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Referees' comments: 

Referee #1 (Remarks to the Author): 

The authors use the theoretical concept prediction error variance (PEV) of a predicted genetic 

value for an individual to show that PEV increases the less related an individual is to the individuals 

that have a phenotype. The authors do not phrase it that way, but in essence this is what their 

paper is about. The authors show empirically, using two large biobank datasets, that individual 

prediction accuracy declines with relatedness (genetic distance from the samples with phenotypes) 

both within and across traditional (but arbitrary) ancestry boundaries, and that the decline is 

approximately linear. The authors quantify the association between genetic distance and prediction 

accuracy across a number of traits. They thereby show that prediction error variance greatly 

increases for genomes that are not well represented in the discovery data, in line with published 

results (as the authors acknowledge). They do not provide a “solution”, other than state (as many 

others have done) that more (biobank) data should be collected across the entire spectrum of 

human genome variation to increase prediction accuracy for individuals irrespective of their 

genomic ancestry. 

Comments on the Introduction: 

There are non-genetic prediction tools used in clinical practice that suffer from the same issues 

that are raised by the authors, yet it seems fashionable to pick out polygenic scores (PGS) as 

providing an equity barrier. The authors may wish to point out that PGS are not an exception in 

terms of equitable use of clinical predictors. 

It is correct that in human genetics, population or sample based average measures of prediction 

accuracy have been used, for understandable reasons – it is hard enough to explain a point 

estimate of a PGS to a person, let alone the error variance around it. However, in agriculture, 

scientists have for decades not only used well-developed theory on prediction error variance, they 

also routinely provide individual-specific ‘reliability’ metrics for practical applications. My 

suggestion is that the authors acknowledge this more explicitly and provide more and appropriate 

references. 

The authors hint at ‘relatedness’ (ln260; ln296) and ‘animal breeding theory’ (ln339) but don’t 

acknowledge that there is a large body of literature out there on prediction error using either 

pedigree relationships or SNP-based relationships. ‘Animal breeding theory’ is a misnomer because 

the theory is (hard core) genetical and statistical, it just happens that it was first derived (& 

applied) in agriculture. All the theory presented in the present paper is a special case of more 

general results in the literature. Many relevant papers are not in highly specialized journals but in 

textbooks and mainstream genetics journals. Examples of relevant literature include: 

Falconer (1960). An Introduction to Quantitative Genetics (text book). Has relevant derivations 

how the accuracy of prediction depends on the relationship with individuals with a phenotype. The 

simplest case is to predict a genetic value from a single (pedigree) relative with a phenotype. Then 

r^2(true and predicted gv) = theta^2 * h^2, with theta = relationship and h^2 = heritability. An 



extreme example of that was shown empirically by Truong et al. 2020 (Nature Communications), 

also using UK Biobank data. Those authors show that prediction accuracy from close relatives was 

equivalent to that from a much larger sample of distant relatives. 

Lynch and Walsh (1998). Genetics and Analysis of Quantitative Traits (Chapter 26). The theory 

about PEV when using a pedigree relationship matrix is the same as when using a GRM (genomic 

relationship matrix) from SNPs, and the expression simplifies when there are no fixed effects. The 

relevant matrix that the authors approximate in the current paper is C22 (Eq 26.6], which 

simplifies to the inverse of [I + G(inverse)], with G the SNP-based GRM. G is dense hence 

approximations are necessary for large datasets. 

Wientjes YC, Veerkamp RF, Bijma P, Bovenhuis H, Schrooten C, Calus MP. Empirical and 

deterministic accuracies of across-population genomic prediction. Genetics Selection Evolution. 

2015 Feb 6;47(1):5. doi: 10.1186/s12711-014-0086-0. This paper contains derivations of the 

accuracy for across-population prediction accuracy, using genomic relationships. Eq[10] in this 

paper seems most relevant. 

Habier D, Fernando RL, Dekkers JC. The impact of genetic relationship information on genome-

assisted breeding values. Genetics. 2007 Dec;177(4):2389-97. doi: 10.1534/genetics.107.081190. 

These authors show (using simulations) that “the impact of relationships was greatest for RR-

BLUP”, with RR-BLUP their name for the PGS used by Ding and colleagues. 

Lee et al. 2017 (Scientific Report); Truong et al. 2020 (Nature Communications). These authors 

report higher prediction accuracy for individuals who are more closely related to the individuals 

with a phenotype in the UK Biobank. Although the contrast in this paper is between close 

(pedigree) relatives and very distantly related individuals, the concept and results are as reported 

by Ding and colleagues. 

Ben Zaabza, H., E. A. Mäntysaari, and I. Strandén. 2020a. Using Monte Carlo method to include 

polygenic effects in calculation of SNP-BLUP model reliability. Journal of Dairy Science 103: 5170-

5182. This paper provides derivations and approximation to the PEV when using a SNP-BLUP 

model (as used by Ding and colleagues). 

Technical comments: 

It was not clear to me why the authors use ‘gv’ and not simply ‘g’ (as frequency done in the 

literature) to parameterise the genetic value. 

The authors present their theory and results as if gv is the full genetic value and its variance the 

full heritability. However, it is only that which is captured by common SNPs and therefore some of 

the unmodelled error variance is actually genetic. A case in point is the example of neutrophil 

count. The distinction is important because for some trait the r^2 value reaches ~0.8, which gives 

the impression that the total genetic value is predicted nearly perfectly, even if the majority of 

genetic variation might not be captured by SNPs. 

Under some assumptions (SNPs effects are random and from a single normal distribution), a SNP-

based model is equivalent to a relationship model (VanRaden 2008, J Dairy Science; Goddard 

2008, Genetica; Yang et al. 2010, Nature Genetics). This model is also what the authors assume. 

Therefore, if the authors were to perform a GBLUP analysis then the inverse of the equations (as in 

Lynch & Walsh chapter 26) gives the PEV and hence the prediction accuracy. The authors 

approximate the reliability by reducing the dimensionality of the GRM (the eigenvalues of XX’ are 

the same as those of X’X), using the top-20 eigenvectors only, and then further by ignoring a 

shrinkage term (treating the top-20 eigenvectors as fixed effects). Whilst this seems to work fine 

for individuals who are distantly related (which is picked up easily by the top-20 eigenvectors), it 

is likely to work less well for another sample from the same population (/ ancestry). This is 



consistent with Fig4b. Therefore, my suggestion is that the authors explore using the entire GRM 

to quantify reliability (J = N or M, whichever is smaller) and use shrinkage. My guess is that this 

will show better concordance between observed and predicted errors. If that is not feasible 

computationally then the authors could increase J and quantify if/how the results in Fig4b improve. 

The strong inverse correlation between genetic distance and accuracy seems to imply that the 

reduction in accuracy in samples from ancestries that are different from the GWAS samples is fully 

accounted for by the distance metric. However, previous studies have shown that MAF and LD do 

not fully account for the loss in accuracy across ancestries. Can the authors elaborate/discuss how 

their results compare to those studies? In addition, the authors state repeatedly that more data 

should be collected/considered from other ancestries. However, there is emerging evidence 

(including from some of the authors) that causal effects are shared and similar in size across 

ancestries. Therefore, in principle at least, discovery of causal variants could be performed in a 

single ancestry and a PGS based on the causal variants should work across all ancestries (apart 

from those that are fixed). Can the authors comment on this thought experiment? 

ln309-313: I found this section very confusing. The only randomness that matters for this paper is 

in the genotypes (the x-variables)! 

ln315-324: It might be helpful to point out to the reader what this result means, i.e., the 

regression of true on predicted genetic values has a slope of 1. 

Supp Fig3b: why is this relationship non-linear? Would it be more linear if the x-axis is in variance 

units? 

Supp Fig4: the metric d_i measures genetic distance from a UK Biobank sample. Individuals with 

different ancestries (e.g., East Asian and African) could have the same d_i values (Fig3b). Yet the 

genetic (and, perhaps, phenotypic) mean values of East Asian and African populations could be 

quite different (given that they both have an Fst of ~0.12-0.15 with Europeans). Therefore, I’m 

not sure what Supp Fig4 shows without a (discrete) ancestry component. 

Referee #2 (Remarks to the Author): 

This paper presents and short, clear, and highly important analysis of the portability of polygenic 

scores as a function of genetic ancestry. The paper is innovative in its methods (showing methods 

for doing individual-level PGS accuracy prediction) and for its framing (conceptualizing the analysis 

in terms of continuous genetic distance versus discrete ancestries). The lessons it gives are 

important for the human genetics community (and allied communities doing trait prediction in 

other taxa). 

The paper is overall very well executed – my main comments are with regards to aspects of the 

presentation and some comments regarding the approximations used. 

Major/Technical: 

1a. A stated caveat of the method is that it assumes effect sizes are constant across ancestry. It 

would be helpful to be more clear throughout that for that reason, the r_i^2 estimate is not 

capturing all sources of error and is likely an upper bound on the accuracy. 

1b. Given the current formulation of r_i^2 varies across individuals because of how individuals 

project on the training set eigenvectors (line 366 and discussion on lines 373-375). The key aspect 

is the additive genetic distance from the center of the training data’s PC space. It would be helpful 

in the main text to perhaps denote this more clearly. I would propose calling these “Panel-distance 



r_i^2” values, such that later someone else might be able to compute “Effect-size-variance r_i^2” 

values, and eventually we might hope for a “Multi-factor r_i^2” value that accounts for both 

sources of error? This suggestion may not be the ones to use, but I urge some consideration of 

how to both communicate the scope of the current method as it will be helpful for the future in 

multiple ways (preventing over-interpretation and making clear where new work will benefit). 

1c. Another stated caveat is that the variance of the PGS in the denominator is assumed to be 

equal to the heritability and constant across ancestry. It would seem straightforward to use an 

approximation whereby the heritability varies in proportion to an individual-level heterozygosity. 

While not necessary for publication – this could be a useful improvement in performance. It also 

raises interesting questions – if an individual is further from the panel but also highly variable – 

would that moderate the decay of r_i^2? 

2. Line 372-373: A theoretical result is presented here that is underplayed in the manuscript. The 

theory predicts that the performance will decay with genetic distance. And the main paper’s 

empirical analysis supports the theory. I think the authors should consider promoting the 

theoretical result to the main paper – as it currently reads, the r_i^2 and GD result is an empirical 

observation, but a careful read shows it is both a theoretical expectation and an empirical 

observation. 

3. Supp Fig 1a : the results show a high correlation but the scaling of the two axes is very different 

because covariance is used on the y-axis as opposed to the correlation – It would be nice to have 

an additional panel where the y-axis is the empirical correlation and where any bias away from the 

y=x for r_i^2 can be observed directly. 

4. Figure 3A: It would be helpful to report the slopes in absolute units (decay in r_i^2 per unit of 

genetic distance). As it is, because R depends on the variances it’s difficult to know how much of a 

decay in performance one gets in terms of accuracy. 

Line 372: The use of J here is confusing given its use in the genetic distance calculation (where J 

was fixed to 20). Here do you mean a complete eigendcomposition over all eigenvectors? (i.e. no 

truncation is implied and any truncation for a fixed J would be an approximation). 

Minor (Grammatical / Clarity): 

Line 40: Strike “genetic value” – the social connotation of the phrase makes it worth diminishing / 

removing it from technical use in genetics 

Line 84: Insert >the< before “continuum” 

Line 85: “genetic ancestry cluster” -> “genetic ancestry cluster” 

Line 105: Notation gv_i confusing – I was puzzling if it was a multiplication of g and v_i and then 

eventually reverse engineered that it is the underlying additive genetic liability for the trait. That 

term is being called genetic value here, but as mentioned above I think we should invent new 

terms to get around the “value” phrasing. My encouragement is to use “genetic liability” or 

“additive genetic liability” to be more specific. While liability is traditionally reserved for discrete 

trait models – it’s only a mild abuse of the terminology to use it for both discrete and continuous 

traits (many readers will probably not even notice the distinction and you could precisely introduce 

the notation where it’s essential). If that is not comfortable, another idea would be to exploit the 

relationship to generalized linear models – in that literature the term “linear predictor” and Greek 

letter eta are used for what stands in for “genetic value” here. 

