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Reviewer comments, first round 

 

Reviewer #1 (Remarks to the Author): 

 

Review of "Joint inference of exclusivity patterns and recurrent trajectories from tumor mutation 

trees" 

 

 

This paper introduces TreeMHN, a novel probabilistic framework for inferring recurrent 

evolutionary trajectories and exclusivity patterns from tumor phylogenetic trees. It has been 

previously reviewed and presented at RECOMB 2022. While most of the evidence suggests that 

this is an interesting work and a valuable methodological addition to the existing literature on 

cancer progression, I have not found it very straightforward to follow the paper, especially the part 

describing the methods. I noticed that some of the RECOMB reviewers had similar issues. This is 

perhaps due to the fact that this is still relatively new area of research and research community 

has quite limited familiarity with this type of methods, including their underlying assumptions, 

common input formats, terminology, and others. Therefore I strongly recommend the authors to 

put additional effort into presentation, expand and simplify the methods description and minimize 

dependence on the existing literature wherever possible. If that may be of some help, I 

recommend doing something at least similar to as to what they have previously done in their 

excellently written paper describing SCITE, https://doi.org/10.1186/s13059-016-0936-x. 

Unfortunately I do not find the TreeMHN paper in the current form as clear enough and easy to 

follow. 

 

 

I also have some additional questions, suggestions about potential additional experiments and 

disagreements about some statements made in the manuscript. 

 

 

Overall, I believe that all of my concerns are addressable and therefore, for this round of review, 

my recommendation for this submission is a major revision. 

 

 

COMMENTS and SUGGESTIONS: 

 

1. I found it challenging to understand some important basic details of the method. In particular, I 

had issues with understanding the following: 

 

 

- What is the input to this method? I first assumed it to be a set of mutation trees where trees are 

obtained at the level of individual patients (like in AML dataset). However, after checking Figure 1, 

I noticed the following sentence "Given an MHN, TreeMHN generates heterogeneous mutation 

trees (left panel)". Then, in one of the following sentences, one can find "Given a set of trees for a 

patient cohort (left panel)". So, what is in the left panel in Figure 1? Are the mutation trees shown 

in this panel given as a part of the input and are static, or they are given as the input but can be 

updated while the method is run, or something else is the case? 

 

- is there a difference between the terms "trajectory" and "pathway"? 

 

- what is the output of this method? Would it be possible to provide a separate subsection, which 

would clearly and in a mathematically concise way describe all outputs? 

 

- given a tumor tree, in order to predict the next most likely mutational event, does the method 

need any additional information other than the parameter values inferred from some cohort of 

patients? Considering the extent of intra-tumor and inter-tumor heterogeneity, it would come quite 

surprising that this can be done reliably. Taking into account their size, do the datasets used in 

this study offer statistically strong evidence that these predictions are accurate and reliable in 



practice? I noticed that some applications are presented on Page 6. Have these patients for which 

predictions were made been excluded from the training? How large the probabilities of the 

occurrence of a particular event as the next event are? What comes first to my mind is that the 

method would in most cases report a collection of probable variants with close probabilities, which 

are usually small numbers. For example, reporting five mutations A,B,C,D,E to be the next most 

likely events with probabilities 0.05, 0.048, 0.46, 0.044, 0.042 (the list would usually be longer 

when non-targeted sequencing is employed). How would one exploit this information in patient 

treatment in real clinical applications? 

 

 

- In my interpretation of the upper right panel of Figure 1, the method also reports relative time 

that passes between the occurrence of specific pairs of mutations. Isn't this time very dependent 

on so many other factors (variants not included in the targeted panels used for generating AML 

dataset, epigenetics, exogeneous factors etc.) that it is in fact hardly predictable from the 

currently available DNA sequencing datasets? 

 

- I might later have some additional questions for the other parts of the methods description. 

 

2. Related to Figure 5, CONETT is one of the existing methods for finding repeated evolutionary 

trajectories. Are there some recurrent trajectories in this dataset that could be identified by 

CONETT as present in significant number of patients, which are missing in Figure 5? Here, one (not 

necessarily the best) way to define "significant" is as follows: for each of the 40 trajectories shown 

in Figure 5, compute the number of patients in which it is present and then take the median of 

these 40 numbers and set it as a lower threshold in CONETT (i.e., require at least so many 

patients to have a trajectory in order to report it in the output). In addition, could these 40 

numbers be added to Figure 5 as a separate column? 

