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A Tree generating process and parameter estimation methods for
TreeMHN

A.1 Tree generating process pseudocode

In Algorithm 1 we provide the pseudocode for the tree-generating process described in the Methods section.
A tree T consists of a vertex set V and an edge set E. Each node in the vertex set is of the form (i, πi),
where i is the unique index of the node in T , and πi is a mutational trajectory that runs from the root to
the node i. An illustrative example is given in Supplementary Figure S1(a) and (b).

Input:
n: Number of mutations
Θ: Mutual Hazard Network represented by an n-by-n matrix
λs: Sampling rate

Output:
T : A tree structure

1 ts ∼ Exp(λs) // Draw a sampling time

2 V ← {(1, (0))} // The root node has index 1

3 E ← ∅ // The edge set is empty

4 t(0) = 0 // The root node is at time 0

5 Ucurrent ← {1} // Index set of the nodes to be visited

6 while Ucurrent is non-empty do
7 Unext ← {} // Initialize the set of nodes to visit next

8 for i in Ucurrent do
9 for j in [n] \ πi do

10 π ← (πi, j) // Extend the trajectory πi by one mutation in [n] \ πi

11 tπ ∼ tπi + Exp(λ(πi,j)), λ(πi,j) = Θjj

∏
l∈πi

Θjl // Draw a waiting time for π

12 if tπ < ts then
13 k ← |V |+ 1
14 V ← V ∪ {(k, π)} // Expand the tree by one node

15 E ← E ∪ {i→ k}
16 Unext ← Unext ∪ {k}
17 end

18 end

19 end
20 Ucurrent ← Unext
21 end
22 T ← (V,E)

Algorithm 1: Tree generating process
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Figure S1: (a) A Mutual Hazard Network with three distinct mutations. (b) An example of a tree generated
from the MHN in (a), where both the observed part T and the augmented tree A(T ) are shown. (c) The
sub-matrix QT , which corresponds to the tree T in (b) and is defined in Supplementary Eq. (39).

A.2 Tree generating process as a continuous-time Markov chain

In this section, we provide an alternative definition of the tree generating process in terms of a continuous-
time Markov chain on the state space of tumor mutation trees. Recall that a tumor mutation tree T is a
rooted tree representing the evolutionary history of a tumor. Each vertex v in T corresponds to a subclone
π, uniquely defined by the sequence of mutations along the trajectory from the root to v. Mathematically,
we write π = (0, σ1, . . . , σd), where d ∈ {0, . . . , n} is the length of the trajectory, n is the total number of
mutations being considered in the model, and σi are non-duplicated elements in [n] = {1, . . . , n}. The root is a
special subclone with no mutations, denoted by (0). We denote the parent of a subclone π = (0, σ1, . . . , σd) by
pa(π) = (0, σ1, . . . , σd−1) and its children by ch(π) = {π′ = (0, σ1, . . . , σd, σd+1) | σd+1 ∈ [n] \ {σ1, . . . , σd}}.
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All subclones except the root in T satisfy the following partial order relation: if π is a subclone of T , then
its parent pa(π) must also be a subclone of T with an edge pa(π)→ π, since by definition π can only occur
after pa(π). We can view a tree T as a set of subclones compatible with the partial order relation and omit
the implicitly implied edge set. For example, the tree displayed in Supplementary Figure S1(b) consists of
four subclones {(0), (0, 1), (0, 3), (0, 1, 3)}, and one can read off the edges by enumerating all parent-child
pairs, i.e. (0) → (0, 1), (0) → (0, 3), and (0, 1) → (0, 1, 3). Removing a leaf like (0, 1, 3) from the set results
in another smaller tree with three vertices.

Since tumor mutation trees are effectively sets of subclones, the notations and binary operations on sets
can be applied directly:

• π ∈ T means that π is a subclone of the tree T .

• We use |T | to denote the number of subclones in tree T .

• We say that T1 is a subtree of T2 if all subclones in T1 can be found in T2 and write T1 ⊆ T2. If T1

is a subtree of T2 and |T1| < |T2|, then we write T1 ⊂ T2.

• We use T2 \T1 to denote the set of subclones in T2 that are not subclones of T1. The number of such
subclones are denoted by |T2 \T1|.

• We use T1 ∪ T2 to denote the union of subclones in T1 and T2, which constitutes a valid tree since
the partial order relation still holds. We may also use T ∪S to denote the union of subclones in a tree
T and a set of subclones S, which may not satisfy the partial order relation.

• Given a tree T , we define the exit set of T as

Exit(T ) = {π | π /∈ T ,pa(π) ∈ T }, (1)

which contains the children of the existing subclones that are not yet in T , i.e. all subclones that could
appear next. Then, we define the augmented tree as

A(T ) := T ∪ Exit(T ), i.e., Exit(T ) = A(T ) \T . (2)

We model tumor progression as a continuous-time Markov chain (Xt)t≥0 [1] on the state space of all
tumor mutation trees, denoted by Sn

T . The size of the state space grows super-exponentially in the number
of mutations n since

|S1
T | = 2, |Sn

T | =
(
|Sn−1

T |+ 1
)n

. (3)

The initial state of the chain is the tree with only the root, X0 = T0, meaning that no mutations of interest
are present at the start of the evolution. It is equivalent to say that the initial distribution of the chain has
a point mass of 1 on T0 and 0 on all other trees at time t = 0, denoted by the Kronecker delta δT0

. The
generator Q-matrix Q = (qT1,T2 : T1,T2 ∈ Sn

T ) is indexed by trees and defined as

qT1,T2
:=


λT2\T1

T1 ⊂ T2, |T2 \T1| = 1

−
∑

T ̸=T1
qT1,T T1 = T2

0 otherwise.

(4)

The dimension of Q is |Sn
T | × |Sn

T |. We say (Xt)t≥0 is continuous-time Markov(δT0
, Q). The interpretation

of the off-diagonal entries is that transitioning from T1 to T2 is only possible if T2 has exactly one extra
subclone than T1, and this new subclone π = T2 \ T1 must be a child of one of the existing subclones in
T1, i.e. π ∈ Exit(T1). The transition is achieved by accumulating one subclone at a time, and this process
is irreversible. The transition rate is associated with all mutations in π = (pa(π), i) for some i ∈ [n] \ pa(π)
and parameterized by a Mutual Hazard Network Θ ∈ Rn×n,

λT2\T1
= λπ := exp

(
θii +

∑
j∈pa(π)

θij

)
= Θii

∏
j∈pa(π)

Θij , (5)
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which is equivalent to the definition in Equation (1) of the main text (notation-wise shifted by one mutation).
The diagonal entries are chosen such that the row sums of Q are zero. We interpret the off-diagonal row sum

qT1
:=

∑
T ̸=T1

qT1,T =
∑

π∈Exit(T1)

λπ, (6)

as the rate of leaving the state T1, which is the sum of the rates of all events that could happen next.
Following Chapter 2 of [1], we define the jump times J0, J1, . . . and the holding times S1, S2, . . . of (Xt)t≥0

to be
J0 = 0, Jk+1 = inf{t ≥ Jk : Xt ̸= XJk

} (7)

for k = 0, 1, . . . , with inf ∅ =∞, and for k = 1, 2, . . . ,

Sk =

{
Jk − Jk−1 Jk−1 <∞
∞ otherwise.

(8)

Furthermore, we define the jump matrix Ξ = (ξT1,T2
: T1,T2 ∈ Sn

T ) of Q as

ξT1,T2
:=

{
qT1,T2

/qT1
T1 ̸= T2 and qT1

̸= 0

0 T1 ̸= T2 and qT1 = 0,

ξT1,T1
:=

{
0 qT1 ̸= 0

1 qT1
= 0.