Line 112: Especially good to change notation from gv_i given the use of v_i here for eigenvectors. 



Line 112: Choice of J would be useful to declare in the main text. 

Line 118: Insert >a< in “as function” 

Line 125: Fix “the of” 

Line 133: “under >a< discrete” 

Line 170: “in the >the< HL cluster” 

Line 212: “different correlations >for< PGS vs trait” 

Line 217: Fix within /in 

Line 221: “along GD” -> “with respect to GD” 

Line 221: “>the< European American cluster” 

Referee #3 (Remarks to the Author): 

Polygenic scores (PGS) have recently become a popular approach for assessing predicted risk of 

clinical outcomes based on genetic variants identified through GWAS, where the weighting of 

variants used in PGS are usually proportional to variant effect sizes from the GWAS. PGS have 

been shown to not be transferrable across ancestrally diverse populations, with a strong bias when 

applied to non-European ancestry populations when PGS weights are calculated from discoveries 

from GWAS that have predominantly been conducted in European ancestry populations. 

In this study, the authors investigate how the accuracy of PGS changes based on a proposed 

genetic distance (GD) measure between an individual and the population from which the PGS 

weights were constructed, where the GD is essentially a measure of genetic ancestry differences 

between groups and is based on continuous measures of ancestry only axes of variation that are 

reflected from a principal components analysis. In this study, the authors construct PGS weights 

for a variety of phenotypes using individuals who self-reported to be "white British" in the UK 

Biobank (UKB). They then assess the predication accuracy of PGS using groups of individuals with 

difference ancestries/ethnicities in UKB as well as from the Los Angeles biobank at UCLA (ATLAS). 

The authors find a strong negative association between PGS performance and their novel GD 

measure. They also identify differences in PGS accuracy across countries within Europe that are 

well explained by GD between the "white British" UKB training samples and individuals who 

descend from different countries in Europe, which to my knowledge, has not been previously 

demonstrated. 

This article provides useful insight into the impact of fine-scale ancestry differences on PGS 

prediction performance and will be a well received contribution to the growing literature on PGS 

performance in diverse populations. While I find the relationships between GD and PGS to be very 

interesting, the results are largely what is to be expected based on previous studies that have 

investigated the performance of PGS in diverse populations. For example, in 2019 Martin et al. 

(AJHG 2019; ref. 9 in this paper) conducted an in-depth investigation of the role of demographic 

history on genetic risk prediction in diverse populations and similarly found that "the utility of 

polygenic risk scores computed using GWAS summary statistics are dependent on genetic 

similarity to the discovery cohort." A more recent paper by Martin et al. (Nature Genetics 2019; ref 

10 in this paper) assessed accuracy of PGS in diverse populations, and similarly to this paper, they 

also evaluated accuracy of PGS weights constructed from European ancestry training samples. 

Martin et al. similarly found the PGS performed the best for individuals of European ancestry, the 



worst in African ancestry individuals, and the PGS performance for Hispanic/Latino Americans (who 

are admixed with European ancestry) was better than both South Asians and East Asians. Indeed 

Figure 1B in this manuscript is quite similar to Figure 3 in Martin et al. (2019). This submitted 

paper, however, provides additional insight into the relationships between PGS and ancestry 

through the novel GD measure, where the authors show how individuals in discrete ancestry 

groups can be represented by continuous measures of genetic ancestry differences from the 

training population that is strongly negatively correlated with PGS performance, as shown in Figure 

1d. The result from this paper are aligned with a 2020 paper by Bitarello and Mathieson 

("Polygenic Scores for Height in Admixed Populations", G3 Genes|Genomes|Genetics, Volume 10, 

Issue 11) who similarly used the height phenotype for assessment and showed that the accuracy 

of PGS accuracy in AA corresponds to an ancestry gradient. They showed that when when PGS 

weights are constructed using European ancestry samples, the predictive accuracy of PGS 

increases linearly as the proportion of European ancestry in AA. 

I have a few additional comments for the authors. 

1. The authors should also evaluate and illustrate the relationship between GD and PGS across 

populations when using PGS weights constructed using non-European ancestry populations. 

2. GD is an essential part of this paper but the authors do not provide sufficient information on 

how this is measure is constructed from the principal components in the Methods section. The 

authors should provide appropriate material, including formulas, about this. 

3. In practice the utility of PRS will depend on the correlation of the predicted PRS and the actual 

phenotypic value. The authors should provide results of predicted PRS and the actual phenotype 

values of the individuals across ancestry groups as well as by the GD values. 



Author Rebuttals to Initial Comments: 

Response to reviewers for 2022-09-15441 

Dear Editors, 

Please find our responses to the reviewers’ comments below. We are excited that all three reviewers 

found our work important in showcasing empirically that PGS accuracy in humans declines individual 

to individual both within and across arbitrary ancestry boundaries.  The reviewers also raised very 

insightful critique which allowed us to greatly improve the quality of our manuscript and highlight its 

novelty. We have addressed all comments and concerns through new analyses and text edits 

(highlighted in blue in revised manuscript), summarized as follows: 

 We include a thorough discussion of our work within the wide body of theory of individual-level 

genomic prediction reliability and their applications.  

 We present new analyses using a new derivation for individual PGS accuracy that considers 

individual heterozygosity showing similar coupling between accuracy and genetic distance. 

 We perform new analyses to investigate PGS accuracy trained in African ancestry individuals 

and applied to individuals of other ancestries and observe similar coupling between distance 

and accuracy. 

We believe our manuscript to be greatly improved as a result of these changes. For your convenience, 

we provide point-by-point responses to reviewers’ comments below, in blue. 

Sincerely, 

Bogdan Pasaniuc (on behalf of all co-authors)



Referee #1 (Remarks to the Author)

The authors use the theoretical concept prediction error variance (PEV) of a predicted genetic value 

for an individual to show that PEV increases the less related an individual is to the individuals that 

have a phenotype. The authors do not phrase it that way, but in essence this is what their paper is 

about. The authors show empirically, using two large biobank datasets, that individual prediction 

accuracy declines with relatedness (genetic distance from the samples with phenotypes) both within 

and across traditional (but arbitrary) ancestry boundaries, and that the decline is approximately linear. 

The authors quantify the association between genetic distance and prediction accuracy across a 

number of traits. They thereby show that prediction error variance greatly increases for genomes that 

are not well represented in the discovery data, in line with published results (as the authors 

acknowledge). They do not provide a “solution”, other than state (as many others have done) that 

more (biobank) data should be collected across the entire spectrum of human genome variation to 

increase prediction accuracy for individuals irrespective of their genomic ancestry. 

We thank the reviewer for an accurate high-level summary of our work. We agree that our approach 

builds on existing theory coupling genetic relatedness with prediction error with main contribution 

being empirical. We also thank the reviewer for noting the main contribution of our work: PGS 

accuracy declines individual-to-individual within and across traditional genetic ancestry 

groupings in real-world human population data across US and UK. Therefore, PGS accuracy 

can differ vastly for two people from the same ancestry group – and can be very similar for two people 

from different ancestry groups – depending on their genetic distance to training data. We believe this 

finding has paramount importance in how PGS should be used in a wide range of fields from social 

studies to human genetics to personalized medicine.  

Please find our point-by-point responses below. 

Comments on the Introduction: 

1. There are non-genetic prediction tools used in clinical practice that suffer from the same issues 

that are raised by the authors, yet it seems fashionable to pick out polygenic scores (PGS) as 

providing an equity barrier. The authors may wish to point out that PGS are not an exception in terms 

of equitable use of clinical predictors. 

We fully agree with the reviewer's suggestions that it is important to acknowledge the low portability 

issues of both genetic and non-genetic prediction tools. In this work we focused on PGS which have 

garnered tremendous attention in the past few years across a wide range of fields; examples include 

embryo selection, clinical decision-making, and socio-genomics studies.   

Following reviewer suggestions, we have revised Introduction and Discussion to highlight that both 

genetic and non-genetic prediction tools suffer from portability issues. 

Revised Introduction section: 



“Such portability issues are also reported for non-genetic clinical models15–17. Here we focus on PGS 

which have garnered tremendous attention in the past few years across a wide range of fields from 

embryo selection to clinical decision-making and resource allocation in socio-genomics18,19. ” 

Revised Discussion section: 

“In the end, we caution that not only polygenic scores, but also traditional clinical risk assessment 

may suffer from limited portability across diverse populations17. For example, previous studies show 

that the Framingham risk score underestimate  subclinical atherosclerosis risk for women with a family 

history of coronary heart disease15; a traditional clinical breast cancer risk model developed in 

European population in U.S. overestimated the breast cancer risk among older Korean women16. 

Here we focus on genetic prediction potability due to the wide interest and attention from both 

research community and society. We highlight that the portability of traditional clinical risk factor 

models in diverse populations is an essential component of health equity and requires thorough 

investigation.”   

2. It is correct that in human genetics, population or sample based average measures of prediction 

accuracy have been used, for understandable reasons – it is hard enough to explain a point estimate 

of a PGS to a person, let alone the error variance around it. However, in agriculture, scientists have 

for decades not only used well-developed theory on prediction error variance, they also routinely 

provide individual-specific ‘reliability’ metrics for practical applications. My suggestion is that the 

authors acknowledge this more explicitly and provide more and appropriate references. 

The authors hint at ‘relatedness’ (ln260; ln296) and ‘animal breeding theory’ (ln339) but don’t 

acknowledge that there is a large body of literature out there on prediction error using either pedigree 

relationships or SNP-based relationships. ‘Animal breeding theory’ is a misnomer because the theory 

is (hard core) genetical and statistical, it just happens that it was first derived (& applied) in agriculture. 

All the theory presented in the present paper is a special case of more general results in the literature. 

Many relevant papers are not in highly specialized journals but in textbooks and mainstream genetics 

journals. Examples of relevant literature include: 

Falconer (1960). An Introduction to Quantitative Genetics (textbook). Has relevant derivations how 

the accuracy of prediction depends on the relationship with individuals with a phenotype. The simplest 

case is to predict a genetic value from a single (pedigree) relative with a phenotype. Then r^2(true 

and predicted gv) = theta^2 * h^2, with theta = relationship and h^2 = heritability. An extreme example 

of that was shown empirically by Truong et al. 2020 (Nature Communications), also using UK Biobank 

data. Those authors show that prediction accuracy from close relatives was equivalent to that from a 

much larger sample of distant relatives. 

Lynch and Walsh (1998). Genetics and Analysis of Quantitative Traits (Chapter 26). The theory about 

PEV when using a pedigree relationship matrix is the same as when using a GRM (genomic 

relationship matrix) from SNPs, and the expression simplifies when there are no fixed effects. The 

relevant matrix that the authors approximate in the current paper is C22 (Eq 26.6], which simplifies 

to the inverse of [I + G(inverse)], with G the SNP-based GRM. G is dense hence approximations are 

necessary for large datasets. 



Wientjes YC, Veerkamp RF, Bijma P, Bovenhuis H, Schrooten C, Calus MP. Empirical and 

deterministic accuracies of across-population genomic prediction. Genetics Selection Evolution. 2015 

Feb 6;47(1):5. doi: 10.1186/s12711-014-0086-0. This paper contains derivations of the accuracy for 

across-population prediction accuracy, using genomic relationships. Eq[10] in this paper seems most 

relevant. 

Habier D, Fernando RL, Dekkers JC. The impact of genetic relationship information on genome-

assisted breeding values. Genetics. 2007 Dec;177(4):2389-97. doi: 10.1534/genetics.107.081190. 

These authors show (using simulations) that “the impact of relationships was greatest for RR-BLUP”, 

with RR-BLUP their name for the PGS used by Ding and colleagues. 

Lee et al. 2017 (Scientific Report); Truong et al. 2020 (Nature Communications). These authors report 

higher prediction accuracy for individuals who are more closely related to the individuals with a 

phenotype in the UK Biobank. Although the contrast in this paper is between close (pedigree) relatives 

and very distantly related individuals, the concept and results are as reported by Ding and colleagues. 