 

 

3. I noticed that at several places it is emphasized that this method can handle parallel mutations. 

One of the sentences related to this is "For computational convenience, most existing tree 

reconstruction algorithms adopt the infinite sites assumption (ISA), i.e. they require that each 

mutational event (e.g. an SNV) is gained at most once." 

I do not understand why this assumption is problematized and brought up in a tone that suggests 

it to be a noticeable limitation of tree reconstruction algorithms (maybe I am just 

misunderstanding its main message). Parallel mutations in the same gene are not challenging for 

most of such algorithms as soon as they occur at different genomic loci, which is expected to be 

true in most cases where multiple SNVs affect the same gene. The reason is simple: mutations in 

the input to these methods are identified by unique mutation IDs, which do not have to be equal 

to gene names. So, as soon as two SNVs occur at different loci, even if they affect the same gene, 

they can be assigned unique identifiers distinguishing them. Examples of this can be found in AML 

trees inferred by SCITE and used in this work. It can occasionally happen that the very same 

location is mutated twice, but such cases are rare and on top of that the noise that they generate 

is usually too weak to have a prominent effect on the structure/accuracy of the reconstructed tree. 

What can be indeed challenging and have an impact on the tree structure are losses of mutations, 

but they are not handled in this work. Is it perhaps that, instead of referring to tree reconstruction 

algorithms, the authors were aiming to stress that the methods which are direct competitors to 

TreeMHN can not handle parallel mutations, whereas TreeMHN can? 

 

 

4. In the section presenting application to AML dataset it is stated that it was assumed that all 

point mutations in the same gene have similar effect. Has any distinction been made between 

synonymous and non-synonymous point mutations or the former are not included at all into the 

analysis? 

 

 

Reviewer #2 (Remarks to the Author): 

 

This paper introduces TreeMHN, a method for the joint inference of mutual exclusivity patterns and 

recurrent trajectories from a cohort of tumor phylogenies. Additionally TreeMHN supports the 



prediction of subsequent mutational events given a tree. This is a timely topic, and the results are 

comprehensive. The paper has been reviewed previously at RECOMB, and the authors were 

responsive to the feedback. I only have a few comments. 

 

1. Better presentation of results 

 

The results are hard to follow without reading the Methods section. 

 

* While I understand that details need to be delegated to Methods and the supplement, it would 

help to expand the TreeMHN overview paragraph so that the Results section can be read and 

understood after reading the Introduction. What precisely does \theta_ij indicate? Moreover, it 

would be good to describe the difference between "genotype MHN" and "tree MHN". Moreover, give 

an informal definition of "trajectory". And discuss the stability selection. Also, provide an informal 

definition of "evolutionary trajectory". 

 

* Because of the terse TreeMHN overview section, the simulation section in the Results is hard to 

read. First, no overview of the simulation experiments is given (What range of mutations are you 

considering? How many patients? How did you run other methods? What is genotype MHN? What 

is stability selection?). Second, parameter N (the number of trees in the cohort) is not described. 

Third, the ground truth is not clear -- what precisely is recall and precision showing? Do you ignore 

the sign of the interaction? Fourth, what are "higher baseline rates", larger number of trees and 

mutations? Please define baseline rate. 

 

* Figure 3: was stability selection use for TreeMHN and GenotypeMHN? 

 

* AML data, assessment of estimation of conditional probabilities. It is not clear what the TreeMHN 

baseline method corresponds to. Nor is it clear what the difference is between MHN consensus and 

MHN weighted. The latter could have been introduced in the TreeMHN overview section. Finally, 

Figure 6b -- the rationale of comparing against a frequency-based model is not given. One could 

also use the metric used in 6c, which is more direct. 

 

* Figure 8: convention is to shade the observed variables, not the latent/hidden variables. 

 

2. Assess tree selection 

 

My only other remaining comment is that the TreeMHN model supports computing p(T | Theta) 

and also supports multiple trees per patient. It would be good to assess using simulations whether 

the ground-truth tree received maximum probability. 
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Overview
We would like to thank all reviewers for their careful reviews and constructive comments, which have
considerably helped with improving the clarity and the quality of the manuscript. We have addressed all
comments point by point and incorporated their suggestions into the revision. The major changes are:

● We have put considerable effort into improving the presentation of the results and the readability
of the manuscript, including rewriting the entire TreeMHN overview section. We feel that the
changes will now allow the reader to more easily understand how TreeMHN works and to follow
the Results section without diving into the Methods section.