(9)

By Theorem 2.8.2 of [1], the jump chain (Yk)k≥0 associated with (Xt)t≥0 is a discrete-time Markov chain
with initial distribution δT0

and jump matrix Ξ, where the entry ξT1,T2
is the probability of jumping from

T1 to T2. We say (Yk)k≥0 is discrete-time Markov(δT0 ,Ξ). In particular, conditioned on the chain of
states Y0, Y1, . . . , Yk−1 for each k ≥ 1, the holding times S1, S2, . . . , Sk are independent exponential random
variables with parameters qY0

, qY1
, . . . , qYk−1

.
Next we show the equivalence between the formulation in terms of Markov chains above and the tree-

generating process defined in the main text.

Theorem 1. A right-continuous process (Xt)t≥0 with values in the space of tumor mutation trees Sn
T is

continuous-time Markov(δT0
, Q) if and only if the waiting times of subclones π ∈ T for any T ∈ Sn

T are
exponential random variables such that

T(0) = 0, Tπ ∼ Tpa(π) + Exp(λπ). (10)

Proof. (=⇒) Suppose (Xt)t≥0 is continuous-time Markov(δT0
, Q). The initial state X0 = T0 corresponds

to the initial wild-type subclone (0) at time 0, i.e. T(0) = 0. By the infinitesimal definition in Theorem 2.8.2
of [1], for all t, h ≥ 0, conditioned on Xt = T1 for some T1 ∈ Sn

T , Xt+h is independent of (Xs : s ≤ t). As
h ↓ 0, uniformly in t, for all T2 ∈ Sn

T ,

P (Xt+h = T2 | Xt = T1) = δT1,T2
+ qT1,T2

h+ o(h), (11)

where the Kronecker delta δT1,T2 = 1 if T1 = T2 and 0 otherwise. For any subclone π ̸= (0), we can
construct a smaller chain (Zπ

t )t≥0 on two states {pa(π), π} with initial state Zπ
0 = pa(π) from (Xt)t≥0, in

order to obtain the marginal probability distribution of π. For all t ≥ 0, as h→ 0,

P (Zπ
t+h = π, Zπ

t = pa(π)) =
∑

T :pa(π)∈T ,π/∈T

P (Xt+h = T ∪ {π}, Xt = T )

=
∑

T :pa(π)∈T ,π/∈T

P (Xt+h = T ∪ {π} | Xt = T )P (Xt = T )

=
∑

T :pa(π)∈T ,π/∈T

(λπ + o(h))P (Xt = T )

= (λπ + o(h))
∑

T :pa(π)∈T ,π/∈T

P (Xt = T )

= (λπ + o(h))P (Zπ
t = pa(π)).

(12)

5



Hence,

P (Zπ
t+h = π | Zπ

t = pa(π)) =
P (Zπ

t+h = π, Zπ
t = pa(π))

P (Zt = pa(π))

=
(λπ + o(h))P (Zπ

t = pa(π))

P (Zπ
t = pa(π))

= λπ + o(h),

(13)

P (Zπ
t+h = pa(π) | Zπ

t = pa(π)) = 1− λπ + o(h). (14)

Similarly,
P (Zπ

t+h = pa(π) | Zπ
t = π) = o(h), and P (Zπ

t+h = π | Zπ
t = π) = 1 + o(h). (15)

By Theorem 2.8.2 of [1], (Zπ
t )t≥0 is also a continuous-time Markov chain with the generator matrix

pa(π) π[ ]
pa(π) −λπ λπ

π 0 0
. (16)

It follows that the holding time from pa(π) to π is an exponential random variable with rate λπ, as required.

(⇐=) Let (Xt)t≥0 be a right-continuous process with values in Sn
T , which tracks the change of state

resulting from the occurrence of new subclones with exponentially-distributed waiting times as defined in
Supplementary Eq. (10). Let (Yk)k≥0 be the associated jump chain. We will use the jump chain/holding
time definition in Theorem 2.8.2 of [1] to prove that (Xt)t≥0 is continuous-time Markov(δT0

, Q).
At time t = 0, there is only the initial wild-type subclone π = (0), which corresponds to the initial

state X0 = Y0 = T0. Let W (k) be the statement that for each k ≥ 1, conditioned on the chain of
states Y0, Y1, . . . , Yk−1, the holding times S1, S2, . . . , Sk are independent exponential random variables with
parameters qY0

, qY1
, . . . , qYk−1

. We will prove W (k) by induction on k ≥ 1.

• Base case: Conditioned on Y0 = T0, we have

S1 = J1 = inf{t ≥ 0 : Xt ̸= T0} = inf{T(0,i) ≥ 0 : i ∈ [n]}, (17)

because the set of mutations that could happen next is [n], and whichever mutation appears first will
change the state of the chain. Each waiting time T(0,i) is an independent exponential random variable
with rate λ(0,i). By Theorem 2.3.3 of [1] (competing exponentials), the first holding time S1 is an
exponential random variable with rate∑

i∈[n]

λ(0,i) =
∑

π∈Exit(T0)

λπ = qT0
= qY0

, (18)

independent of the next state Y1, which has distribution (ξT0,T1
: T1 ∈ Sn

T ) because

P (Y1 = T1 | Y0 = T0) =

{
λ(0,i)∑

i∈[n] λ(0,i)
=

qT0,T1

qT0
T1 = T0 ∪ {(0, i)} for i ∈ [n]

0 otherwise.
(19)

Hence, the statement W (1) is true.

• Induction step: Assume that for a given value k = l ≥ 1, W (k) holds. Next, conditioned on Yl = Tl ∈
Sn

T , the next holding time depends on the waiting times of the subclones that can appear next,

Sl+1 = Jl+1 − Jl = inf{t ≥ Jl : Xt ̸= XJl
} − Jl = inf{Tπ − Jl ≥ 0 : π ∈ Exit(Tl)}. (20)

We first assume that Exit(Tl) ̸= ∅. For each π ∈ Exit(Tl), by definition, we have pa(π) ∈ Tl and
Tpa(π) ≤ Jl ⇔ Jl − Tpa(π) ≥ 0. By Supplementary Eq. (10), the waiting time from pa(π) to π is an
exponentially-distributed random variable,

Tπ − Tpa(π) ∼ Exp(λπ), (21)
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then by Theorem 2.3.1 of [1] (memoryless property), the waiting time from the most recent jump to
the occurrence of π remains exponentially distributed with the same rate,

Tπ − Jl = (Tπ − Tpa(π))− (Jl − Tpa(π)) ∼ Exp(λπ), (22)

and independent of Tπ′ − Jl for π
′ ̸= π ∈ Tl. By Theorem 2.3.3 of [1], Sl+1 is an exponential random

variable with rate ∑
π∈Exit(Yl)

λπ = qTl
= qYl

, (23)

independent of S1, S2, . . . , Sl as required. Sl+1 is also independent of the next state Yl+1, which has
distribution (ξTl,Tl+1

: Tl+1 ∈ Sn
T ) because

P (Yl+1 = Tl+1 | Yl = Tl) =

{
λπ∑

π′∈Exit(Yl)
λπ′

=
qTl,Tl+1

qTl

Tl+1 = Tl ∪ {π} for π ∈ Exit(Yl)

0 otherwise.
(24)

If Exit(Tl) = ∅, i.e. no subclones can appear next, then by the definition in [1], Sl+1 = inf ∅ = ∞ is
exponentially distributed with rate qTl

= 0, and Yl+1 = Yl = Tl is an absorbing state with P (Yl+1 =
Tl | Yl = Tl) = 1.