Ben Zaabza, H., E. A. Mäntysaari, and I. Strandén. 2020a. Using Monte Carlo method to include 

polygenic effects in calculation of SNP-BLUP model reliability. Journal of Dairy Science 103: 5170-

5182. This paper provides derivations and approximation to the PEV when using a SNP-BLUP model 

(as used by Ding and colleagues). 

Indeed, our work builds on extensive theory applied mainly in agricultural domain, with only recent 

works porting some of this work to human genetics. We thank the reviewer for clearly articulating the 

difference between population-average vs individual-level metrics of accuracy for genomic prediction; 

unfortunately, individual-level reliability for genomic prediction (PGS) in humans remains vastly 

under-explored. Motivated by reviewer suggestions, we thoroughly revised text to properly 

contextualize our study within existing works. 

Revised Introduction section: 

“Genetic prediction and its accuracy (or reliability) have been extensively studied in agricultural 

settings with a focus on breeding programs20–23. At the population level, PGS accuracy can be 

expressed as a function of heritability, training sample size and the number of markers used in the 

predictor in single24–26 or multi-population settings with or without effect size heterogeneity27. At the 

individual level, accuracy of genetic prediction from pedigree data28–30 can be derived as a function 

of the inverse of coefficient matrix of mixed models equations whereas accuracy of genetic prediction 

using whole-genome genetic data can be derived from the same equation, with pedigree matrix 

replaced with the genomic relationships matrix21–23,27,31,32 among training and testing individuals. 

Simulations guided by dairy breeding programs showcase that genomic prediction accuracy varies 

with genetic relatedness of the test individual to the training data33,34 as well as across generations 

due to the decay of genetic relationships35. 

PGS accuracy in humans has been traditionally assayed using population-level metrics of accuracy 

(e.g., R2) 2,11. PGS accuracy decays as the target populations are more dissimilar from the training 



data either using relatedness36,37 or continental/sub-continental groupings of ancestries9,10,38. Notably, 

PGS reliability decays across groupings  of European individuals according to their relatedness to 

training data36 and across groupings of admixed individuals (e.g., African Americans) according to 

their proportion of European genetic ancestries39. Recent works showcase that majority of decay in 

reliability across ancestries could be explained by differential linkage disequilibrium and frequency of 

causal variants with other sources being heterogeneity in genetic effects due to gene-gene and gene-

environment interaction12. In contrast to existing works in human genetics that focus on population-

level metrics of accuracies using ancestry groupings of individuals here we leverage classic theory 

to investigate the reliability of PGS predictions at the level of single target individual showing that 

predictive power of PGS varies individual-to-individual within and across populations; for example, 

PGS accuracy can differ vastly for two people from the same ancestry group – and can be very similar 

for two people from different ancestry groups – depending on their genetic distance to training data. ” 

Technical comments: 

3. It was not clear to me why the authors use ‘gv’ and not simply ‘g’ (as frequency done in the literature) 

to parameterise the genetic value. 

We thank the reviewer for the suggestion. We have changed our notations to use ‘g’ to denote genetic 

value and 𝑔̂ to denote estimated genetic value to follow the previous literature.  

4. The authors present their theory and results as if gv is the full genetic value and its variance the 

full heritability. However, it is only that which is captured by common SNPs and therefore some of the 

unmodelled error variance is actually genetic. A case in point is the example of neutrophil count. The 

distinction is important because for some trait the r^2 value reaches ~0.8, which gives the impression 

that the total genetic value is predicted nearly perfectly, even if the majority of genetic variation might 

not be captured by SNPs. 

We agree with the reviewer that it is important to distinguish between full genetic value and the genetic 

value that is captured by common SNPs. To address this, we revised both our Results and Discussion

section to highlight that the error variance contains residual genetic components not captured by 

common SNPs, and R2 should be interpreted in terms of the heritability captured by SNPs in the 

model. 

Revised Results section: 

“We note two caveats of individual PGS accuracy: first, the genetic effects are assumed to be the 

same for all individuals regardless of its genetic ancestry background; second, in practice the SNPs 

used for PGS training may not capture full trait heritability. Therefore, the metric we proposed here is 

an upper bound of genetic prediction accuracy (Supplementary Note).” 

Revised Discussion section: 

“First, it’s important to note the individual PGS accuracy we proposed here is an upper bound of true 

accuracy and should only be interpreted in terms of the additive heritability captured by SNPs included 



in the model. In our derivation, we make the assumption that causal variants and their effects are 

consistent across all genetic ancestries and that the SNPs in the model capture the full genetic 

component of a trait. However, substantial missing heritability is observed for complex traits due to 

the imperfect tagging of causal variants, non-additive genetics and exclusion of rare variants62, which 

decreases the genetic prediction accuracy even for individuals that are from the same genetic 

ancestry of training data. Population-specific causal variants and effect sizes may further decrease 

the real accuracy. For example, the prediction accuracy for neutrophil count is overestimated among 

African American individuals because Duffy-null SNP rs281477854 is not captured in white British 

training data. Future work could investigate the impact of the population-specific components of 

genetic architecture on the calibration of PGS accuracy.” 

5. Under some assumptions (SNPs effects are random and from a single normal distribution), a SNP-

based model is equivalent to a relationship model (VanRaden 2008, J Dairy Science; Goddard 2008, 

Genetica; Yang et al. 2010, Nature Genetics). This model is also what the authors assume. Therefore, 

if the authors were to perform a GBLUP analysis then the inverse of the equations (as in Lynch & 

Walsh chapter 26) gives the PEV and hence the prediction accuracy. The authors approximate the 

reliability by reducing the dimensionality of the GRM (the eigenvalues of XX’ are the same as those 

of X’X), using the top-20 eigenvectors only, and then further by ignoring a shrinkage term (treating 

the top-20 eigenvectors as fixed effects). Whilst this seems to work fine for individuals who are 

distantly related (which is picked up easily by the top-20 eigenvectors), it is likely to work less well for 

another sample from the same population (/ ancestry). This is consistent with Fig4b. Therefore, my 

suggestion is that the authors explore using the entire GRM to quantify reliability (J = N or M, 

whichever is smaller) and use shrinkage. My guess is that this will show better concordance between 

observed and predicted errors. If that is not feasible computationally then the authors could increase 

J and quantify if/how the results in Fig4b improve. 

We thank the reviewer for the suggestions of using the entire GRM and shrinkage to quantify the 

reliability.  

First, we clarify that, we only used GBLUP model to derive the mathematical relationship 

between prediction reliability and genetic distance rather than compute the reliability directly from the 

equation. Instead, we used the MCMC sampling implemented in LDpred2 to estimate PEV.  

Second, we vary the number of eigenvectors (J) used in genetic distance and evaluate its 

effect on the correlation between genetic distance and individual PGS accuracy (𝑐𝑜𝑟(𝑑𝑖 , 𝑟𝑖
2) in Figure 

4b). We find that the correlation between individual PGS accuracy and genetic distance increases as 

more eigenvectors are included in the calculation of genetic distance when J <=15, but the 

improvement plateaus after J > 15, which means the top 15 eigenvectors already captures the decay 

of PGS accuracy well. 

Third, due to the computation limitation, instead of computing the full GRM, we compute the 

average genomic relationship between a testing individual and all training individuals with the 

following equation: 



𝑑𝑖(GRM) = √
1

𝐾
∑ (𝑥𝑖 − 𝑥𝑘)2𝐾

𝑘=1  , 

where 𝑥𝑖 is the standardized genotype of testing individual and 𝑥𝑘 is the standardized genotype of 

training individual 𝑘. As the reviewer predicted, within each ancestry cluster, the GRM based distance 

predicts the accuracy much better, with the largest improvement observed for “White British” cluster. 

This holds even when computing GRM with a pruned set of PCA SNPs only. However, this metric 

relies on individual level training data that are usually not available, we keep using PCA based genetic 

distance for convenience. 

Revised Results section: 

“We further evaluated the impact of number of PCs used for calculating genetic distance on its ability 

to capture accuracy decay. We varied the number of PCs (J) from 1 to 20 and observed that the 

correlation between genetic distance and individual accuracy (−𝑐𝑜𝑟(𝑑𝑖 , 𝑟𝑖
2(𝑔𝑖, 𝑔𝑖)) increases when 

more PCs are used for computing genetic distance, but no further improvement is observed when J > 

15 for any ancestry clusters or the whole biobank (Supplementary Figure 4). Therefore, we set J = 

20 for simplicity. We also explored average squared genetic relationship from training data as an 

alternative metric of genetic distance and found it is a better prediction of accuracy decay within each 

genetic ancestry clusters (Supplementary Figure 4). However, this metric relies on individual level 

training data which are usually not available, we keep using PCA based genetic distance for 

convenience.” 

Supplementary Figure 4. The effect of different metrics of genetic distance on the correlation 

between genetic distance and accuracy. The y-axis −𝑐𝑜𝑟(𝑟𝑖
2, 𝑑𝑖) is the correlation between the 

genetic distance and PGS accuracy; a larger correlation means genetic distance has a better 

prediction of accuracy. The x-axis are different genetic distance metrics: (1) genetic distance based 

on PCA with varying number of PCs (from J=1 to J = 20) and (2) genetic distance based on GRM 



using pruned PCA SNPs only or all SNPs in PGS models. The GRM genetic distance is computed 

as 𝑑𝑖(GRM) = √
1

𝐾
∑ (𝑥𝑖 − 𝑥𝑘)2𝐾

𝑘=1 , where 𝑥𝑖 is the standardized genotype of 𝑖𝑡ℎ testing individual and 

𝑥𝑘 is the standardized genotype of 𝑘𝑡ℎ training individual. 

6. The strong inverse correlation between genetic distance and accuracy seems to imply that the 

reduction in accuracy in samples from ancestries that are different from the GWAS samples is fully 

accounted for by the distance metric. However, previous studies have shown that MAF and LD do 

not fully account for the loss in accuracy across ancestries. Can the authors elaborate/discuss how 

their results compare to those studies?  

We thank the reviewer for the suggestion of further comparing our results to previous work. A recent 

work by Wang et al (Nat Comm, 2020 https://www.nature.com/articles/s41467-020-17719-y) 

quantifies that differences in LD and MAF explain between ~70% and 100% of the reduction of relative 

accuracy of PGS in AFR ancestry; the remaining unexplained accuracy reduction can be attributed 

to other factors such as gene-environment interaction, population specific causal variants and 

heritability differences. In our work, we investigated the correlation between genetic distance and 

estimated PGS accuracy, which is based on assumptions that the causal variants and effects are the 

same across ancestries. While there may be differences in the magnitude of the results, our 

conclusion is in line with Wang et al’s work in that both studies agree similarity with the training data 

is a major contributor to the decline in PGS accuracy, as larger MAF/LD difference results in larger 

genetic distance (and lower similarity). We leave it as future work to develop more realistic PGS 

accuracy by modeling population-specific variants and effect sizes. 

Revised Discussion section: 

“Our finding aligns with previous research by demonstrating that a decrease in similarity (as measured 

with relatedness, LD/MAF difference, Fst, etc) between testing individuals and training data is a major 

contributor to the reduction of PGS accuracy. However, practical factors that may impact the 

transferability such as genotype-environment interaction, population-specific causal variants are not 

modeled in the calculation of individual PGS accuracy. We leave it as future work to develop more 

realistic PGS accuracy estimation and investigate its variation with genetic distance.” 

7. In addition, the authors state repeatedly that more data should be collected/considered from other 

ancestries. However, there is emerging evidence (including from some of the authors) that causal 

effects are shared and similar in size across ancestries. Therefore, in principle at least, discovery of 

causal variants could be performed in a single ancestry and a PGS based on the causal variants 

should work across all ancestries (apart from those that are fixed). Can the authors comment on this 

thought experiment? 

We thank the reviewer for suggesting this intriguing thought experiment. Assuming causal effects are 

shared and similar in size across ancestries, differences in frequency for causal genetic variants will 

impact the discovery of causal variants and consequently the accuracy of PGS. For example, in the 

limit, GWAS performed in European ancestries cannot identify any causal variants that have no 

variation in European but present at considerable frequencies in other ancestries. Second, and most 



important, analyzing multi-ancestry data has vastly superior power for statistical fine mapping over 

single ancestry data (contrasting different LD patterns is extremely powerful towards fine mapping); 

therefore, even when causal variants are similar across ancestries, differential MAF and LD allow for 

multi-ancestry studies to outperform (in discovery power and thus prediction using PGS) single-

ancestry studies per sample unit. 

