium sulfate and filtered through the Celite pad. Resulting filtrate was
evaporated under reduced pressure to give GXA70 with 95% purity. Yield 70%, 2.7 g.



Fig. S8. GXA112 synthesis route. (R) To a stirred solution of compound 22 (2 g, 11 mmol) in dichloromethane (40 mL) at
0 �C were added DIPEA (2.3 mL, 13.2 mmol) and 2,3-dihydro-1H-indole (1.22 mL) and the resulting mixture was stirred at r.t.
for 16 h. After that the reaction mixture was diluted with water; the organic phase was washed with water and brine, dried over
Na2SO4 and evaporated to obtain crude product 23 (1.1 g), which was used in the next step without further purification. (S) To
a stirred solution of compound 23 (1.1 g, 4 mmol) in dichloromethane (40 mL) at 0 �C were added DIPEA (0.86 mL, 4.94
mmol) and tert-butyl N-[4-(methylamino)cyclohexyl]carbamate (0.94 g) and the resulting mixture was stirred at r.t. for 16 h.
After that the reaction mixture was diluted with water; the organic phase was washed with water and brine, dried over Na2SO4
and evaporated under reduced pressure to obtain crude product 24 (1.5 g), which was used in the next step without further
purification. (T) To a stirred solution of compound 24 (1.5 g, 3 mmol) in dichloromethane (30 mL) at r.t. were added DIPEA
(0.68 mL, 3.90 mmol) and morpholine (0.28 mL, 3.25 mmol) and the resulting mixture was stirred at r.t. for 16 h. After that an
additional amount of DIPEA (0.68 mL, 3.90 mmol) and morpholine (0.28 mL, 3.25 mmol) was added and the resulting mixture
was stirred at r.t. for another 16 h. Then the reaction mixture was diluted with water; the organic phase was washed with water
and brine, dried over Na2SO4 and evaporated under reduced pressure to obtain crude product 25 (1.7 g), which was used in the
next step without further purification. (U) To a stirred solution of compound 25 (1.7 g, 3 mmol) in dichloromethane (25 mL)
was added 4 M HCl solution in dioxane and the resulting mixture was stirred at r.t. for 8 h. After that the reaction mixture was
evaporated under reduced pressure to obtain crude product 26 (1.2 g), which was used in the next step without further
purification. (V) To a stirred solution of compound 27 (0.7 mL, 7.4 mmol) in diethyl ether (10 mL) was added compound 28
(0.15 mL, 0.243 g, 1.7 mmol) at �78 �C and the resulting mixture was stirred at r.t. for 1 h. The reaction mixture was
evaporated without heating to obtain crude product 29, which was immediately used in the next step.



Fig. S8 (continued). GXA112 RXN-predicted retrosynthetic pathway. (W) To a stirred suspension of compound 26 (0.8
g, 1.7 mmol) in dichloromethane (10 mL) at 0 �C was added Et3N (0.76 mL, 5.45 mmol) followed by a solution of compound
29 in dichloromethane (3 mL) and the resulting mixture was stirred at r.t. for 16 h. After that the reaction mixture was diluted
with water; the organic phase was washed with water and brine, dried over Na2SO4 and evaporated under reduced pressure to
obtain crude product 30 (0.8 g), which was used in the next step without further purification. (X) To a stirred solution of
compound 30 (0.8 g, 1.4 mmol) in dichloromethane (5 mL) was added 4 M HCl solution in dioxane (1 mL) and the resulting
mixture was stirred at r.t. for 8 h. Then the reaction mixture was evaporated under reduced pressure, the obtained residue was
diluted with water, basified with a NaHCO3 solution and extracted with dichloromethane. The combined organic phase was
washed with water, dried over Na2SO4 and evaporated under reduced pressure to obtain crude product. The crude product was
purified by HPLC to obtain 0.01 g of GXA112.



Fig. S9. Thermofluor assay results. Thermofluor raw fluorescence data for experiments with AI-designed compound
GEN727 (black) and a DMSO control (grey). Data were recorded using protein that was used immediately after dilution into
neutral buffer (solid lines), incubated overnight in neutral buffer (long-dashed lines), or incubated overnight with the compound
in neutral buffer (short-dashed lines). For comparison, data from protein in pH 4.6 buffer is also shown (dotted lines).

A B

Fig. S10. Docked structure of SARS-CoV-2 spike protein RBD in complex with GEN725. (A) Surface representation
depicting the overall ligand binding modes of GEN725 at the lipid binding site of the RBD. (B) Schematic representation of the
ligand interactions with the spike RBD.



Fig. S11. Docked structure of human ACE2 (cyan) in complex with GEN727 (green). SARS-CoV-2 spike RBD is also
shown in pink.

Fig. S12. Comparison of crystal structures of Z68337194 and nirmatrelvir. SARS-CoV-2 Mpro in complex with
Z68337194 (protein chain in orange, ligand in cyan), aligned to SARS-CoV-2 Mpro in complex with nirmatrelvir (7TE0,
protein in gray, ligand in green). Images are related by a 90� rotation around the z-axis.



Fig. S13. SwissADME evaluation of Z68337194.



Fig. S14. SwissADME evaluation of GXA70.



Fig. S15. SwissADME evaluation of GXA112.



Fig. S16. SwissADME evaluation of GXA56.



Fig. S17. SwissADME evaluation of GEN725.



Fig. S18. SwissADME evaluation of GEN727.



A B C

Fig. S19. Pan Dataset Density Analysis (PanDDA) event maps. PanDDA78 event maps for crystal structures of the
SARS-CoV-2 Mpro in complex with (A) Z6833714, (B) Z1633315555, and (C) Z1365651030. All event maps are contoured at
the 1s level. The PanDDA algorithm facilitates identification of weakly bound ligands as described previously73.



Supplementary Text

Algorithm S1 Conditional Latent (attribute) Space Sampling (CLaSS)
Require: Trained latent variable model (e.g. VAE), samples z j drawn from domain of interest, labeled samples for each

attribute ai.
1: Encode training data x j in latent space: z j,k ⇠ qf (z|x j) for k = 1, ...,K
2: Use z j,k to fit explicit density model Qx (z) to approximate marginal posterior qf (z)
3: Train classifier models qx (ai|z) using labeled samples for each attribute ai to approximate probability p(ai|x)
4: Assuming attributes ai are conditionally independent given z, then

p̂x (z|a) =
Qx (z)’i qx (ai|z)

qx (z)

via Bayes’ rule.
5: Let g(z) = Qx (z) and M = 1

qx (a)
6: repeat
7: Sample from Qx (z)
8: Accept with probability f (z)

Mg(z) = ’i qx (ai|z) 1
9: if Accepted then

10: Decode sample from latent and save: x ⇠ pq (x|z)
11: end if
12: until Desired number of samples attained
13: return Accepted samples



Additional supplementary files associated with this manuscript include:  
 
5SML PanDDA event files (.zip) 
 
5SMM PanDDA event files (.zip) 
 
5SMN PanDDA event files (.zip) 
 
Supplementary code (.zip) 
 
COVID-19 Molecule Explorer (Mpro) (.csv) 
 
COVID-19 Molecule Explorer (RBD) (.csv) 
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