Therefore, the statement W (l+1) is also true. By induction, W (k) holds for all k ≥ 1. Since Y0 = T0 and
the transition probabilities P (Yk = Tk | Yk−1 = Tk−1) for k ≥ 1 match the definition of Ξ in Supplementary
Eq. (9), the jump chain (Yk)k≥0 is discrete-time Markov(δT0 , Ξ). By the jump chain/holding time definition
in Theorem 2.8.2 of [1], (Xt)t≥0 is continuous-time Markov(δT0

, Q).
We have proved that (Xt)t≥0 is continuous-time Markov(δT0

, Q) if and only if the subclones π ∈ T for
any T ∈ Sn

T have exponentially-distributed waiting times as defined in Supplementary Eq. (10).

Theorem 2. Let Θ ∈ Rn×n be a Mutual Hazard Network, where n ∈ N+ is the number of mutations. Let
(Xt)t≥0 be continuous-time Markov(δT0

, Q). Suppose T ∈ Sn
T is an output of the tree generating process.

Then the marginal probability of observing T is given by

p(T | Θ) := P

(
max
π∈T

Tπ < Ts < min
π′∈Exit(T )

Tπ′

∣∣∣∣∣ Θ
)

=
(
λs(λsI −Q)−1

)
T0,T

. (25)

Proof. In the tree generating process, the waiting times of the subclones are exponential random variables
as defined in Supplementary Eq. (10). By Theorem 1, the right-continuous process (Xt)t≥0 that tracks the
change of state resulting from the occurrence of new subclones is continuous-time Markov(δT0

, Q). That is,
for all t > 0, and T ∈ Sn

T ,
Xt = T ⇔ max

π∈T
Tπ < t < min

π′∈Exit(T )
Tπ′ , (26)

because if there exists π ∈ T such that Tπ > t, or π′ ∈ Exit(T ) such that Tπ′ < t, then Xt ̸= T , which
is a contradiction. Next, the matrix P (t) = etQ is the transition probability matrix of (Xt)t≥0, which by
Theorem 2.1.1 of [1] solves the backward equation,

d

dt
P (t) = QP (t), P (0) = I. (27)

The transition probability from T1 to T2 in time t is given by

P (Xt = T2 | X0 = T1) = pT1,T2
(t), (28)

where pT1,T2
(t) is the (T1,T2) entry in etQ, the row is indexed by T1, and the column is indexed by T2. In

particular, starting with X0 = T0, the probability of observing T at sampling time ts is

P (Xts = T | X0 = T0) = pT0,T (ts) =
(
etsQ

)
T0,T

, (29)
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which is the (T0,T ) entry in etsQ. It follows that

P

(
max
π∈T

Tπ < ts < min
π′∈Exit(T )

Tπ′

∣∣∣∣∣ Θ
)

= P (Xts = T | X0 = T0) =
(
etsQ

)
T0,T

. (30)

In the tree generating process, we assume that the unknown sampling time follows an independent exponential
distribution Ts ∼ Exp(λs) with density function fλs

(ts) = λs exp(−λsts). Integrating it out gives us

P

(
max
π∈T

Tπ < Ts < min
π′∈Exit(T )

Tπ′

∣∣∣∣∣ Θ
)

=

∫ ∞

0

fλs(ts)P

(
max
π∈T

Tπ < ts < min
π′∈Exit(T )

Tπ′

∣∣∣∣∣ Θ
)
dts

=

(∫ ∞

0

fλs
(ts)e

tsQdts

)
T0,T

=

(∫ ∞

0

λse
−λstsetsQdts

)
T0,T

=

(
λs

∫ ∞

0

e−λstsetsQdts

)
T0,T

.

(31)

Here, L(P (t)) =
∫∞
0

e−λstsP (ts)dts =
∫∞
0

e−λstsetsQdts = A(λs) is the Laplace transform of P (t) [2]. By
the Laplace transform of derivatives [2], we have

L
(

d

dt
P (t)

)
= λsA(λs)− P (0) = λsA(λs)− I. (32)

Applying Laplace transforms to both sides of Supplementary Eq. (27) gives

λsA(λs)− I = QA(λs) ⇔ (λsI −Q)A(λs) = I. (33)

By the definition in Supplementary Eq. (4), we can permute the rows and columns of the generator matrix
Q such that Q is upper-triangular, e.g. by sorting the trees by increasing tree size, such that the matrix
V := λsI − Q is also upper-triangular. Since all transition rates are positive by Supplementary Eq. (5),
the diagonal entries of Q are non-positive. Hence, the diagonal entries of V are positive. It follows that
the determinant of V , as the product of the diagonal entries, is non-zero, i.e. det(V ) ̸= 0. Hence, V is
non-singular, V −1 exists, and

A(λs) = (λsI −Q)−1. (34)

Therefore, the marginal probability of observing T is given by

p(T | Θ) := P

(
max
π∈T

Tπ < Ts < min
π′∈Exit(T )

Tπ′

∣∣∣∣∣ Θ
)

= (λsA(λs))T0,T
=
(
λs(λsI −Q)−1

)
T0,T

. (35)

A.3 Maximum likelihood estimation of an MHN given a set of trees

In the previous section, we have shown in Theorem 2 that computing p(T | Θ) involves inverting the matrix
V = λsI−Q of dimension |Sn

T |× |Sn
T |, where |Sn

T | grows super-exponentially in n (Supplementary Eq. (3)).
Hence, the matrix inversion is intractable for even a moderate size n. In this section, we seek to simplify the
calculation of Supplementary Eq. (25).

We sort the rows and columns of Q by increasing tree size (T0,T1, . . .TL) such that |T0| < |T1| < · · · <
|TL|, where L := |Sn

T | is the total number of trees in the state space. In other words, Q is upper-triangular,
and so is V . Let eT be a unit vector on Sn

T with 1 at the position of T ∈ Sn
T and 0 at other positions. The

dimension of eT is L. For example, eT0
= (1, 0, . . . , 0)⊤. Then, we can rewrite Supplementary Eq. (25) as

p(T | Θ) =
(
λsV

−1
)
T0,T

= λse
⊤
T0

V −1eT . (36)
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To compute x⊤ := e⊤T0
V −1, we can solve the equation V ⊤x = eT0 with forward substitution because V ⊤ is

lower-triangular:
VT0,T0

x0 = 1
VT0,T1

x0 + VT1,T1
x1 = 0

...
...

. . .
...

VT0,TL
x0 + VT1,TL

x1 + . . . + VTL,TL
xL = 0

(37)

The recursive formula is

x0 = V −1
T0,T0

xm =
−
∑m−1

l=0 VTl,Tm
xl

VTm,Tm

, m = 1, 2, . . . , L.
(38)

To compute p(T | Θ), it is unnecessary to compute the entire vector x, because e⊤T0
V −1eT = x⊤eT only

takes the element in x that corresponds to T . Suppose Tm′ = T for some 0 ≤ m′ ≤ L. By Supplementary
Eq. (38), xm′ is independent of the entries in V that are associated with trees Tl for l > m′. Moreover,
by the definition of Q in Supplementary Eq. (4), QTl,Tm′ is non-zero only if Tl is a subtree of Tm′ , i.e.
Tl ⊂ Tm′ . Therefore, in order to compute xm′ , we only need a sub-matrix QT of Q, where the columns and
rows correspond to all subtrees of T ordered by increasing size (Supplementary Figure S1(c)),

QT = (qT1,T2 : T1,T2 ⊆ T ). (39)

In particular, the first and the last row (column) of QT correspond to T0 and T respectively. Hence,
Supplementary Eq. (25) becomes

p(T | Θ) = λs(λsI −QT︸ ︷︷ ︸
VT

)−1
T0,T

, (40)

where the dimension of VT is determined by the number of subtrees of T , which is much less than L. Note
that since QT is often very sparse, a sparse triangular matrix solver can be helpful.