Revised Discussion section: 

“Incorporating diverse populations in the training data can provide advantages for both European and 

non-European individuals. This is because when the SNPs associated with a trait are observed with 

different MAF and LD in non-European populations, PGS methods will provide more accurate genetic 

effects estimation. Furthermore, by broadening the diversity of the training data, PGS models will 

become more transferable to non-European populations as a result of reduced genetic distance from 

training data.” 

8. ln309-313: I found this section very confusing. The only randomness that matters for this paper is 

in the genotypes (the x-variables)! 

We thank the reviewer for the question. To clarify, our paper focuses on the accuracy of PGS at the 

individual level, where the genotype (x-variable) for a given individual is fixed. It’s essential to assume 

a random effects model, which implies genetic value g is a random variable, otherwise 

𝑐𝑜𝑣𝛽,𝐷(𝑔𝑖, 𝑔𝚤̂) and 𝑣𝑎𝑟𝛽,𝐷(𝑔𝑖) will be 0. We would like to note the same assumptions are adopted in 

Wientjes et al 2015 (equation 10) in the development of reliability at the individual.  

We fully agree that an alternative and potentially more interesting approach is to treat genotype as a 

random variable and assume each individual’s genotype is sampled from a distribution. However, this 

approach would require a more complex modeling of an individual’s genotype as a function of genetic 

distance. Therefore, we consider it a topic for future work.  

Revised methods section: 

“We define individual PGS accuracy as the squared correlation between an individual’s genetic value 

𝑔𝑖 and its PGS estimate 𝑔̂𝑖 following the general form in ref28: 

𝑟𝑖
2 =

𝑐𝑜𝑣𝛽,𝐷(𝑔𝑖, 𝑔𝚤̂)

𝑣𝑎𝑟𝛽,𝐷(𝑔𝑖)𝑣𝑎𝑟𝛽,𝐷(𝑔𝚤̂)
=

𝑣𝑎𝑟𝐷(𝑥𝑖
𝑇𝛽 )

2

𝑣𝑎𝑟𝛽(𝑥𝑖
𝑇𝛽)𝑣𝑎𝑟𝐷(𝑥𝑖

𝑇𝛽 )

Here we are interested in the PGS accuracy of a given individual, therefore, the genotype is treated 

as a fixed variable and genetic effects are treated as a random variable. We note a random effects 

model is essential otherwise 𝑐𝑜𝑣𝛽,𝐷(𝑔𝑖, 𝑔𝚤̂) and 𝑣𝑎𝑟𝛽,𝐷(𝑔𝑖) is 0. Under a random effects model both 

the genetic liability and PGS estimate for individual 𝑖 are random variables. The randomness of 𝑔𝑖 =

𝑥𝑖
𝑇𝛽 comes from the randomness in 𝛽 and the randomness of  𝑔𝑖 = 𝑥𝑖𝛽  comes from the randomness 

of both 𝛽 and the training data 𝐷.” 

9. ln315-324: It might be helpful to point out to the reader what this result means, i.e., the regression 

of true on predicted genetic values has a slope of 1. 



We thank the reviewer for the suggestion. We added an additional equation in Method section to 

further interpret the derivation.  

Revised methods section: 

“The equation 2 also implies the slope from regression of observed phenotypic values (or true genetic 

liability) on the estimated PGS equal to 1 (Supplementary Figure 11), which offers an alternative way 

to assess the calibration of PGS in ref64,66.   

𝑠𝑙𝑜𝑝𝑒 =
𝑐𝑜𝑣(𝑥𝑖

𝑇𝛽 ,𝑦𝑖)

𝑣𝑎𝑟(𝑥𝑖
𝑇𝛽 )

= 
𝑐𝑜𝑣(𝑥𝑖

𝑇𝛽 ,𝑥𝑖
𝑇𝛽+𝜖𝑖)

𝑣𝑎𝑟(𝑥𝑖
𝑇𝛽 )

=
𝑣𝑎𝑟(𝑥𝑖

𝑇𝛽 )

𝑣𝑎𝑟(𝑥𝑖
𝑇𝛽 )

= 1

” 

Supplementary Figure 11. Slope of regressing phenotype on PGS is calibrated across 

genetic ancestry groups in simulation. The PGS model is trained in White British individuals and 

applied to testing individuals from a diverse genetic background in UKBB. Each boxplot contains 

100 points corresponding to the estimated slope by regressing simulated (ℎ𝑔
2 = 0.25, 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.01) 

on PGS estimates for all individuals within the genetic ancestry cluster specified by x-axis. The box 

shows the first, second and third quartile of the 100 slopes, and whiskers extend to the minimum 

and maximum estimates located within 1.5 × IQR from the first and third quartiles, respectively. 

10. Supp Fig3b: why is this relationship non-linear? Would it be more linear if the x-axis is in variance 

units? 

We thank the reviewer for the comment. We change the x-axis into variance unit, but the relationship 

is still non-linear. Since the y-axis cor(𝑟𝑖
2, 𝑑𝑖) is bounded at 1, the correlation between accuracy and 

distance stops increasing when there’s substantial genetic heterogeneity within the cluster. 



Supplementary Figure 6. Lower heterogeneity within the genetic ancestry group 

corresponds to a lower correlation between genetic distance and individual PGS accuracy 

(a) The distribution of correlations between PGS accuracy and genetic distance for 84 traits in 

ATLAS. (b)The distribution of correlations between PGS accuracy and genetic distance for 84 traits 

in UKBB.  The x-axis is the homogeneity of the genetic ancestry clusters measured as the variance 

of genetic distance within a genetic ancestry cluster; a larger 𝑣𝑎𝑟(𝑑𝑖) indicates a larger variation of 

genetic background. Each boxplot contains 84 points corresponding to the correlation between 

PGS accuracy and genetic distance within the group specified by x-axis for each of the 84 traits. 

The box shows the first, second and third quartile of the 84 correlations, and whiskers extend to the 

minimum and maximum estimates located within 1.5 × IQR from the first and third quartiles, 

respectively.  

11. Supp Fig4: the metric d_i measures genetic distance from a UK Biobank sample. Individuals with 

different ancestries (e.g., East Asian and African) could have the same d_i values (Fig3b). Yet the 

genetic (and, perhaps, phenotypic) mean values of East Asian and African populations could be quite 

different (given that they both have an Fst of ~0.12-0.15 with Europeans). Therefore, I’m not sure 

what Supp Fig4 shows without a (discrete) ancestry component. 

We thank the reviewer for the comment and we fully agree with that the different ancestry clusters 

can have very different genetic values and phenotypes despite their similar distance to European 

clusters. We also agree that genetic distance we proposed here is a one-dimension metric that does 

not capture the complexity of genetic/phenotypic variation across the entire genetic ancestry 



continuum. To address the reviewer’s concern, we have re-created the figure within each ancestry 

cluster and show that even within the same genetic ancestry cluster, PGS and phenotype can still 

vary with genetic distance thus further showcasing the challenges in interpreting current PGS. 

Revised results section: 

“We show that GD correlates with PGS and phenotype even within the same genetic ancestry cluster 

and the correlation patterns vary across clusters (Supplementary Figure 9).”

Supplementary Figure 9. The correlation of PGS/phenotype with genetic distance within 

each ancestry clusters in UKBB. Only traits that exhibit significant correlation between GD and 

PGS/phenotype are shown as dots in the figure. The Ashkenazi cluster is not included because no 

significant correlations are observed.



Referee #2 (Remarks to the Author):

This paper presents a short, clear, and highly important analysis of the portability of polygenic scores 

as a function of genetic ancestry. The paper is innovative in its methods (showing methods for doing 

individual-level PGS accuracy prediction) and for its framing (conceptualizing the analysis in terms of 

continuous genetic distance versus discrete ancestries). The lessons it gives are important for the 

human genetics community (and allied communities doing trait prediction in other taxa). 

The paper is overall very well executed – my main comments are with regards to aspects of the 

presentation and some comments regarding the approximations used. 

We thank the reviewer for highlighting the novelty and well execution of our manuscript and for 

providing detailed comments which have helped us to greatly improve the quality of our manuscript. 

Please find our point-by-point responses below. 

Major/Technical: 

1a. A stated caveat of the method is that it assumes effect sizes are constant across ancestry. It 

would be helpful to be more clear throughout that for that reason, the r_i^2 estimate is not capturing 

all sources of error and is likely an upper bound on the accuracy. 

We thank the reviewer for raising the potential issue of our homogenous effect size assumption. To 

fully account for reviewer’s concern we provide theoretical justifications for how our proposed metric 

is an upper bound on genetic prediction accuracy due (1) SNPs included in the model cannot fully 

explain the total heritability of the trait and (2) effect sizes being different in training vs testing data. 

We present these results in a Supplementary Note and added text in the Result section to highlight 

this caveat. 

Revised results section:  

“We note two caveats of individual PGS accuracy: first, the genetic effects are assumed to be the 

same for all individuals regardless of its genetic ancestry background; second, in practice the SNPs 

used for PGS training may not capture full trait heritability. Therefore, the metric we proposed here is 

an upper bound of genetic prediction accuracy (Supplementary Note).” 

1b. Given the current formulation of r_i^2 varies across individuals because of how individuals project 

on the training set eigenvectors (line 366 and discussion on lines 373-375). The key aspect is the 

additive genetic distance from the center of the training data’s PC space. It would be helpful in the 

main text to perhaps denote this more clearly. I would propose calling these “Panel-distance r_i^2” 

values, such that later someone else might be able to compute “Effect-size-variance r_i^2” values, 

and eventually we might hope for a “Multi-factor r_i^2” value that accounts for both sources of error? 

This suggestion may not be the ones to use, but I urge some consideration of how to both 

communicate the scope of the current method as it will be helpful for the future in multiple ways 

(preventing over-interpretation and making clear where new work will benefit). 



We thank the reviewer for proposing better terminology for accuracy. We change the name to panel-

distance 𝑟𝑖
2 as the reviewer suggested. We updated the overview of the study section to reflect the 

change: 

“Given that this metric of accuracy is highly dependent on the genetic distance from the training data, 

we term it as panel-distance 𝑟𝑖
2.” 

1c. Another stated caveat is that the variance of the PGS in the denominator is assumed to be equal 

to the heritability and constant across ancestry. It would seem straightforward to use an approximation 

whereby the heritability varies in proportion to an individual-level heterozygosity. While not necessary 

for publication – this could be a useful improvement in performance. It also raises interesting 

questions – if an individual is further from the panel but also highly variable – would that moderate 

the decay of r_i^2? 

We thank the reviewer for the suggestion to change the denominator in equation 1:  

1 −
𝐸𝐷 (𝑣𝑎𝑟𝛽|𝐷(𝑥𝑖

𝑇𝛽))

𝑣𝑎𝑟𝛽(𝑥𝑖
𝑇𝛽)

 (equation 1)

First, instead of using a constant heritability to approximate the denominator 𝑣𝑎𝑟𝛽(𝑥𝑖
𝑇𝛽) in equation 

1, we take the following steps to compute the denominator 𝑣𝑎𝑟𝛽(𝑥𝑖
𝑇𝛽) for each individual via Monte-

Carlo integration: 

- We sample 𝛽 from its prior distribution 

𝛽𝑚 ∼ {
𝑁 (0,

ℎ𝑔
2 

𝑞𝑚(1 − 𝑞𝑚)𝑀𝑝̂
) cj = 1 , with probability 𝑝̂

0 cj = 0, with probability 1 − 𝑝̂

where 𝑝̂ and  ℎ𝑔
2  are estimated polygenicity and heritability from LDpred2 and 𝑞𝑚 is 

the minor allele frequency of SNP 𝑚 in the training data.

- For each sample of 𝛽𝑠, we compute 𝑥𝑖
𝑇𝛽𝑠 and compute var(𝑥𝑖

𝑇𝛽𝑠) across 1000 samples as an 

estimate of 𝑣𝑎𝑟𝛽(𝑥𝑖
𝑇𝛽)

The new denominator is proportional to the sum of squared genotype 𝑥𝑖
𝑇𝑥𝑖 of an individual.  