● We conducted additional experiments, including lowering the number of samples in simulations
and comparing TreeMHN to CONETT and MASTRO on the AML trajectories.

● We now elaborate in Methods on all technical details regarding the performance assessment on
the predictions of the next mutational events shown in Figure 6. For Figure 6b, we re-ran the
experiments by excluding for learning the samples on which the predictions are made.

Other specific changes and additions are provided in the following detailed response (our response in
blue, the reviewers’ comments in black). All page and reference numbers in our response are based on the
revised manuscript, unless otherwise stated. The page and reference numbers mentioned in the reviewers’
comments are kept intact and refer to the original manuscript. We sincerely appreciate the time and effort
that the reviewers dedicated to reviewing this manuscript.
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Reviewer #1

Overall Comments

This paper introduces TreeMHN, a novel probabilistic framework for inferring recurrent evolutionary
trajectories and exclusivity patterns from tumor phylogenetic trees. It has been previously reviewed and
presented at RECOMB 2022. While most of the evidence suggests that this is an interesting work and a
valuable methodological addition to the existing literature on cancer progression, I have not found it very
straightforward to follow the paper, especially the part describing the methods. I noticed that some of the
RECOMB reviewers had similar issues. This is perhaps due to the fact that this is still relatively new area
of research and research community has quite limited familiarity with this type of methods, including
their underlying assumptions, common input formats, terminology, and others. Therefore I strongly
recommend the authors to put additional effort into presentation, expand and simplify the methods
description and minimize dependence on the existing literature wherever possible. If that may be of some
help, I recommend doing something at least similar to as to what they have previously done in their
excellently written paper describing SCITE, https://doi.org/10.1186/s13059-016-0936-x. Unfortunately I
do not find the TreeMHN paper in the current form as clear enough and easy to follow.

I also have some additional questions, suggestions about potential additional experiments and
disagreements about some statements made in the manuscript.

Overall, I believe that all of my concerns are addressable and therefore, for this round of review, my
recommendation for this submission is a major revision.

Comments and suggestions

1. I found it challenging to understand some important basic details of the method. In particular, I
had issues with understanding the following:

● What is the input to this method? I first assumed it to be a set of mutation trees where trees are
obtained at the level of individual patients (like in AML dataset). However, after checking Figure
1, I noticed the following sentence "Given an MHN, TreeMHN generates heterogeneous mutation
trees (left panel)". Then, in one of the following sentences, one can find "Given a set of trees for a
patient cohort (left panel)". So, what is in the left panel in Figure 1? Are the mutation trees shown
in this panel given as a part of the input and are static, or they are given as the input but can be
updated while the method is run, or something else is the case?

The input of the method is indeed a set of mutation trees obtained at the level of individual patients,
which is static and not updated while the method is run. The tree-generating process is the modeling
assumption of TreeMHN; it should not be confused with the inference procedure which solves the inverse
problem, i.e., given a set of trees to find the MHN. To avoid confusion, we have removed the “generate”
arrow from Figure 1, which now represents the inference process, and clarified in the TreeMHN overview
section what the input is:
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p.3 “To perform inference with TreeMHN, the input is a set of N independent tumor mutation
trees with a total number of n mutations, which may be constructed from bulk, multi-region, or
single-cell sequencing data using phylogenetic methods…”

● Is there a difference between the terms "trajectory" and "pathway"?

No, we used the terms “evolutionary trajectories” and “mutational pathways” interchangeably in the
previous manuscript. Both terms refer to sequences of mutations and can be found in existing literature.
We agree that this is confusing for the reader. Therefore, we now use only “trajectories” or “evolutionary
trajectories” in the manuscript.

● What is the output of this method? Would it be possible to provide a separate subsection, which
would clearly and in a mathematically concise way describe all outputs?