Next, the gradient with respect to each Θij can be computed as

∂ log p(T | Θ)

∂Θij
=

1

p(T | Θ)

∂p(T | Θ)

∂Θij
by (PP136)

=
1

p(T | Θ)

∂

∂Θij

[
λs(VT )−1

T0,T

]
by Supplementary Eq. (40)

=
λs

p(T | Θ)

[
∂V −1

T

∂Θij

]
T0,T

by (PP32) and (PP34)

=
λs

p(T | Θ)

[
−V −1

T

∂VT

∂Θij
V −1

T

]
T0,T

by (PP59)

=
λs

p(T | Θ)

−V −1
T

( ∑
(π,i):j∈π or j=i

∂VT

∂λ(π,i)

∂λ(π,i)

∂Θij

)
V −1

T


T0,T

by (PP35) and (PP136)

=
λs

p(T | Θ)

 ∑
(π,i):j∈π or j=i

−V −1
T

∂VT

∂λ(π,i)

∂λ(π,i)

∂Θij
V −1

T


T0,T

by the distributive law

=
1

p(T | Θ)

∑
(π,i):j∈π or j=i

λs

(
− V −1

T

∂VT

∂λ(π,i)
V −1

T

)
T0,T︸ ︷︷ ︸

∂p(T |Θ)/∂λ(π,i)

∂λ(π,i)

∂Θij
by (PP32) and (PP34)

where the numbered properties can be found in the Matrix Cookbook by Petersen and Pedersen, 2012∗.
We add “PP” in front the numbers to distinguish between the numbers in the Matrix Cookbook and the

∗https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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numbers of the equations in this paper. The term ∂p(T | Θ)/∂λ(π,i) can be obtained from the first row and
the last column of the matrix

λs(λsI −R
(π,i)
T )−1, R

(π,i)
T :=

[
QT

∂QT

∂λ(π,i)

0 QT

]
, (41)

with forward substitution, because

(λsI −R
(π,i)
T )−1 =

[
λsI −QT − ∂QT

∂λ(π,i)

0 λsI −QT

]−1

=

[
VT

∂VT

∂λ(π,i)

0 VT

]−1

=

[
V −1

T −V −1
T

∂VT

∂λ(π,i)
V −1

T

0 V −1
T

]
(42)

by (PP399) and (PP400) of the Matrix Cookbook. Also, the gradient of the penalty term γ
∑

i̸=j |logΘij |
with respect to each Θij is

γ sign(θij)

Θij
, sign(θij) =


1 θij > 0

0 θij = 0

−1 θij < 0

. (43)

Therefore, given N mutation trees TTT = {T 1, . . . ,T N}, we can find the maximum likelihood estimation of
Θ by gradient ascent optimization.

A.4 Hybrid EM and Monte Carlo EM algorithm for the estimation of an MHN
given a set of trees

The joint density of a collection of waiting times t, sampling time ts, and the corresponding tree structure
T is

p(T , t, ts | Θ) = fλs
(ts)

n∏
i=1

∏
π∈T :(π,i)∈A(T )

fλ(π,i)
(t(π,i) − tπ)×

∏
π∈T

1(tπ < ts)×
∏

π∈A(T ):π ̸∈T

1(tπ > ts)

= fλs(ts)

n∏
i=1

∏
π∈T :(π,i)∈A(T )

[
λ(π,i) exp

(
− λ(π,i)(t(π,i) − tπ)

)]
×
∏
π∈T

1(tπ < ts)×
∏

π∈A(T ):π ̸∈T

1(tπ > ts)

= fλs
(ts)

n∏
i=1

∏
π∈T :(π,i)∈A(T )

[
Θii

∏
j∈π

Θij exp
(
−Θii

∏
j∈π

Θij(t(π,i) − tπ)
)]

×
∏
π∈T

1(tπ < ts)×
∏

π∈A(T ):π ̸∈T

1(tπ > ts)

(44)

where fλ is the exponential density function with parameter λ and λs = 1. The complete-data log-likelihood
is then

ℓfull(Θ) =

N∑
l=1

n∑
i=1

∑
π∈T l:(π,i)∈A(T l)

[
logΘii +

∑
j∈π

logΘij −Θii

∏
j∈π

Θij(t
l
(π,i) − tlπ)

]
+ log fλs

(tls) (45)

and log fλs
(tls) is a constant with respect to Θ. The expected complete-data log-likelihood in the E step of

the EM algorithm follows by replacing each (t(π,i) − tπ) with ET,Ts|T ,Θ[T(π,i) − Tπ].
To compute the expected time differences, we first use the definition of the expected value,

ET,Ts|T ,Θ[T(π,i) − Tπ] =

∫
R|A(T )|+1

≥0

(t(π,i) − tπ)p(t, ts | T ,Θ)dtdts

=
1

P (T | Θ)

∫
R|A(T )|+1

≥0

(t(π,i) − tπ)p(T , t, ts | Θ)dtdts.

(46)

10



Notice that

∂p(T | Θ)

∂λ(π,i)
=

∂

∂λ(π,i)

∫
R|A(T )|+1

≥0

p(T , t, ts | Θ)dtdts

=

∫
R|A(T )|+1

≥0

∂

∂λ(π,i)
p(T , t, ts | Θ)dtdts

=

∫
R|A(T )|+1

≥0

( 1

λ(π,i)
− (t(π,i) − tπ)

)
p(T , t, ts | Θ)dtdts

= p(T | Θ)
( 1

λ(π,i)
− ET,Ts|T ,Θ[T(π,i) − Tπ]

)
.

(47)

Therefore,

ET,Ts|T ,Θ[T(π,i) − Tπ] =
1

λ(π,i)
− 1

P (T | Θ)

∂P (T | Θ)

∂λ(π,i)
, (48)

where both P (T | Θ) and ∂P (T |Θ)
∂λ(π,i)

can be computed as in Section A.3. For large trees (e.g. with more than

500 subtrees), however, computing this exact form can be very slow. In this case, we can approximate it by
drawing M samples from the proposal distribution with density g as defined in Methods. To recapitulate,
we first draw the sampling time Ts from Exp(λs) with λs = 1, followed by drawing the difference in waiting
times between subclones π and (π, i) recursively as

Z(π,i) ∼

{
TExp(λ(π,i), 0, ts − tπ) if (π, i) ∈ T

TExp(λ(π,i), ts − tπ,∞) if (π, i) ∈ A(T ) \T
(49)

where TExp(λ, a, b) is the truncated exponential distribution with parameter λ and bounds 0 ≤ a < b <∞.
The importance sampling weights are defined as

w(m) := w(t(m) | T ,Θ) =
p(T , t(m), t

(m)
s | Θ)

g(t(m), t
(m)
s | T ,Θ)

, m = 1, . . . ,M. (50)

The densities of the truncated exponential distributions TExp(λ, 0, a) and TExp(λ, b,∞) are

fTExp
λ,0,a (t) =

λe−λt1[0,a](t)

1− e−λa
and fTExp

λ,b,∞(t) =
λe−λt1[b,∞)(t)

e−λb
respectively. (51)

Since all terms in the numerator of w(m) cancel out, it follows that

w(m) =

n∏
i=1

∏
(π,i)∈T

(1− e−λ(π,i)(t
(m)
s −t(m)

π ))
∏

(π,i)∈A(T ), (π,i)̸∈T

e−λ(π,i)(t
(m)
s −t(m)

π ). (52)

The approximation becomes

ET,Ts|T ,Θ[T(π,i) − Tπ] ≈
1
M

∑M
m=1 w

(m)(t
(m)
(π,i) − t

(m)
π )

1
M

∑M
m=1 w

(m)
. (53)

In the M step, we update Θ by maximizing the penalized expected complete-data log-likelihood, where the
gradients with respect to each Θij are computed as follows:

∂Q(Θ,Θ(k))
∂Θii

=
∑N

l=1

∑
π∈T l:(π,i)∈A(T l)

[
1

Θii
−
∏

j∈π ΘijETl,T l
s|T l,Θ(k) [T l

(π,i) − T l
π]
]

i ∈ [n]

∂Q(Θ,Θ(k))
∂Θij

=
∑N

l=1

∑
π∈T l:(π,i)∈A(T l),j∈π

[
1

Θij
−Θii

∏
k∈π:k ̸=j ΘikETl,T l

s|T l,Θ(k) [T l
(π,i) − T l

π]
]

i, j ∈ [n], i ̸= j
.