We used real data from UKBB to explore this new approach using PGS for height as example 

(Supplementary Figure 10); we find that the new metric recapitulates the decay in estimated PGS 

accuracy albeit the correlation is slightly reduced. This could be an effect of the approximations used 

in genetic distance computation not matching the Monte-Carlo estimation of the prior variance for a 

given individual. Although this direction holds great promise in further improving our understanding 

between genetic distance/relatedness to PGS accuracy, we leave the alternative accuracy metric for 

future work.   



We add the following to the Discussion: 

“Second, we approximate the variance of genetic liability in the denominator of equation 1 with 

heritability and set the value fixed for all individuals. Preliminary results show that replacing the 

denominator with a Monte Carlo estimation of genetic liability variance that are specific to each 

individual still recapitulate the accuracy decay in estimated PGS accuracy albeit the correlation is 

slightly reduced (Supplementary Figure 10). We leave the new accuracy metric for future 

investigation.” 

Supplementary Figure 10. Comparing two types of individual accuracy for height in UKBB. (a) 

Accuracy computed from equation (1), with 𝑣𝑎𝑟𝛽(𝑥𝑖𝛽) set as fixed heritability; (b) Accuracy computed 

from equation (1), with 𝑣𝑎𝑟𝛽(𝑥𝑖𝛽) estimated from Monte Carlo sampling from prior distribution of 𝛽. 

(c) Empirical accuracy estimated as the squared correlation between PGS and height for each genetic 

distance bin. Both (a) and (b) reflect the decreasing trend of empirical accuracy in (c).  



2. Line 372-373: A theoretical result is presented here that is underplayed in the manuscript. The 

theory predicts that the performance will decay with genetic distance. And the main paper’s empirical 

analysis supports the theory. I think the authors should consider promoting the theoretical result to 

the main paper – as it currently reads, the r_i^2 and GD result is an empirical observation, but a 

careful read shows it is both a theoretical expectation and an empirical observation. 

We thank the reviewer for highlighting our contribution of connecting PGS performance with genetic 

distance. We moved the equation to the overview of the study to highlight the theory. 

Revised results section: 

“Under an infinitesimal assumption where all variants are causal and drawn from a normal distribution 

𝑁(0, 𝜎𝛽
2), and analytical form of PGS accuracy can be derived as:  

𝑟𝑖
2(𝑔𝑖, 𝑔̂𝑖) = 1 −

𝜎𝑒
2∑

1
𝜆𝑗

𝑥𝑖
𝑇𝑣𝑗𝑣𝑗

𝑇𝑥𝑖
𝐽
𝑗=1

𝜎𝛽
2𝑥𝑖

𝑇𝑥𝑖

= 1 −
𝜎𝑒

2

𝜎𝛽
2

∑
1
𝜆𝑗

𝑥𝑖
𝑇𝑣𝑗𝑣𝑗

𝑇𝑥𝑖
𝐽
𝑗=1

𝑥𝑖
𝑇𝑥𝑖

where 𝜎𝛽
2 is per SNP heritability, 𝜎𝑒

2 is the variance of residual environmental noise, and 𝑣𝑗 and 𝜆𝑗 are 

the 𝑗𝑡ℎ eigenvector of training genotype data. The term ∑
1

𝜆𝑗
𝑥𝑖

𝑇𝑣𝑗𝑣𝑗
𝑇𝑥𝑖

𝐽
𝑗=1  is the Mahalanobis distance 

of the testing individual 𝑖 from the center of the training genotype data on its PC space and  𝑥𝑖
𝑇𝑥𝑖 is 

the sum of squared genotypes across all variants. Empirically, the ratio between the two is highly 

correlated with the Euclidean distance of the individual from the training data on that PC space (R= 

1, P-value < 2.2e-16 in UKBB). ” 

3. Supp Fig 1a : the results show a high correlation but the scaling of the two axes is very different 

because covariance is used on the y-axis as opposed to the correlation – It would be nice to have an 

additional panel where the y-axis is the empirical correlation and where any bias away from the y=x 

for r_i^2 can be observed directly. 

We thank the reviewer for pointing out the scaling issue. We mislabeled the y-axis as 𝑐𝑜𝑟(𝑃𝐺𝑆 , 𝑔𝑣), 

which should be 𝑐𝑜𝑟(𝑃𝐺𝑆 , 𝑔𝑣)
2

 ( 𝑐𝑜𝑟(𝑔̂, 𝑔)2  after updating the annotation). We corrected the 

mislabeling and we added the y=x identity line to show the bias in individual PGS accuracy, which 

shows downward bias for individuals with low accuracy (those that are distant from training data).  



Supplementary Figure 1. The individual level accuracy is highly correlated with population 

level accuracy. All UKBB testing individuals are divided into 100 bins based on their genetic 

distance. The x-axis is the average individual-level PGS accuracy for the individuals within the bin 

and the y-axis is (a) the squared correlation between simulated genetic liability and PGS estimates 

for the individuals within the bin (b) the squared correlation between simulated phenotype and PGS 

estimates. The dot and error bars represent the mean and ± 1.96 s.e.m from 100 simulations.  

4. Figure 3A: It would be helpful to report the slopes in absolute units (decay in r_i^2 per unit of genetic 

distance). As it is, because R depends on the variances it’s difficult to know how much of a decay in 

performance one gets in terms of accuracy. 

We thank the reviewer for the suggestion. We’ve updated Figure 3 to include the regression equation 

to predict  rı
2  from di. 

Revised Figure 3: 



Figure 3. The individual-level accuracy for height PGS decreases across the genetic 

ancestry continuum in ATLAS. (a) Individual PGS accuracy decreases within both homogenous 

and admixed genetic ancestry clusters. Each dot represents a testing individual from ATLAS. For 

each dot, the x-axis represents its distance from the training population on the genetic continuum; 

the y-axis represents its PGS accuracy. The color represents the inferred genetic ancestry cluster. 

R and p refer to the correlation between genetic distance and individual-level PGS accuracy and its 

significance from two-sided t-tests.  (b) Individual PGS accuracy decreases across the entire 

ATLAS. (c) Population-level PGS accuracy decreases with the average genetic distance in each 

genetic distance bin. All ATLAS individuals are divided into 20 equal-interval genetic distance bins. 

The x-axis is the average genetic distance within the bin, the y-axis is the squared correlation 

between PGS and phenotype for individuals in the bin; The dot and error bar show mean and 95% 

confidence interval from 1000 bootstrap samples. (EA, European American; HL, Hispanic/Latino 

American; SAA, South Asian American; EAA, East Asian American; AA, African American.) 

5. Line 372: The use of J here is confusing given its use in the genetic distance calculation (where J 

was fixed to 20). Here do you mean a complete eigendcomposition over all eigenvectors? (i.e. no 

truncation is implied and any truncation for a fixed J would be an approximation). 



We thank the reviewer for the question on the choice of eigenvectors. We clarify that we used 

truncated SVD implemented in flashpca2 and set the number of eigenvectors as 20. In the original 

manuscript we used J=20 as it provided good correlation with accuracy. In the revision, we thoroughly 

investigated the choice of J on the genetic distance’s ability to capture accuracy decay. We vary J 

from 1 to 20 when computing genetic distance and evaluate its effect on the correlation between 

genetic distance and individual PGS accuracy within each genetic ancestry cluster and the whole 

biobank. We observed that the correlation between genetic distance and individual accuracy 

𝑐𝑜𝑟(𝑑𝑖, 𝑟𝑖
2) increases when more PCs are used for computing genetic distance, but no further 

improvement is observed when J > 15. This hold both for analyses performed within each genetic 

ancestry cluster as well as including the whole biobank (Supplementary Figure 4). For simplicity, we 

keep J = 20 in the manuscript. Please see answer to Reviewer 1 Comment 5.  

Revised results section: 

“We further evaluated the impact of number of PCs used for calculating genetic distance on its ability to 

capture accuracy decay. We varied the number of PCs (J) from 1 to 20 and observed that the correlation 

between genetic distance and individual accuracy (−𝑐𝑜𝑟(𝑑𝑖 , 𝑟𝑖
2(𝑔𝑖, 𝑔̂𝑖)) increases when more PCs are 

used for computing genetic distance, but no further improvement is observed when J > 15 for any 

ancestry clusters or the whole biobank (Supplementary Figure 4). Therefore, we set J = 20 for simplicity. 

We also explored average squared genetic relationship from training data as an alternative metric of 

genetic distance and found it is a better prediction of accuracy decay within each genetic ancestry clusters 

(Supplementary Figure 4). However, this metric relies on individual level training data which are usually 

not available, we keep using PCA based genetic distance for convenience.” 

Supplementary Figure 4. The effect of different metrics of genetic distance on the correlation 

between genetic distance and accuracy. The y-axis −𝑐𝑜𝑟(𝑟𝑖
2, 𝑑𝑖) is the correlation between the 

genetic distance and PGS accuracy; a larger correlation means genetic distance has a better 



prediction of accuracy. The x-axis are different genetic distance metrics: (1) genetic distance based 

on PCA with varying number of PCs (from J=1 to J = 20) and (2) genetic distance based on GRM 

using pruned PCA SNPs only or all SNPs in PGS models. The GRM genetic distance is computed 

as 𝑑𝑖(GRM) = √
1

𝐾
∑ (𝑥𝑖 − 𝑥𝑘)2𝐾

𝑘=1 , where 𝑥𝑖 is the standardized genotype of 𝑖𝑡ℎ testing individual and 

𝑥𝑘 is the standardized genotype of 𝑘𝑡ℎ training individual. 

Minor (Grammatical / Clarity): 

6. Line 40: Strike “genetic value” – the social connotation of the phrase makes it worth diminishing / 

removing it from technical use in genetics 

We thank the reviewer for raising this potential issue of terminology. We changed genetic value into 

genetic liability as suggested by the reviewer in the manuscript.  

Line 84: Insert >the< before “continuum” 

We’ve added proper articles for all occurrences of “continuum”.  

Line 85: “genetic ancestry cluster” -> “genetic ancestry cluster” 

We’ve changed “individuals unassigned to a given genetic ancestry clusters” to “individuals 

unassigned to any given genetic ancestry clusters” 

Line 105: Notation gv_i confusing – I was puzzling if it was a multiplication of g and v_i and then 

eventually reverse engineered that it is the underlying additive genetic liability for the trait. That term 

is being called genetic value here, but as mentioned above I think we should invent new terms to get 

around the “value” phrasing. My encouragement is to use “genetic liability” or “additive genetic liability” 

to be more specific. While liability is traditionally reserved for discrete trait models – it’s only a mild 

abuse of the terminology to use it for both discrete and continuous traits (many readers will probably 

not even notice the distinction and you could precisely introduce the notation where it’s essential). If 

that is not comfortable, another idea would be to exploit the relationship to generalized linear models 

– in that literature the term “linear predictor” and Greek letter eta are used for what stands in for 

“genetic value” here. 

We thank the reviewer for the suggested alternative terminologies. We’ve changed “genetic value” to 

“additive genetic liability” and “gv” to “g” to avoid confusion.  

Line 112: Especially good to change notation from gv_i given the use of v_i here for eigenvectors. 

We’ve changed “gv_i” to “g_i” to avoid confusion.  

Line 112: Choice of J would be useful to declare in the main text. 

We thank the reviewer for the comment. We’ve clarified the choice of J in the Results section: 



“We further evaluated the impact of number of PCs used for calculating genetic distance on its ability 

to capture accuracy decay. We varied the number of PCs (J) from 1 to 20 and observed that the 

correlation between genetic distance and individual accuracy (−𝑐𝑜𝑟(𝑑𝑖 , 𝑟𝑖
2(𝑔𝑖, 𝑔𝑖)) increases when 

more PCs are used for computing genetic distance, but no further improvement is observed when J > 

15 for any ancestry clusters or the whole biobank (Supplementary Figure 4). Therefore, we set J = 

20 for simplicity. We also explored average squared genetic relationship from training data as an 

alternative metric of genetic distance and found it is a better prediction of accuracy decay within each 

genetic ancestry clusters (Supplementary Figure 4). However, this metric relies on individual level 

training data which are usually not available, we keep using PCA based genetic distance for 

convenience.” 