Given a set of N mutation trees with a total number of n mutations as input, the output of TreeMHN is an
n-by-n matrix, representing the Mutual Hazard Network. The diagonal entries of this matrix indicate how
often each mutation will occur and fixate independent of the other mutations. The off-diagonal entries
encode the exclusivity and co-occurrence patterns of mutations. Conditioned on the estimated matrix, we
can compute the probabilities of different evolutionary trajectories or evaluate the most likely next
mutational events given a tumor tree. While keeping the mathematical details in Methods, we have
revised the TreeMHN overview section considerably, which should now clarify conceptually what the
output of TreeMHN is:

p.3 “... The output is , an estimated MHN describing the exclusivity and co-occurrenceΘ
patterns of mutations for the given cohort […] Furthermore, the estimated model allows us to
compute the probabilities of different evolutionary trajectories or evaluate the most likely next
mutational events given a tumor tree using the properties of exponential distributions …”

● Given a tumor tree, in order to predict the next most likely mutational event, does the method
need any additional information other than the parameter values inferred from some cohort of
patients? Considering the extent of intra-tumor and inter-tumor heterogeneity, it would come
quite surprising that this can be done reliably. Taking into account their size, do the datasets used
in this study offer statistically strong evidence that these predictions are accurate and reliable in
practice? I noticed that some applications are presented on Page 6. Have these patients for which
predictions were made been excluded from the training? How large the probabilities of the
occurrence of a particular event as the next event are? What comes first to my mind is that the
method would in most cases report a collection of probable variants with close probabilities,
which are usually small numbers. For example, reporting five mutations A,B,C,D,E to be the next
most likely events with probabilities 0.05, 0.048, 0.46, 0.044, 0.042 (the list would usually be
longer when non-targeted sequencing is employed). How would one exploit this information in
patient treatment in real clinical applications?
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➔ TreeMHN only requires the estimated Mutual Hazard Network to predict the most likely next
mutational events given a tumor tree. No other information is needed, as stated in the Methods
(Eq (14)) and illustrated in Figure 1.

➔ The extensive intra-tumor and inter-tumor heterogeneity indeed makes predicting the next event
challenging; hence the probability of any particular event is low. Even though it is a challenging
task, we still wish to make the best predictions we can, which is why we make our best efforts to
evaluate how reliable the TreeMHN predictions are. We would like to emphasize that TreeMHN
is the first and only method we know of to compute the probability of an event given a tumor tree.
Nevertheless, we adapt five alternative approaches (now elaborated in Methods) to this task and
show that TreeMHN predictions are statistically significantly better (Figure 6b).

➔ In the previous version of the manuscript, we did exclude the longitudinal samples from training
for all methods but missed that for the retrospective case (for all methods). Thanks to the
reviewer’s comment, this is now corrected and clarified:

p.14 “… For retrospective predictions, we first take a primary tumor tree and exclude it from
training. Then, we enumerate all its rooted subtrees and their corresponding downstream events,
followed by computing the probability of each downstream event conditioned on its parent subtree
and the estimated network (Eq. (14)). For forward predictions, on the other hand, we take the
longitudinal samples and consider only those tree pairs on consecutive time points, where the
second tree has mutations not present in the first tree. We compute the probabilities for the new
events using the matrix estimated from the 123 primary tumor trees (i.e. longitudinal samples are
excluded from training) …”

➔ We now display the probabilities of the next events in Supplementary Figure S17 & S18 for both
retrospective predictions on rooted subtrees and forward predictions on longitudinal samples. In
Figure S17, the probabilities are seemingly small (mostly between 0.01 and 0.1) because we only
focus on the events that actually happened. In Figure S18, we display the probability distributions
of all possible events given a tree and observe that not all events receive similar probabilities. For
TreeMHN in particular, most of the events have very low probabilities, and only a few of them,
including seven out of the nine new events reported in the main text, are orders of magnitude
higher. When there are many possible events, it is natural that their probabilities are small.
Therefore, we are interested rather in their relative probabilities. As noted in the revised
manuscript,

p.14 “… We say that a method has better predictive performance if the event that actually
happened ranks higher by that method compared to all other possible events. We therefore
compare the percentile ranks of the next events. In the case of ties, we take the average percentile
rank of the tied events.”

➔ We agree that evolutionary prediction is in general a very difficult task. Related to the next
question, reliable predictions also depend on many other factors, such as unknown driver
mutations, epigenetics, tumor microenvironmental changes, etc. To bring such results to clinical
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applications, we still need real experiments to verify the events that receive higher rankings and
further develop the model. Nevertheless, we find it very encouraging that TreeMHN shows
improved results on this task and opens up more opportunities for precision medicine.

● In my interpretation of the upper right panel of Figure 1, the method also reports relative time that
passes between the occurrence of specific pairs of mutations. Isn't this time very dependent on so
many other factors (variants not included in the targeted panels used for generating AML dataset,
epigenetics, exogeneous factors etc.) that it is in fact hardly predictable from the currently
available DNA sequencing datasets?