(54)
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A.5 Parameter estimation based on non-empty trees

In practice, we typically cannot observe an empty mutation tree containing only the root node for a cancer
patient and all observed trees in TTT have at least one mutation. In this case, we need to condition the
likelihood on the trees being non-empty, which amounts to adding the following term to the objective
functions in both the MLE and the EM parameter estimation procedure:

−N log(1− p(T0 | Θ)) = −N
(
1− λs

λs +
∑n

i=1 Θii

)
. (55)

To see this, consider the marginal probability of a tree T given Θ. It can be decomposed into two parts,

p(T | Θ) = p(T ,T is empty | Θ) + p(T ,T is non-empty | Θ)

= p(T | T is empty,Θ)p(T is empty | Θ)1(T is empty)

+ p(T | T is non-empty,Θ)p(T is non-empty | Θ)1(T is non-empty).

(56)

Since T can be either empty or non-empty, only one term in the summation is left. It follows that

p(T | T is non-empty,Θ) =
p(T | Θ)

p(T is non-empty | Θ)
=

p(T | Θ)

1− p(T is empty | Θ)
. (57)

Now, T is empty if and only if Ts = min{Ts, T(0,1), . . . , T(0,n)}, which is the minimum of a set of independent
exponential random variables. Therefore,

p(T is empty | Θ) =
λs

λs + λ(0,1) + · · ·+ λ(0,n)
=

λs

λs +
∑n

i=1 Θii
, (58)

and
∂

∂Θii
log(1− p(T is empty | Θ)) =

p(T is empty | Θ)2

λs(1− p(T is empty | Θ))
. (59)

Finally, the MLE objective function becomes

Θ̂ = argmax
Θ

N∑
l=1

log p(T l | T is non-empty,Θ)− γ
∑
i ̸=j

|logΘij |

= argmax
Θ

N∑
l=1

log p(T l | Θ)− γ
∑
i̸=j

|logΘij | −N
(
1− λs

λs +
∑n

i=1 Θii

)
.

(60)

Note that the same term can also be added to the objective function of the genotype MHN method if none
of the input genotypes correspond to the wild type (i.e. a vector of zeros).
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B TreeMHN with stability selection

TreeMHN can be viewed as a probabilistic graphical model with n2 parameters, where the (n2 − n) off-
diagonal entries represent the edges (→ or ⊣) among the mutations (Figure S1 (a)). When the sample size
N is small, it is often difficult to identify the true edges. In this case, we use a procedure called stability
selection, which is particularly suitable for controlling the false discovery rate in high-dimensional graphical
modelling problems [3].

More specifically, we take a random subsample I of size ⌊N2 ⌋ without replacement from TTT and train
TreeMHN for a given regularization parameter γ > 0. An off-diagonal entry θij is considered as selected if
it is non-zero. The set of selected edges is

Ŝγ(I) = {(i, j) | |θij | > 0, i ̸= j}. (61)

Repeating this process for B times (B large), the probability that an entry at position (i, j) for i ̸= j is
selected can be approximated as

q̂(i,j)(γ) =
1

B

B∑
b=1

1{(i, j) ∈ Ŝγ(I
b)}. (62)

For a pre-specified threshold δ and a regularization parameter γ, the set of stable edges is defined as [3]

Ŝstable(γ) = {(i, j) | q̂(i,j)(γ) ≥ δ}. (63)

Let S0 be the set of true edges, S
c
0 be the complement of S0, and V = |Sc

0∩Ŝstable| be the falsely selected edges.
To control for the expected number of false positives (e.g. E[V ] ≤ ν = 5), we choose to fix the threshold δ
(e.g. 0.95) and vary γ such that the number of stable edges is bounded (Meinshausen and Bühlmann, 2010),

|Ŝstable(γ)| ≤ ⌊
√
ν(n2 − n)(2δ − 1)⌋. (64)

After estimating Ŝstable(γ), we can then refit TreeMHN on the full dataset TTT by masking the entries in Θ
that are not selected.
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C Computing probabilities of trajectories and mutational events
with TreeMHN

C.1 Most probable evolutionary trajectories

In Methods, we have introduced how to compute the trajectory probability distribution over ΠS , the set of
evolutionary trajectories that end with the sampling event, and Πd, the set of evolutionary trajectories of
a fixed length d. There are advantages and limitations associated with both formulations. Using trajectory
probabilities over Πd, we can compare the inferred trajectory distribution from TreeMHN with the ones from
methods that do not have the notion of a sampling event. It is also easy to compute for small d. However,
we cannot compare trajectories of different lengths or with the frequencies of the trajectories observed in
the tumor trees based on this formulation. The trajectory probability distribution over ΠS , on the other
hand, does not have these problems, but it can become infeasible to compute for even a moderate number
of mutations n, because the space grows super-exponentially with n. Instead, we can enumerate the most
probable trajectories that have at least one mutation dynamically with the pseudocode in Algorithm 2.

Input:
Θ: Mutual Hazard Network
τ : Number of most probable trajectories to output
λs: Sampling rate

Output:
Πτ := {π(1), . . . , π(τ)}: The top τ most probable trajectories
pτ := {p(1), . . . , p(τ)}: Probabilities of the τ most probable trajectories

1 Πτ ← {(0), . . . , (0)} // Initialize to trajectories with no mutations

2 pτ ← (0, . . . , 0) // Initialize to zero for all trajectory probabilities

3 Πcurrent ← {(0, 1), . . . , (0, n)} // Trajectories to visit

4 while Πcurrent is non-empty do
5 Πnext ← {} // Initialize the set of trajectories to visit next

6 for π in Πcurrent do
7 pπ ← probability of π computed using Eq. (10) in the main text
8 if pπ > min(pτ ) then
9 r ← index of the first minimum in pτ

10 π(r) ← π // Replace the rth most probable trajectory by π
11 p(r) ← pπ
12 Πch(π) ← {(π, j) | j ∈ [n] \ π} // Children trajectories of π by extending π by

one mutation

13 Πnext ← {Πnext,Πch(π)} // Append the children trajectories to the

trajectories to visit next

14 end

15 end
16 Πcurrent ← Πnext

17 end

18 pτ ← pτ/(1− λs

λs+
∑

j∈[n] λ(0,j)
) // Conditioned on trajectories with at least one mutation

Algorithm 2: Most probable evolutionary trajectories

C.2 Alternative methods to compute the probabilities of mutational events

Although TreeMHN is unique in its ability to compute the probabilities of the next mutational events given
a tree (Methods), we adapt five alternative methods for comparison:

1. A frequency-based model: A frequency-based model (N0) predicts the next event using the relative
frequencies of the mutations in the cohort, (f1, . . . , fn) with fi > 0 and

∑n
i=1 fi = 1. The new event

can be placed randomly after any node (including the root) in T with probability 1/|T |. Then, the
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conditional probability of an event π = (0, σ1, . . . , σd) ∈ A(T ) \ T happening before all the other
events depends only on the relative frequency of σd and is given by

p(π | T , N0) =
1

|T |
× fσd

× 1{π ∈ A(T ) \T } × 1

Z(T )
, σd ∈ [n], 1 ≤ d ≤ n, (65)

where Z(T ) is a normalizing constant depending on T such that
∑

π∈A(T )\T p(π | T , N0) = 1.