Also see Reviewer 1 Comment 5 and Reviewer 2 Comment 5. 

Line 118: Insert >a< in “as function” 

Line 125: Fix “the of” 

Line 133: “under >a< discrete” 

Line 170: “in the >the< HL cluster” 

Line 212: “different correlations >for< PGS vs trait” 

Line 217: Fix within /in 

Line 221: “along GD” -> “with respect to GD” 

Line 221: “>the< European American cluster” 

We thank the reviewer for pointing out these typos and we have fixed in the revised manuscript. 



Referee #3 (Remarks to the Author) 

Polygenic scores (PGS) have recently become a popular approach for assessing predicted risk of 

clinical outcomes based on genetic variants identified through GWAS, where the weighting of variants 

used in PGS are usually proportional to variant effect sizes from the GWAS. PGS have been shown 

to not be transferable across ancestrally diverse populations, with a strong bias when applied to non-

European ancestry populations when PGS weights are calculated from discoveries from GWAS that 

have predominantly been conducted in European ancestry populations. 

In this study, the authors investigate how the accuracy of PGS changes based on a proposed genetic 

distance (GD) measure between an individual and the population from which the PGS weights were 

constructed, where the GD is essentially a measure of genetic ancestry differences between groups 

and is based on continuous measures of ancestry only axes of variation that are reflected from a 

principal components analysis. In this study, the authors construct PGS weights for a variety of 

phenotypes using individuals who self-reported to be "white British" in the UK Biobank (UKB). They 

then assess the prediction accuracy of PGS using groups of individuals with difference 

ancestries/ethnicities in UKB as well as from the Los Angeles biobank at UCLA (ATLAS). The authors 

find a strong negative association between PGS performance and their novel GD measure. They also 

identify differences in PGS accuracy across countries within Europe that are well explained by GD 

between the "white British" UKB training samples and individuals who descend from different 

countries in Europe, which to my knowledge, has not been previously demonstrated. 

This article provides useful insight into the impact of fine-scale ancestry differences on PGS prediction 

performance and will be a well-received contribution to the growing literature on PGS performance in 

diverse populations. While I find the relationships between GD and PGS to be very interesting, the 

results are largely what is to be expected based on previous studies that have investigated the 

performance of PGS in diverse populations. For example, in 2019 Martin et al. (AJHG 2019; ref. 9 in 

this paper) conducted an in-depth investigation of the role of demographic history on genetic risk 

prediction in diverse populations and similarly found that "the utility of polygenic risk scores computed 

using GWAS summary statistics are dependent on genetic similarity to the discovery cohort." A more 

recent paper by Martin et al. (Nature Genetics 2019; ref 10 in this paper) assessed accuracy of PGS 

in diverse populations, and similarly to this paper, they also evaluated accuracy of PGS weights 

constructed from European ancestry training samples. Martin et al. similarly found the PGS performed 

the best for individuals of European ancestry, the worst in African ancestry individuals, and the PGS 

performance for Hispanic/Latino Americans (who are admixed with European ancestry) was better 

than both South Asians and East Asians. Indeed Figure 1B in this manuscript is quite similar to Figure 

3 in Martin et al. (2019). This submitted paper, however, provides additional insight into the 

relationships between PGS and ancestry through the novel GD measure, where the authors show 

how individuals in discrete ancestry groups can be represented by continuous measures of genetic 

ancestry differences from the training population that is strongly negatively correlated with PGS 

performance, as shown in Figure 1d. The result from this paper are aligned with a 2020 paper by 

Bitarello and Mathieson ("Polygenic Scores for Height in Admixed Populations", G3 

Genes|Genomes|Genetics, Volume 10, Issue 11) who similarly used the height phenotype for 

assessment and showed that the accuracy of PGS accuracy in AA corresponds to an ancestry 



gradient. They showed that when PGS weights are constructed using European ancestry samples, 

the predictive accuracy of PGS increases linearly as the proportion of European ancestry in AA.

We thank the reviewer for summarizing our work. Standard practice for assessing PGS accuracy in 

humans (including all works cited by reviewer) uses population-level metrics of accuracy (e.g., R2) 

that provide an average accuracy across individuals within a genetic ancestry grouping. This is a 

major shortcoming as genetic ancestry groupings in humans are arbitrary. For example, Martin et al 

Nat Gen 2019 groups together individuals of various Native American, European and African 

ancestries into a single “Admixed American (AMR)” category yielding a single PGS performance 

metric for all individuals in that category. As reviewer keenly notes, Bitarello and colleagues focus on 

this shortcoming showing that in African Americans, where the genome-wide proportion of 

African/European genetic ancestries varies individual-to-individual, PGS error correlates with genetic 

ancestries across groupings of individuals with different proportions of African/European ancestries. 

Notably, Bitarello and colleagues also rely on population-level metrics of accuracy and have to 

compare different groupings of African American individuals (either by cohort, or by proportion of 

genome-wide ancestries). 

Building on previous literature, we consider PGS performance at the level of a single target individual 

(rather than a population) as a function of genetic distance to training data. In doing so, we are able 

to overcome several major shortcomings of arbitrariness in genetic ancestry groupings in humans for 

PGS performance evaluation to show: 

 PGS performance decays individual-to-individual with genetic distance from training data in all 

populations; this is a direct consequence of fine-scale structure of human populations.  

 Decay of PGS performance across genetic ancestries is not only a feature of traditionally-labeled 

admixed populations (e.g., African American; LatinX, etc) but occurs in all individuals irrespective 

of genetic ancestries. For example, even in Europeans (the most studied genetic ancestry 

grouping) we observe a decay in PGS performance.  

 We connect the statistical genetics theory (developed mostly in agriculture field) with empirical 

data in humans showing that the impact of genetic distance (relatedness) on PGS performance 

is extremely large and needs to be accounted for. 

I have a few additional comments for the authors. 

1. The authors should also evaluate and illustrate the relationship between GD and PGS across 

populations when using PGS weights constructed using non-European ancestry populations. 

We thank the reviewer for suggesting training in non-Europeans to replicate our findings. We train 

PGS in African individuals (Nigeria and Caribbean, Ntrain = 5000) and apply the model in the remaining 

testing individuals. Limited by the sample size of non-European ancestry individuals in UKBB, we 

performed simulations with 56,539 SNPs on chromosome 10 and simulated high signal-to-noise traits 

with a high heritability (ℎ𝑔
2 = 0.8) and low polygenicity (𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.01 and 0.001). We also conduct 

PCA on chromosome 10 of the 5000 African training individuals and project each testing individuals 

on the PC space to compute its Euclidean genetic distance from African training data. The 



conclusions we draw from using European individuals as training data still hold when we use Africans 

as training data:  

- First, the coverage of 90% credible interval doesn’t vary across genetic distance, despite slight 

miscalibration. 

- Second, the credible interval width increases and individual PGS accuracy decreases when 

the testing individual is further away from the African training data, which reflect the trend in 

empirical accuracy computed as squared correlation between PGS and genetic value.  

We updated the Result section to reflect the new results: 

“We also replicated our findings by using the African continental ancestry cluster (Nigeria and 

Caribbean) as training data. Limited by the training sample size of the African cluster, we simulated 

a high signal-to-noise trait by set ℎ𝑔
2 = 0.8 and proportion of causal variants 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 1% and 0.1%

with 56,539 SNPs on chromosome 10 only. We train PGS models on 5,000 African individuals and 

apply it to the remaining testing individuals. The coverage of 90% credible interval is invariant to 

genetic distance despite slight miscalibration. The credible interval width increases and individual 

PGS accuracy decreases when the testing individual is further away from the African training data. 

This trend is consistent with the observed decrease in empirical accuracy computed as squared 

correlation between PGS and genetic value as genetic distance increases (Supplementary Figures 2 

and 3).” 



Supplementary Figure 2. PGS performance varies across genetic distance in simulations 

using Africans as training data (𝒉𝒈
𝟐 = 𝟎. 𝟖 and 𝒑𝒄𝒂𝒖𝒔𝒂𝒍 = 𝟎. 𝟏%). (a) The coverage of the 90% 

credible intervals is approximately uniform across testing individuals at all genetic distances. The red 

dotted line represents the expected coverage of 90% credible interval. Each dot represents a 

randomly selected UKBB testing individual. For each dot, the x-axis is its genetic distance from 

African training data, the y-axis is the empirical coverage of 90% credible interval calculated as the 

proportion of simulation replicates where the 90% credible intervals contain the individual’s true 

genetic liability, and the error bars represent mean ±1.96 standard error of the mean (s.e.m) of the 

empirical coverage calculated from 100 simulations. (b) The width of 90% credible interval increases 

with genetic distance. For each dot, the y-axis is the width of 90% credible interval across 100 

simulation replicates, and the error bars represent ±1.96 s.e.m. (c) Individual PGS accuracy 

decreases with genetic distance. For each dot, the y-axis is the average individual level PGS accuracy 

across 100 simulation replicates, and the error bars represent ±1.96 s.e.m. (d) Population-level 



metrics of PGS accuracy recapitulates the decay in PGS accuracy across genetic continuum. All 

UKBB testing individuals are divided into 100 equal-interval bins based on their genetic distance. The 

x-axis is the average genetic distance for the bin and the y-axis is the squared correlation between 

genetic liability and PGS estimates for the individuals within the bin. The dot and error bars represent 

the mean and ±1.96 s.e.m from 100 simulations. 

Supplementary Figure 3. PGS performance varies across genetic distance in simulations 

using Africans as training data (𝒉𝒈
𝟐 = 𝟎. 𝟖 and 𝒑𝒄𝒂𝒖𝒔𝒂𝒍 = 𝟏%). (a) coverage of the 90% credible 

intervals is approximately uniform across testing individuals at all genetic distances. (b) The width of 

90% credible interval increases with genetic distance. (c) Individual PGS accuracy decreases with 

genetic distance. (d) Population-level metrics of PGS accuracy recapitulates the decay in PGS 

accuracy across genetic continuum.  



2. GD is an essential part of this paper but the authors do not provide sufficient information on how 

this is measure is constructed from the principal components in the Methods section. The authors 

should provide appropriate material, including formulas, about this. 

We thank the reviewer for bringing this to our attention. We’ve updated the method section and 

provided scripts for computing genetic distance.  

Revised methods section: 

“Genetic Distance. The genetic distance is defined as the Euclidean distance between a target individual 

and the center of training data on the PC space of training data. 

𝑑𝑖 = √∑ (𝑥𝑖
𝑇𝑣𝑗 − 𝑥̅𝑡𝑟𝑎𝑖𝑛𝑣𝑗)

2𝐽

𝑗=1
= √∑ (𝑥𝑖

𝑇𝑣𝑗)
2𝐽

𝑗=1

where 𝑑𝑖  is the genetic distance of a testing individual 𝑖 from the training data, 𝑥𝑖 is an M x 1 standardized 

genotype vector for testing individual 𝑖 , 𝑣𝑗  is the 𝑗𝑡ℎ  eigenvector for the genotype matrix of training 

individuals, 𝑥̅𝑡𝑟𝑎𝑖𝑛 is the average genotype in training population (𝑥̅𝑡𝑟𝑎𝑖𝑛𝑣𝑗 = 0 given that the genotypes 

are centered with respect to the allele frequency in training population) and 𝐽 is set to 20. ” 

“Genetic distance from PGS training data. To compute the genetic distance of testing individuals from 

the training population, we perform PCA on the 371,018 UKBB white British training individuals and 

project the 48,586 UKBB testing individuals and 36,778 ATLAS training individuals on the PC space. We 

start from the 979,457 SNPs that are overlapped in UKBB and ATLAS. First, we perform LD pruning with 

plink2 (--indep-pairwise 1000 50 0.05) and exclude the long-range LD regions. Next, we perform PCA 

analysis with flashpca269 on the 371,018 UKBB white British training individuals to obtain the top 20 PCs. 