Since we model the waiting times until the occurrence of new subclones using exponential distributions, it
is mathematically straightforward to compute the probabilities and the expected waiting times of
evolutionary trajectories as well as the probabilities of the next mutational events given a tumor tree using
the properties of competing exponentials (the minimum of a set of independent exponential random
variables). However, like all other cancer progression models, we assume that we have included all
important mutational events and the tumor microenvironment stays unchanged over time. Even without
hidden factors, the expected times are relative to the sampling rate, which is assumed to be 1 for
identifiability, so the reported times cannot be interpreted as real time. We nevertheless show the expected
waiting times in the manuscript to demonstrate that in principle this can be done by TreeMHN (and
waiting times may be interpretable with additional knowledge about the sampling time relative to the start
of the evolutionary process), whereas alternative methods such as REVOLVER generally can not provide
such estimates. With increasing longitudinal and clinical data in the future, it may be possible to extend
TreeMHN and estimate the times more accurately. We now talk about this in the Discussion:

p.10 “... Given the estimated parameters, TreeMHN allows us to compute the probabilities of
different evolutionary trajectories and the expected waiting times between mutational events.
However, in general, these waiting times cannot be interpreted as real calendar time since they
are with respect to the unknown sampling times and the scaling factor is therefore unknown. One
remedy is to use longitudinal data, where the sampling time is either provided or can be inferred
from data. Including observed sampling times is technically possible [54], but such data are often
difficult to obtain without having treatment interventions. Modelling drug response data, or
including other exogenous factors, is a crucial but challenging direction to explore, for which
TreeMHN may serve as a basis.”

● I might later have some additional questions for the other parts of the methods description.

2. Related to Figure 5, CONETT is one of the existing methods for finding repeated evolutionary
trajectories. Are there some recurrent trajectories in this dataset that could be identified by
CONETT as present in significant number of patients, which are missing in Figure 5? Here, one
(not necessarily the best) way to define "significant" is as follows: for each of the 40 trajectories
shown in Figure 5, compute the number of patients in which it is present and then take the median
of these 40 numbers and set it as a lower threshold in CONETT (i.e., require at least so many
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patients to have a trajectory in order to report it in the output). In addition, could these 40
numbers be added to Figure 5 as a separate column?

As suggested by the reviewer, we now include in Supplementary Figure S12 a comparison with CONETT
on the top 40 most probable evolutionary trajectories inferred by TreeMHN from the AML dataset.
Specifically, we add a new column indicating the number of times each trajectory appears in the transitive
closures of the mutation trees, and the median of the 40 numbers is 10.5. The germline-rooted
evolutionary trajectory tree computed by CONETT, which is conserved in at least 11 patients at 10%
significance level, is highly consistent with the TreeMHN most probable trajectories. In particular, none
of the trajectories identified by CONETT are missing in the TreeMHN analysis.

Moreover, MASTRO (Pellegrina & Vandin, 2022) is a newly published approach that extends the idea of
CONETT by searching for all possible trajectories conserved in at least a certain number of patients,
instead of a single conserved evolutionary trajectory tree that can describe the pattern in as many tumors
as possible. In Supplementary Figure S13 we show that the majority of the most significant trajectories
reported by MASTRO (Figure S5 of Pellegrina & Vandin, 2022) can be found in the most probable
trajectories inferred by TreeMHN. Therefore, the TreeMHN results are more comprehensive given the
additional estimates of trajectory probabilities, expected waiting times, and probabilities of future events
given a tumor tree.

To avoid adding too much technical information in the main text and facilitate readability for broader
audiences, we keep both figures in the supplementary materials and add cross-references in Results:

“Next, we infer the most probable evolutionary trajectories from the estimated network (Methods
& Figure 5), which are consistent with the significantly conserved ones identified by CONETT
and MASTRO (Supplementary Figures S11 & S12)...”