We can estimate the relative frequencies (f̂1, . . . , f̂n) using the subclonal genotypes weighted by their
relative sizes (Supplementary Figure S2).

2. TreeMHN with only the baseline rates: We can run TreeMHN on a set of mutation trees with
the restriction that all off-diagonal elements in the estimated network are zero. In other words, this
approach assumes that all mutations are independent of each other while respecting the tree structures.
The ways to compute the trajectory probabilities and the probabilities of the next mutational events
given a tree stay the same.

3. Genotype MHN using the consensus genotypes: We can run the genotype MHN method of [4]
on the consensus genotypes of patient samples (Supplementary Figure S2). Then, we use the estimated
network to compute the trajectory probabilities and the probabilities of the next mutational events
under the TreeMHN framework.

4. Genotype MHN using the weighted subclonal genotypes: Same as 2 except that we use the
subclonal genotypes weighted by the size of the subclones (Supplementary Figure S2).

5. REVOLVER: The row-normalized matrix w in REVOLVER summarizes the relative frequency of
mutation j being the descendant of i in its entry wij . Given w, the probability of a new event with
mutation j given a tree T can be computed as

1

|T |
× wij × 1{j is placed after a node i} × 1

Z(T )
, (66)

where Z(T ) is a normalizing constant depending on T such that the probabilities sum up to 1 over
all possible events.

Sample Subclone size Mutation 1 Mutation 2 Mutation 3

A
0.55 1 0 0
0.3 0 1 0
0.15 0 1 1

B
0.38 1 0 1
0.62 1 1 0

C

0.2 1 0 0
0.35 0 1 1
0.18 1 1 0
0.27 1 0 0

Sample Consensus (> 50%)

A 1 0 0

B 1 1 0

C 1 1 0

(a)

(b)

Mutation 1 Mutation 2 Mutation 3

0.47 0.34 0.19

(c)

Figure S2: An example of converting subclonal genotypes (a) to consensus genotypes (b) using a threshold
of 50%. The relative frequencies of the three mutations are shown in (c).
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D Additional simulation details

D.1 Precision and recall of identifying the true MHN

In the objective functions of both TreeMHN and the genotype MHN method, there is a penalization param-
eter γ that controls the sparsity of the estimated network Θ̂. The larger γ is, the more zero entries are in Θ̂.
We evaluate the structural differences between Θ̂ and a ground truth network Θ by defining the true posi-
tives (TP), false positives (FP), true negatives (TN), and false negatives (FN) as indicated in Figure S3. In

particular, an edge in Θ̂ is considered as a TP if and only if it has the correct direction (sign(θ̂ij) = sign(θij)).
Next, we define the precision and recall as

Precision =
TP

P̂
and Recall =

TP

P
, (67)

where P and P̂ are the number of edges in the true network Θ and the estimated network Θ̂ respectively.
The F1 score is the harmonic mean between precision and recall, which can be computed as

F1 score = 2× Precision× Recall

Precision + Recall
. (68)

P̂

j i j → i j ⊣ i

θij = log Θij

̂θij = log Θ̂ij

j i

j → i

j ⊣ i

a
a
a
a
a
a
a
a
aaaaaaaaaa

P

TN FP FP

FN TP FP

FN FP TP

Figure S3: Definition of true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN) for the structural differences between an estimated network Θ̂ and a true network Θ.

On average, a network estimated by randomly guessing the direction of the edges can only achieve a
maximum recall of 50%. The precision of random guess is equal to 0.5(1 − s), where s is the proportion
of zero off-diagonal entries in Θ, also called network sparsity. If 50% of the entries in Θ are zero, then the
precision is only 25%. The corresponding F1 score is 1

3 .

D.2 Computing trajectory probabilities with REVOLVER and HINTRA

REVOLVER [5] and HINTRA [6] are two probabilistic methods for inferring repeated trajectories from
cross-sectional multi-region sequencing data. Both methods learn one tree for each patient by transferring
the information across tumors, which is summarized in matrix w and β, respectively. For REVOLVER, w
is an n-by-n matrix, where an entry wij is the number of times mutation i occurs before mutation j in the
trees. By row-normalizing w, one can obtain the empirical probability of mutation j being the descendant
of mutation i. For HINTRA, the columns of β also correspond to the n mutations, but the rows are all
possible ancestry sets, which increases super-exponentially in n. To obtain the matrices w and β, we can
count the frequency of every possible ancestor-descendant pair that appears in the simulated trees. Since
we only consider evolutionary trajectories of length 4, it is still feasible to compute the HINTRA matrix β.
Adding pseudocounts and row-normalizing the two matrices gives us w̃ and β̃, which can be used to estimate
trajectory probabilities. Given w̃ or β̃, one simply multiplies the entries in the matrices that correspond
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to the edges in the trajectories. For example, if an evolutionary trajectory is A → B → C, then we have
w̃∅,A × w̃A,B × w̃B,C for REVOLVER and β̃∅,A × β̃{A},B × β̃{A,B},C for HINTRA. Moreover, REVOLVER
requires an additional step of normalizing over all trajectories in Πd to ensure that the probabilities sum up
to 1.

D.3 Introducing noise into simulated trees

To evaluate the robustness of TreeMHN against tree uncertainty, we define a noise level ϵ ∈ (0, 1) and use
it to perturb the tree structures. For each node except the root in a tree, we generate a random number
r ∼ Uniform(0, 1) and perturb the node if r < ϵ. Depending on which of the following categories the node
falls into, we randomly choose one way of perturbation:

• Internal node with multiple children:

– randomly insert a parent node (the original parent is shifted up);

– randomly add a child node.

• Internal node with exactly one child:

– randomly insert a parent node;

– randomly add a child node;

– switch order with the child;

– be removed.

• Leaf node:

– randomly insert a parent node;

– randomly add a child node;

– prune the node and reattach it to one of its siblings or the parent of its parent;

– be removed.

To remove a node, we also need to ensure that it is not the only node in the tree.
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D.4 Additional figures from simulations

Method Genotype MHN Genotype MHN (stability selection) TreeMHN TreeMHN (stability selection)
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Figure S4: Performance of TreeMHN and the genotype MHN methods (with and without stability selection)
in estimating the true network Θ on simulated data for n ∈ {10, 15, 20} and N ∈ {200, 300, 500}. The
precision and recall curves averaged over 100 simulation runs are plotted by comparing the full matrices Θ
and Θ̂ (see Figure 3 for comparing sub-matrices restricted to top 50% of the mutations ranked by baseline
rates). Each point on the curves corresponds to a penalization level γ ∈ {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3}. The
dash lines indicate the performance of randomly guessing the edge directions in Θ.
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Figure S5: Performance of TreeMHN and the genotype MHN method (with and without stability selection)
on perturbed simulated trees at noise level ϵ ∈ {1%, 5%, 10%, 20%} for n = 10 and N = 500. For each
method, we plot the F1 score over 100 simulation runs at γ ∈ {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3}. F1 score
measures the harmonic mean between precision and recall. In general, F1 score decreases as noise level
increases. In the box plots, the box represents the interquartile range (IQR) with the median inside, while
the whiskers extend to the minimum and maximum values within 1.5 times the IQR, and any data outside
the whiskers are shown as individual points.
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Figure S6: Performance of TreeMHN and the genotype MHN method (with and without stability selection)
in estimating the true network Θ on perturbed simulated trees at noise level ϵ ∈ {0%, 1%, 5%, 10%, 20%} for
n = 10 and N = 500. F1 score measures the harmonic mean between precision and recall. For each method
and each ϵ, the box contains 100 simulation runs and corresponds to the optimal regularization parameter
with respect to the average F1 score (Figure S5). The dash line indicates the performance of random guess.
In the box plots, the box represents the interquartile range (IQR) with the median inside, while the whiskers
extend to the minimum and maximum values within 1.5 times the IQR, and any data outside the whiskers
are shown as individual points.