Then, we project the remaining 48,586 UKBB individuals that are not included in the training data and 

36,778 ATLAS individuals onto the PC space of training data by using SNP loadings (--outload 

loadings.txt) and their means and standard deviations (--outmeansd meansd.txt) output from flashpca2. 

In the end, we compute the genetic distance for each individual as the Euclidean distance of its PCs from 

the center of training data with the equation: 𝑑𝑖 = √∑ (𝑝𝑐𝑖𝑗)
220

𝑗=1 , where 𝑝𝑐𝑖𝑗 is the 𝑗𝑡ℎ principal component 

of individual 𝑖. (https://github.com/yidingdd/individual-pgs-accuracy/tree/main/genetic-distance)” 

3. In practice the utility of PRS will depend on the correlation of the predicted PRS and the actual 

phenotypic value. The authors should provide results of predicted PRS and the actual phenotype 

values of the individuals across ancestry groups as well as by the GD values. 

We thank the reviewer for raising the concern that utility of PRS based on its correlation with 

phenotypic value. As the reviewer suggested, we compute the empirical accuracy 

(𝑐𝑜𝑟(𝑔, 𝑦)2, squared correlation between PGS and phenotype) for each genetic ancestry/genetic 

distance bins for all 84 traits and show that the accuracy decreases across genetic distance for both 

cases, while the latter provide a more continuous decreasing trend.  



We updated the Result section to include the new analyses:  

“Empirical analyses of PGS accuracy also show the same trend. We group individuals by ancestry 

clusters and compute the empirical accuracy as the squared correlation between PGS and residual 

phenotype for 84 traits. Averaging across 84 traits, we find the empirical accuracy decreases with 

increases genetic distance as reported by previous studies38. Further analyses based on genetic 

distance bins show the decreasing trend at a finer scale (Supplementary Figure 7).” 

Supplementary Figure 7. Empirical PGS accuracy decreases with genetic distance in UKBB 

averaged across 84 traits. (a) Empirical PGS accuracy decreases across subcontinental ancestries. 

(b) Empirical PGS accuracy decreases across bins of genetic distance. The x-axis is the average 

genetic distance for all individuals within each genetic ancestry cluster/genetic distance bin; the y-

axis is the relative accuracy compared to the White British cluster. The dot and error bar show mean 

and ± 1.96 standard error of the mean across 84 traits.



Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

The authors have done a nice & thorough job in the revision, addressing my technical questions 

and concerns. 

Referee #2 (Remarks to the Author): 

The detailed attention to my comments is appreciated -- Excellent work! 

Referee #3 (Remarks to the Author): 

The authors have been responsive to reviewers’ comments and questions from the original 

submission. I find the revised manuscript to be improved and the additional experiments and 

material to be very insightful. There are still a few issues that need to be addressed. Below are 

some comments for the authors on the revised manuscript. 

Comments: 

1. I think the authors need to clearly define “ancestry” (continental, sub-continental, fine-scale, 

etc) in the manuscript. In addition, the authors should distinguish “ancestry” from “nationality” or 

“country of origin” for clarity in various places. For example, in Figure 1 the authors use ancestry 

labels based on continental-level ancestry groupings that are widely used and accepted (African, 

East Asian, European, Hispanic/Latino American, South Asian, et.). However, in Supplementary 

Figure 4, the authors define categories of “ancestry” based on nationality: “White British”, 

“Poland”, “Italy”, “Iran”, “India” etc. I don’t think that “nationality” should be interchanges with 

“ancestry.” This lack of clarity about how ancestry is defined is also evident in a response to a 

reviewer’s comments. For example, in response to reviewer 1’s comment on page 2 in the 

response to reviewers document, the authors state: “Therefore, PGS accuracy can differ vastly for 

two people from the same ancestry group – and can be very similar for two people from different 

ancestry groups – depending on their genetic distance to training data.” I think it is would be more 

appropriate to say that individuals who have the same nationality (or country of origin) can have 

very different ancestries, and similarly, individuals from different countries or nationalities can 

have similar ancestries. 

2. In response to my comment to the authors that previous studies have demonstrated that PRS 

accuracy depends on genetic similarity between the training sample and the target population, the 

authors state that the major advancement of their work is that they consider PGS performance at 

the level of a single target individual rather than a population as a function of genetic distance to 

training data. I think this is a valid point. However, the training data used for PGS are from a 

group of individuals who can have quite variable genetic ancestry ancestries. So this approach 

proposed by the authors still relies on clustering individuals into a single discrete genetic ancestry 

group (for training), which I think is a limitation that is not solved by looking at individual level 

data in the target sample. I think the authors should include some discussion about this. 

3. Related to comment 2 above, how does variability in genetic ancestry in the training data 

impact prediction accuracy? It would be good for the authors to provide some insight or discussion 



on this. 

4. It is a bit perplexing to me to construct an African PGS by using a combined sample of 

individuals from Nigeria and from Caribbean, which are two very different populations, the latter of 

which are admixed. Additional insight on this would be useful. Also, would predication accuracy be 

different if individuals using for the PGS training were from a single country versus multiple 

nationalities? What are advantages/disadvantages of using individuals from different countries with 

ancestry derived from the same continent. 

5. In order to assess the practical utility of PRS, I asked the reviewers to provide correlation values 

of the predicted PRS and actual phenotype values. In response to this request, the authors have 

provided Supplementary Figure 7 that includes figures with “Relative accuracy” as compared to the 

White British group. This is insufficient as relative accuracy does not allow for assessment of PRS 

practicality. The authors need to provide updated or additional figures with absolute correlation 

values of predicted PRS and phenotype values as the response variable, as opposed (or in addition 

to) relative accuracy values. 

6. Supplementary Figures 2 and 3 need to be improved. The authors are using similar colors for 

different countries and it is very difficult to decipher what points correspond to which countries. 

For example, Italy and the Caribbean are both plotted in green, while Poland, Nigeria, and Iran are 

all plotted in blue. Different color schemes need to be used for improved clarity. 



Author Rebuttals to First Revision: 

Response to reviewers for 2022-09-15441 

Dear Editors, 

Please find our responses to the reviewers’ comments below. We thank the reviewers and editors for 

their suggestions to improve the clarity of our manuscript. We have made three main improvements 

to the manuscript: 

 We properly define the concept of genetically inferred ancestry (GIA) as we use it in our work. 

To further emphasize this we also replaced country names in all plots with GIA labels. 

 We note that the African ancestry data sets used in our work are not representative of all the 

genetic diversity of Africa. 

 We clarify that we lumped together two distinct GIA (Caribbean and Nigerian) only for the 

purposes of a simulation to attain sufficient sample size for PGS construction; we note in text 

the caveats of this simulation setup. 

For your convenience, we provide point-by-point replies below, in blue font, to each comment raised 

by reviewers.  

Sincerely, 

Bogdan Pasaniuc (on behalf of all co-authors)



Editor 

Wrt the comment made about construction of an African ancestry PGS with a Nigerian and Caribbean 

dataset we'd also ask that you add a comment on how these are representative (or not) of all African 

ancestries (this is not explicitly mentioned by the referee, but would also be important in our opinion) 

We thank both Reviewer 3 and the editors for raising the important issue to allow us to clarify this 

point. We clarify in text that the combined data set is not representative of all African ancestries. 

To expand, we had to combine two distinct genetically inferred ancestries (Caribbean and Nigerian) 

for the purposes of simulation of a PGS to attain sufficient training sample size. Our simulation setup 

does not include population stratification and thus is robust to genetic stratification; importantly, we 

do not analyze any real trait data using this combined data set. 

We clarify these points in text as follows. 

Updated Introduction section: 

“The concept of genetic ancestry can have different meanings depending on the context and is often 

conflated with social constructs such as nationality, race, and ethnicity. In this work, we use ancestry as 

genetically inferred ancestry (GIA), which describes the genetic similarity between individuals and 

reference populations (e.g., 1000 Genomes) as inferred by methods such as PCA; GIA used in our 

work depend on the choice of reference data and inference methods and do not represent the full 

genetic diversity of human populations.”

Updated Results section:  

“To demonstrate that the continuous accuracy decay is not specific to PGS models trained on 

European ancestries, we conducted further analyses using a non-European training dataset composed 

of individuals of NG and CB GIA (we grouped the two GIA to attain sufficient sample size for 

simulations).” 

Referee #1 (Remarks to the Author): 

The authors have done a nice & thorough job in the revision, addressing my technical questions and 

concerns. 

We thank the reviewer for their insightful critiques.

Referee #2 (Remarks to the Author):

The detailed attention to my comments is appreciated -- Excellent work! 



We thank the reviewer for commending our work.

Referee #3 (Remarks to the Author): 

The authors have been responsive to reviewers’ comments and questions from the original 

submission. I find the revised manuscript to be improved and the additional experiments and material 

to be very insightful. There are still a few issues that need to be addressed. Below are some 

comments for the authors on the revised manuscript. 

We thank the reviewer for noting the improvement of our manuscript. We also appreciate the 

questions bellow that allow us to clarify and improve our manuscript.

Comments: 

1. I think the authors need to clearly define “ancestry” (continental, sub-continental, fine-scale, etc) in 

the manuscript. In addition, the authors should distinguish “ancestry” from “nationality” or “country of 

origin” for clarity in various places. For example, in Figure 1 the authors use ancestry labels based 

on continental-level ancestry groupings that are widely used and accepted (African, East Asian, 

European, Hispanic/Latino American, South Asian, et.). However, in Supplementary Figure 4, the 

authors define categories of “ancestry” based on nationality: “White British”, “Poland”, “Italy”, “Iran”, 

“India” etc. I don’t think that “nationality” should be interchanges with “ancestry.” This lack of clarity 

about how ancestry is defined is also evident in a response to a reviewer’s comments. For example, 

in response to reviewer 1’s comment on page 2 in the response to reviewers document, the authors 

state: “Therefore, PGS accuracy can differ vastly for two people from the same ancestry group – and 

can be very similar for two people from different ancestry groups – depending on their genetic 

distance to training data.” I think it is would be more appropriate to say that individuals who have the 

same nationality (or country of origin) can have very different ancestries, and similarly, individuals 

from different countries or nationalities can have similar ancestries. 

We appreciate the reviewer’s comment on the lack of clarity in our use of ancestry terminology. We 

fully agree with the reviewer that nationality and ancestry are not interchangeable terms. As the 

reviewer highlights, these concepts are deeply intertwined with the concepts of genetic ancestry, race, 

and ethnicity (e.g., Peterson et al. Cell 2019,  https://doi.org/10.1016/j.cell.2019.08.051). 

Our work investigates genetically inferred ancestries (GIAs) and uses the term “ancestry” 

interchangeably with GIA. GIA is defined as a group of individuals that are genetically similar with a 

set of reference genomes whose ancestries are known (e.g., 1000 Genomes). We infer GIA through 

principal component analysis followed by clustering joint with 1000 Genomes data; we use the Prive 

et al AJHG 2022 GIA definitions (https://pubmed.ncbi.nlm.nih.gov/35120604/)  

We fully agree with reviewer that the GIA is distinct from nationality/race/ethnicity or other social 

constructs and should never be used interchangeably.  

https://doi.org/10.1016/j.cell.2019.08.051
https://pubmed.ncbi.nlm.nih.gov/35120604/


Motivated by the reviewer’s suggestion, we have updated the manuscript to clearly distinguish 

between genetic ancestry (GIA) and social constructs:  

 We explicitly introduce GIA as distinct from social constructs in the Introduction.  

 We replace “ancestry” with “GIA” in most locations in our manuscript. 

 We clarify that GIA is not meant to be representative of all genetic diversity within the 

respective country/region but serves as a sample that is genetically smiliar with the individuals 

from that region. 

 We relabeled all GIA labels in UK Biobank data from country names to identifiers to clearly 

emphasize that they are genetically inferred ancestries not meant to be representative of the 

full genetic diversities within those regions;“White British” -> “WB”, “Poland”->”PL”, “Italy”->”IT”, 

“Iran”->”IR”, “Ashkenazi”->”AJ”, “India”->”IN”, “China”->”CH”, “Caribbean”->”CB”, 

“Nigeria”->”NG”.  

 We updated the methods section to provide detailed description of GIA inference procedure.  