Figure S7: Performance of TreeMHN and the genotype MHN method (with and without stability selection)
on simulated trees evaluated at different sparsity levels of the networks for n = 10 and N = 500. A sparsity
level of 0.5 means that 50% of the off-diagonal entries in Θ are zero. The precision of random guess decreases
as network sparsity increases.
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Figure S8: Performance of TreeMHN and the genotype MHN method (with and without stability selection)
on simulated trees evaluated at different percentages of exclusive edges in Θ for n = 10 and N = 500. A
percentage of exclusive edges equal to 0.5 means that 50% of the non-zero off-diagonal entries in Θ are
negative.

Figure S9: Comparison between the TreeMHN networks estimated using the MLE and the hybrid MC-EM
methods for n = 10 and N = 200. For the hybrid MC-EM algorithm, we consider the thresholds on the
subtrees K ∈ {0, 50, 100} and the number of Monte Carlo samples M ∈ {100, 300, 500}. For each tree in
the data set, we compute the expected time differences in exact form if its number of subtrees is below
K. Otherwise, we use the approximation with importance sampling (Supplementary Section A.4). For
each combination of K and M , we run 100 simulations and evaluate the mean squared error (MSE), the
genotype KL divergence [4], and the trajectory KL divergence (Methods) between the two output matrices.
Overall, the higher the threshold K and the more samples M , the smaller the differences among the networks
estimated using the two inference methods. In the box plots, the box represents the interquartile range (IQR)
with the median inside, while the whiskers extend to the minimum and maximum values within 1.5 times
the IQR, and any data outside the whiskers are shown as individual points.
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Figure S10: (a) Runtimes (wall-clock time in seconds) and (b) memory usage (in MiB) of TreeMHN (MLE
and MC-EM) and the genotype MHN over 100 simulation runs for n ∈ {10, 15, 20, 30}, N ∈ {200, 300, 500},
and γ = 1. For the MC-EM version of TreeMHN, the threshold on the number of subtrees is K = 50, and
the number of Monte Carlo samples is M = 300 for all configurations and simulation runs. For each method,
each simulation run was performed on one CPU core of the AMD EPYC 7H12 processor on the ETH Euler
cluster. The space and time complexity of the genotype MHN method increase exponentially in the number
of mutations, so it is excluded in the n = 30 case. The runtime and memory usage of TreeMHN increase
with the sample size, because the algorithm needs to go through every edge in the trees (Supplementary
Section A.4). On the contrary, the genotype MHN method always summarize the genotypes into a vector
of length 2n, so larger sample size may even improve the convergence of the optimization problem. Since
we did not run REVOLVER and HINTRA using the original code but rather computed their key matrices
(Methods), the runtime and memory usage of these two methods are not directly comparable. We use the
R package profmem for memory profiling [7]. In the box plots, the box represents the interquartile range
(IQR) with the median inside, while the whiskers extend to the minimum and maximum values within 1.5
times the IQR, and any data outside the whiskers are shown as individual points.
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E Application to acute myeloid leukemia data

E.1 Preprocessing of the data

The dataset we analyze is a cohort of N = 123 AML patient samples, which contains 543 somatic mutations
in n = 31 cancer-associated genes [8]. Each mutation tree, reconstructed by SCITE [9], corresponds to
the complete evolutionary history of a tumor. SCITE assumes the infinite sites assumption for individual
genomic bases. We summarize the point mutations at the gene level such that the same gene may appear in
parallel lineages of a tree. Also, there may be repeated mutations along the same lineage (A→ B → · · · → B)
due to gene-level summary, so we merge all such mutations to the position of their first occurrence. This
rule also applies to the same mutations originating from a common direct ancestor (B ← A→ B).

E.2 Additional figures

Figure S11: Full Mutual Hazard Network learned from a cohort of 123 AML patient samples [8]. This
network is learned by following the stability selection procedure (Supplementary Section B) with threshold
δ = 95% and penalization parameter γ = 0.1. On the left it shows the baseline rates of the 31 mutational
events, whereas the pairwise exclusive and co-occurring effects are illustrated on the right. Note that the
values are displayed in logarithmic scale.
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Figure S12: Comparison between TreeMHN and CONETT [10] on the inferred evolutionary trajectories
from the AML dataset. (a) Table of top 40 most probable evolutionary trajectories inferred by TreeMHN.
Each row corresponds to a trajectory along with its inferred probability and the number of times it appears
in the transitive closures of the mutation trees (i.e. if there are directed edges from A to B and from B to C,
then we add an edge from A to C). (b) Germline-rooted evolutionary trajectory tree computed by CONETT,
which is conserved in at least 10 patients at 10% significance level. The number on an edge indicates the
number of patients having the path from the GL node to the node which the edge is pointing to.
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Figure S13: Proportion of significantly conserved trajectories reported by MASTRO [11] found in the top k
most probable trajectories predicted by TreeMHN for the AML dataset. Here we consider k ≤ 200. Each
row corresponds to one group in Supplementary Figure 5 of [11].
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Figure S14: Observed evolutionary trajectories that appear at least twice in the AML tumor trees [8].
The rows represent the evolutionary trajectories, labeled and ordered by their relative frequencies. The
horizontal positions of the mutations correspond to their expected waiting times relative to the sampling
rate of λs = 1, which are computed based on the estimated AML network. Despite the small sample size,
the relative frequencies of the trajectories still match closely with the estimated trajectory probabilities.

Figure S15: Proportion of observed AML trajectories found in the top k most probable trajectories pre-
dicted by four methods: TreeMHN, TreeMHN with only baseline rates, genotype MHN using the consensus
subclonal genotypes, genotype MHN using the weighted subclonal genotypes (Supplementary Section C.2).
Here we consider k ≤ 200. On the left we show the comparison on the AML trajectories observed at least
twice in the cohort, whereas the one on the right includes all observed trajectories. For scalability, we run
both variants of genotype MHNs by focusing on the top 15 mutations that have non-zero off-diagonal entries
in the estimated network (Supplementary Figure S11).
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Figure S16: REVOLVER’s information transfer matrixw estimated on the AML dataset after normalization.
Each entry wij represents the empirical probability of mutation j being the descendant of mutation i.

27



5.15e−70

1.52e−69

1.37e−61

6.12e−87

1.57e−81

2.03e−131

1e−04

1e−02

1e−01

1e+00

TreeMHN TreeMHN 
(baseline)

MHN 
(consensus)

MHN 
(weighted)

REVOLVER Frequency Random

Method

P
ro

ba
bi

lit
y

Figure S17: Performance assessment on retrospective predictions on the AML dataset. Each boxplot shows
the probabilities computed on the 1370 pairs of rooted subtrees and their corresponding downstream events,
enumerated from the 123 primary tumor trees. Each point in the plot corresponds to the probability of a
downstream event given a rooted subtree of a primary tumor tree. The last column shows the probabilities
of random guess, where each possible event gets equal weight. Since for each rooted subtree, the number
of possible events is different depending on the size of the tree, the last boxplot is not a line. The p-values
with Bonferroni correction for the two-sided Wilcoxon signed-rank tests between TreeMHN and alternative
methods are also displayed. In the box plots, the box represents the interquartile range (IQR) with the
median inside, while the whiskers extend to the minimum and maximum values within 1.5 times the IQR,
and any data outside the whiskers are shown as individual points.
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Figure S18: Performance assessment on forward predictions on the AML longitudinal samples. Each panel
corresponds to a pair of consecutive trees where the second tree has at least one new event. For each method,
the violin plot shows the estimated probability distribution of all possible events, and the new events are
colored dots. These events correspond to the events shown in Figure 6c of the main text.
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F Application to non-small-cell lung cancer data

F.1 Preprocessing of the data

To apply TreeMHN to the TRACERx NSCLC data set [12], we retrieve the uncorrelated phylogenetic trees
for N = 99 patients and n = 79 driver mutations from the R package evoverse.datasets [13]. Each patient
sample has multiple clone trees with different scores, and each node in the clone tree can have multiple
mutations, whose ordering cannot be determined. Hence, for each clone tree, we enumerate or randomly
sample the permutations of the mutations in the clones (depending on the clone size), and assign equal
weights to the resulting fully resolved trees. Then, we multiply the weights by the score of the original clone
tree. Finally, we use a weighted version of TreeMHN, where the total weights of the trees for each patient
sum up to 1.

F.2 Additional figures

Figure S19: Full Mutual Hazard Network learned from a cohort of 99 NSCLC patient samples [5, 12]. This
network is learned by following the stability selection procedure (Supplementary Section B) with threshold
δ = 99% and penalization parameter γ = 0.001. On the left it shows the baseline rates of the 79 mutational
events, whereas the pairwise exclusive and co-occurring effects are illustrated on the right. Note that the
values are displayed in logarithmic scale.
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Figure S20: Top 50 most probable evolutionary trajectories inferred from the partial Mutual Hazard Network
of the TRACERx NSCLC dataset (Figure 8). Note that the total number of evolutionary trajectories is in
the order of 18!.
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Figure S21: Proportion of repeated trajectories reported by REVOLVER found in the top k most probable
trajectories predicted by TreeMHN for the NSCLC dataset. Here we consider k ≤ 200. Each line corresponds
to one cluster in Supplementary Figure 7 of [5].
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G Application to breast cancer data

G.1 Preprocessing of the data

Following [14], we use the phylogenetic trees inferred by SPRUCE [15] for the breast cancer data in [16].
The number of patients in the source data is N = 1756. Christensen et al. [14] reduce this number to
1315 by focusing on SNVs in copy-neutral autosomal regions. We partition the patients into 8 subgroups
according to their hormone receptor status (HR+/HER2+, HR+/HER2-, HR-/HER2+, Triple Negative)
and sample type (primary vs. metastasis). For primary tumors, we consider only the treatment-free samples
to avoid confounding signals. Moreover, we restrict the analysis to the union of mutations that appear
in at least 10% of the patients in each subgroup. These preprocessing steps result in n = 19 mutations
and N = 1152 patients with 1232 phylogenetic trees. Trees for the same patient sample get equal weights.
The distributions of patients and mutations across subgroups are provided in Supplementary Table S1 and
Supplementary Table S2 respectively.

HR+/HER2+ HR+/HER2- HR-/HER2+ Triple Negative
Primary 31 442 14 57
Metastasis 73 444 26 65

Table S1: Number of advanced breast cancer patients in each of the eight subgroup after the preprocessing
steps.

HR+/HER2+ HR+/HER2- HR-/HER2+ Triple Negative
Primary 10 17 8 14
Metastasis 15 19 12 12

Table S2: Number of mutations in each of the eight subgroup after the preprocessing steps.
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G.2 Additional figures

Figure S22: Full Mutual Hazard Network learned from a cohort of breast cancer patient samples [14, 16]. This
network is learned by following the stability selection procedure (Supplementary Section B) with threshold
δ = 99% and penalization parameter γ = 0.01. On the left it shows the baseline rates of the 19 mutational
events, whereas the pairwise exclusive and co-occurring effects are illustrated on the right. Note that the
values are displayed in logarithmic scale.
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Figure S23: Full Mutual Hazard Networks for the eight subgroups defined in Supplementary Section G.1.
Using the stability selection procedure with threshold δ = 99% (Supplementary Section B), we control the
expected false positive rate to be at most 10% by varying the penalty level γ for each subgroup based on
the number of mutations (Supplementary Table S2).
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Figure S24: Partial Mutual Hazard Networks for the eight subgroups defined in Supplementary Section G.1.
The columns and rows of these matrices are ordered by decreasing baseline rates in the main matrix (Sup-
plementary Figure S22).
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Figure S25: Top 30 most probable evolutionary trajectories of the HR+/HER+ primary (left panel) and
metastasis (right panel) subgroups for the breast cancer data [16].

Figure S26: Top 30 most probable evolutionary trajectories of the HR+/HER- primary (left panel) and
metastasis (right panel) subgroups for the breast cancer data [16].
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Figure S27: Top 30 most probable evolutionary trajectories of the HR-/HER+ primary (left panel) and
metastasis (right panel) subgroups for the breast cancer data [16].

Figure S28: Top 30 most probable evolutionary trajectories of the triple-negative primary (left panel) and
metastasis (right panel) subgroups for the breast cancer data [16].
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3. Meinshausen, N. & Bühlmann, P. Stability selection. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72, 417–473 (2010).

4. Schill, R., Solbrig, S., Wettig, T. & Spang, R. Modelling cancer progression using Mutual Hazard
Networks. Bioinformatics 36, 241–249 (2020).

5. Caravagna, G. et al. Detecting repeated cancer evolution from multi-region tumor sequencing data.
Nature Methods 15, 707–714 (2018).

6. Khakabimamaghani, S. et al. Collaborative intra-tumor heterogeneity detection. Bioinformatics 35,
i379–i388 (2019).

7. Bengtsson, H. profmem: Simple Memory Profiling for R R package version 0.6.0 (2020). https://
CRAN.R-project.org/package=profmem.

8. Morita, K. et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell
genomics. Nature Communications 11, 5327 (2020).

9. Jahn, K., Kuipers, J. & Beerenwinkel, N. Tree inference for single-cell data. Genome Biology 17, 86
(2016).

10. Hodzic, E. et al. Identification of conserved evolutionary trajectories in tumors. Bioinformatics 36,
i427–i435 (2020).

11. Pellegrina, L. & Vandin, F. Discovering significant evolutionary trajectories in cancer phylogenies.
Bioinformatics 38, ii49–ii55 (2022).

12. Jamal-Hanjani, M. et al. Tracking the evolution of non–small-cell lung cancer. New England Journal of
Medicine 376, 2109–2121 (2017).

13. Caravagna, G. evoverse.datasets: Data released in the evoverse. R package version 0.1.0 (2021).

14. Christensen, S., Kim, J., Chia, N., Koyejo, O. & El-Kebir, M. Detecting evolutionary patterns of cancers
using consensus trees. Bioinformatics 36, i684–i691 (2020).

15. El-Kebir, M., Satas, G., Oesper, L. & Raphael, B. J. Inferring the mutational history of a tumor using
multi-state perfect phylogeny mixtures. Cell Systems 3, 43–53 (2016).

16. Razavi, P. et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell
34, 427–438 (2018).

39

https://CRAN.R-project.org/package=profmem
https://CRAN.R-project.org/package=profmem

	Tree generating process and parameter estimation methods for TreeMHN
	Tree generating process pseudocode
	Tree generating process as a continuous-time Markov chain
	Maximum likelihood estimation of an MHN given a set of trees
	Hybrid EM and Monte Carlo EM algorithm for the estimation of an MHN given a set of trees
	Parameter estimation based on non-empty trees

	TreeMHN with stability selection
	Computing probabilities of trajectories and mutational events with TreeMHN
	Most probable evolutionary trajectories
	Alternative methods to compute the probabilities of mutational events

	Additional simulation details
	Precision and recall of identifying the true MHN
	Computing trajectory probabilities with REVOLVER and HINTRA
	Introducing noise into simulated trees
	Additional figures from simulations

	Application to acute myeloid leukemia data
	Preprocessing of the data
	Additional figures

	Application to non-small-cell lung cancer data
	Preprocessing of the data
	Additional figures

	Application to breast cancer data
	Preprocessing of the data
	Additional figures

	References