Revised Introduction section:

“The concept of genetic ancestry can have different meanings depending on the context and is often 

conflated with social constructs such as nationality, race, and ethnicity. In this work, we use ancestry 

as genetically inferred ancestry (GIA), which describes the genetic similarity between individuals and 

reference populations (e.g., 1000 Genomes) as inferred by methods such as PCA; GIA used in our 

work depend on the choice of reference data and inference methods and do not represent the full 

genetic diversity of human populations.” 

Revised methods section:

“Ancestry ascertainment in UKBB. The UKBB individuals are clustered into nine sub-continental 

ancestry clusters WB(“White British”), PL(“Poland”), IR(“Iran”), IT(“Italy”), AS(“Ashkenazi”), IN(“India”), 

CH(“China”), CB(“Caribbean”) and NG(“Nigeria”) based on the top 16 precomputed PCs (Data-Field 

22009) as described in ref38. First, UKBB participants are grouped by country of origin (Data-Field 

20115) and the center of each country on the PC space is computed as the geometric medians for 

all countries, which serves as a proxy of center for each sub-continental ancestry. The center of 

Ashkenazi GIA is determined using a dataset from ref67. Second, we reassign each individual to one 

of the nine ancestral groups based on their Euclidean distance to the centers on the PC space, as 

the self-reported country of origin doesn’t necessarily match an individual’s genetic ancestry. The 

genetic ancestry of an individual is labeled as unknown if its distance to any genetic ancestry center 

is larger than one eighth of maximum distance between any pairs of cub-continental ancestry clusters. 

We are able to cluster 91% of the UKBB participants into 411,018 WB, 4127 PL, 1169 IR, 6499 IT, 

2352 AS, 1798 CH, 2472 CB and 3894 NG.   GIA are not necessarily reflective of the full genetic 

diversity of a particular region but only reflect the diversity present in the UKBB individuals.”

2. In response to my comment to the authors that previous studies have demonstrated that PRS 

accuracy depends on genetic similarity between the training sample and the target population, the 

authors state that the major advancement of their work is that they consider PGS performance at the 

level of a single target individual rather than a population as a function of genetic distance to training 



data. I think this is a valid point. However, the training data used for PGS are from a group of 

individuals who can have quite variable genetic ancestry ancestries. So this approach proposed by 

the authors still relies on clustering individuals into a single discrete genetic ancestry group (for 

training), which I think is a limitation that is not solved by looking at individual level data in the target 

sample. I think the authors should include some discussion about this. 

We thank the reviewer for raising this important point. We fully agree with the reviewer that the novelty 

of our manuscript is in showing that PGS performance varies at level of a single target individual. We 

also agree with the main limitation raised by reviewer in that training of PGS still relies on a cluster of 

genetic ancestries (as this limitation comes directly from the standard approach for performing 

GWAS).  

We acknowledge this limitation that comes mainly from the methodologies that are used to estimate 

PGS. All such methods train PGS in one or more GIA (with appropriate control for population 

stratification through PCA and/or mixed models) thus relying on a clustering of genetic ancestries.  

For example, LDpred2 investigates a single GIA whereas more recent methods such as PRS-CSx 

integrates multiple GIA albeit each GIA is still treated as a discrete clustering of individuals. We leave 

the integration of continuous genetic ancestries within PGS training as important future work. 

Revised discussion section: 

“Sixth, while we advocate for the use of continuous genetic ancestry, we trained our PGS models on 

a discrete GIA cluster of WB because current PGS methods relies on the discrete genetic ancestry 

grouping to control for confounding effect of population structure (although substantial heterogeneity 

still remains within the group). We leave the development of PGS training methods that are capable 

to model continuous human genetics as future work.” 

3. Related to comment 2 above, how does variability in genetic ancestry in the training data impact 

prediction accuracy? It would be good for the authors to provide some insight or discussion on this. 

We thank the reviewer for raising this important question. Indeed variability in genetic ancestries could 

improve prediction accuracy (assuming population stratification is correctly accounted for) as follows: 

 Genetic diversity in the training data allows for the estimation of ancestry-specific genetic 

variants that would otherwise be missed in a less diverse data set. For example, genetic 

variants that cause disease and are common in Africans but rare/absent in Europeans will be 

missed when training PGS on European only data. This will yield poor PGS prediction 

accuracy for individuals of African ancestries.  

 Even for variants that are common across ancestries, multi-ancestry training data can 

leverage differences in genetic structure across ancestries (e.g., LD) to better pinpoint the 

true causal biological genetic effect thus yielding superior PGS performance across 

individuals of all ancestries.  

 Variability in genetic ancestries in the training data can be used to better control for over-fitting 

of PGS in the training thus improving the prediction accuracy in a new testing data set. 



We include these items in the discussion section as follows: 

Revised Discussion section: 

“Incorporating diverse populations in the training data can provide advantages for both European and 

non-European individuals. This is because when the SNPs associated with a trait are observed with 

different MAF and LD in non-European populations, PGS methods will provide more accurate genetic 

effects estimation. Furthermore, by broadening the diversity of the training data, PGS models will 

become more transferable to non-European populations as a result of reduced genetic distance from 

training data. However, increased diversity may bring challenges to statistical modeling, for example, 

the genetic difference may tag environment variation and bias the genetic risk prediction. Therefore, 

more sophisticated statistical methods are needed for entangling the correlation between genetic and 

environmental factors to provide accurate genetic risk estimation.” 

4. It is a bit perplexing to me to construct an African PGS by using a combined sample of individuals 

from Nigeria and from Caribbean, which are two very different populations, the latter of which are 

admixed. Additional insight on this would be useful. Also, would predication accuracy be different if 

individuals using for the PGS training were from a single country versus multiple nationalities? What 

are advantages/disadvantages of using individuals from different countries with ancestry derived from 

the same continent. 

We thank the reviewer for raising the concern about combining individuals from different GIA to form 

a sufficiently large training data for PGS simulation purposes. We agree with the reviewer’s comment, 

and we find it unfortunate that large single GIA African publicly available data sets do not currently 

exist for the purpose of PGS simulations. 

That being said, we argue that the simulation-based results using this ad-hoc data set are informative 

for the point being made: that PGS accuracy decay is not specific to PGS models trained on European 

ancestries data but a general feature when there are mismatch between training and testing data. 

The main concern about merging two GIA is the unaccounted population stratification. We note that 

we do not analyze any real traits in this data but simulated phenotypes from the real genotype data. 

Since our simulations do not include population stratification (causal variants and effects are randomly 

sampled independently of structure) the impact of population stratification is minor in our simulations. 

Finally, regarding considering the nationality in PGS training, advantages include (1) integrating 

individuals from different nationality may still increase the genetic diversity in training population, 

thereby improving PGS accuracy as discussed in our response to comment 3. (2) different 

nationalities may tag environmental variation such as climate, social economic status, and health 

care, etc. Proper modeling of nationality information can help to disentangle the genetic and 

environmental factors of diseases/traits, thus providing a more unbiased genetic risk estimation and 

improve prediction accuracy. However, confounding effect introduced by different nationality may bias 

genetic risk estimation and reduce prediction accuracy. Therefore, careful modeling of nationality is 

advantageous for improving the accuracy and portability of PGS.  



Revised Discussion section: 

“Fifth, limited by sample size, we combined two GIA groups NG and CB as a training set to replicate 

PGS accuracy decay when using non-European ancestries as training data in simulation experiments. 

We acknowledge that it is not an optimal strategy for real data analysis as the population structure in 

the training data may confound with the true genetic effects and reduce prediction accuracy. We leave 

a more comprehensive investigation of non-European PGS training data for future work.” 

5. In order to assess the practical utility of PRS, I asked the reviewers to provide correlation values 

of the predicted PRS and actual phenotype values. In response to this request, the authors have 

provided Supplementary Figure 7 that includes figures with “Relative accuracy” as compared to the 

White British group. This is insufficient as relative accuracy does not allow for assessment of PRS 

practicality. The authors need to provide updated or additional figures with absolute correlation values 

of predicted PRS and phenotype values as the response variable, as opposed (or in addition to) 

relative accuracy values. 

We thank the review for the comment. We have included an updated figure of absolute correlation of 

PRS and phenotype values to access the practical utility of PGS.   

WB

PL
IT

IR

AJ

IN

CH

CB

NG

0.05

0.10

0.0 0.2 0.4 0.6 0.8

Genetic distance from training data

P
G

S
a

c
c
u

ra
c
y

(c
o

r(
g

,
y)

2
)

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8

Genetic distance from training data

P
G

S
a

c
c
u

ra
c
y

(c
o

r(
g

,
y)

2
)



Supplementary Figure 7. Empirical PGS accuracy decreases with genetic distance in UKBB 

averaged across 84 traits. (a) Empirical PGS accuracy decreases across subcontinental ancestries. 

(b) Empirical PGS accuracy decreases across bins of genetic distance. The x-axis is the average 

genetic distance for all individuals within each genetic ancestry cluster/genetic distance bin; the y-

axis is the accuracy for each subcontinental ancestry/genetic distance bin. The dot and error bar 

show mean and ± 1.96 standard error of the mean across 84 traits.  

6. Supplementary Figures 2 and 3 need to be improved. The authors are using similar colors for 

different countries and it is very difficult to decipher what points correspond to which countries. For 

example, Italy and the Caribbean are both plotted in green, while Poland, Nigeria, and Iran are all 

plotted in blue. Different color schemes need to be used for improved clarity. 

We thank the reviewer for proposing better color scheme. We have revised the color schemes for 

supplementary figure 2 and 3 and all relevant UKBB figures to ensure clarity.  

Supplementary Figure 2. PGS performance varies across genetic distance in simulations 

using Africans as training data (𝐡𝐠
𝟐 = 𝟎. 𝟖 and 𝐩𝐜𝐚𝐮𝐬𝐚𝐥 = 𝟎. 𝟏%). (a) The coverage of the 90% 

credible intervals is approximately uniform across testing individuals at all genetic distances. The red 



dotted line represents the expected coverage of 90% credible interval. Each dot represents a 

randomly selected UKBB testing individual. For each dot, the x-axis is its genetic distance from 

African training data, the y-axis is the empirical coverage of 90% credible interval calculated as the 

proportion of simulation replicates where the 90% credible intervals contain the individual’s true 

genetic liability, and the error bars represent mean ±1.96 standard error of the mean (s.e.m) of the 

empirical coverage calculated from 100 simulations. (b) The width of 90% credible interval increases 

with genetic distance. For each dot, the y-axis is the width of 90% credible interval across 100 

simulation replicates, and the error bars represent ±1.96 s.e.m. (c) Individual PGS accuracy 

decreases with genetic distance. For each dot, the y-axis is the average individual level PGS accuracy 

across 100 simulation replicates, and the error bars represent ±1.96 s.e.m. (d) Population-level 

metrics of PGS accuracy recapitulates the decay in PGS accuracy across genetic continuum. All 

UKBB testing individuals are divided into 100 equal-interval bins based on their genetic distance. The 

x-axis is the average genetic distance for the bin and the y-axis is the squared correlation between 

genetic liability and PGS estimates for the individuals within the bin. The dot and error bars represent 

the mean and ±1.96 s.e.m from 100 simulations. 

Supplementary Figure 3. PGS performance varies across genetic distance in simulations 

using Africans as training data (𝐡𝐠
𝟐 = 𝟎. 𝟖 and 𝐩𝐜𝐚𝐮𝐬𝐚𝐥 = 𝟏%). (a) The coverage of the 90% credible 

intervals is approximately uniform across testing individuals at all genetic distances. (b) The width of 

90% credible interval increases with genetic distance. (c) Individual PGS accuracy decreases with 



genetic distance. (d) Population-level metrics of PGS accuracy recapitulates the decay in PGS 

accuracy across genetic continuum.  



Reviewer Reports on the Second Revision: 

Referees' comments: 

Referee #3 (Remarks to the Author): 

The authors have done an excellent job addressing my comments and concerns in this latest 

revision of the manuscript. In particular, the additional content added now clearly distinguishes 

genetic ancestry from race and nationality, and the use of the term "genetically inferred ancestry 

(GIA)" provides additional clarity. I have no further comments or suggestions.
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