3. I noticed that at several places it is emphasized that this method can handle parallel mutations.
One of the sentences related to this is "For computational convenience, most existing tree
reconstruction algorithms adopt the infinite sites assumption (ISA), i.e. they require that each
mutational event (e.g. an SNV) is gained at most once." I do not understand why this assumption
is problematized and brought up in a tone that suggests it to be a noticeable limitation of tree
reconstruction algorithms (maybe I am just misunderstanding its main message). Parallel
mutations in the same gene are not challenging for most of such algorithms as soon as they occur
at different genomic loci, which is expected to be true in most cases where multiple SNVs affect
the same gene. The reason is simple: mutations in the input to these methods are identified by
unique mutation IDs, which do not have to be equal to gene names. So, as soon as two SNVs
occur at different loci, even if they affect the same gene, they can be assigned unique identifiers
distinguishing them. Examples of this can be found in AML trees inferred by SCITE and used in
this work. It can occasionally happen that the very same location is mutated twice, but such cases
are rare and on top of that the noise that they generate is usually too weak to have a prominent
effect on the structure/accuracy of the reconstructed tree. What can be indeed challenging and
have an impact on the tree structure are losses of mutations, but they are not handled in this work.
Is it perhaps that, instead of referring to tree reconstruction algorithms, the authors were aiming to
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stress that the methods which are direct competitors to TreeMHN can not handle parallel
mutations, whereas TreeMHN can?

Yes, we wanted to emphasize that TreeMHN can handle parallel mutations, while many of the alternative
approaches cannot, such as REVOLVER, HINTRA, and RECAP. In fact, CONETT and MASTRO can
also handle parallel mutations, but these two approaches do not provide probabilistic measures of future
events given a trajectory or a tree and thus cannot be easily adapted for evolutionary predictions. The
reviewer is correct that this is not a major drawback of the tree reconstruction algorithms. We have
revised the manuscript as follows:

p.11 “… For computational convenience, many of the alternatives capable of inferring
repeated evolutionary trajectories (e.g., REVOLVER, HINTRA, RECAP) require the infinite sites
assumption (ISA), i.e. each mutational event (e.g., an SNV) is gained at most once …”

Currently TreeMHN does not take into account losses of mutations, and we have noted this limitation in
Discussion:

p.10 “… Like all other progression models, however, TreeMHN currently does not consider
back mutations, i.e. situations in which a mutation is acquired at first but subsequently lost [57,
58]. A possible extension along this line is to include additional parameters and use as input
phylogenetic trees inferred by methods such as SCARLET [59], which views a decrease in copy
numbers that overlap a mutated locus as evidence of back mutations …”

4. In the section presenting application to AML dataset it is stated that it was assumed that all point
mutations in the same gene have similar effect. Has any distinction been made between
synonymous and non-synonymous point mutations or the former are not included at all into the
analysis?

The AML dataset we analyzed does not include any synonymous mutations (see Supplementary Data 1 of
Morita et al., 2020). We now add this information to the manuscript:

p.5 “We apply TreeMHN to the cohort of N = 123 AML patient samples analyzed in [21] by
high-throughput single-cell panel sequencing, which involves 543 somatic mutations in n = 31
cancer-associated genes and does not include any synonymous mutations …”
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Reviewer #2

Overall Comments

This paper introduces TreeMHN, a method for the joint inference of mutual exclusivity patterns
and recurrent trajectories from a cohort of tumor phylogenies. Additionally TreeMHN supports
the prediction of subsequent mutational events given a tree. This is a timely topic, and the results
are comprehensive. The paper has been reviewed previously at RECOMB, and the authors were
responsive to the feedback. I only have a few comments.

Comments and suggestions

1. Better presentation of results

The results are hard to follow without reading the Methods section.

● While I understand that details need to be delegated to Methods and the supplement, it would help
to expand the TreeMHN overview paragraph so that the Results section can be read and
understood after reading the Introduction. What precisely does \theta_ij indicate? Moreover, it
would be good to describe the difference between "genotype MHN" and "tree MHN". Moreover,
give an informal definition of "trajectory". And discuss the stability selection. Also, provide an
informal definition of "evolutionary trajectory".

We have revised the Introduction and the entire TreeMHN overview section by summarizing conceptually
and comprehensively the technical details from Methods to enable a smooth transition from Introduction
to Results:

➔ We explain in words the meaning of and modify the middle panel of Figure 1 to help theθ
𝑖𝑗

readers to visualize the equivalence between the matrix off-diagonal entries and the edges in the
network:

p.3 “... Mutations can have positive (co-occurring), negative (exclusive), or zero (no) effects
on the rates of downstream mutations. This is encoded by the off-diagonal entries with{θ

𝑖𝑗
}

𝑖,𝑗∈[𝑛]

an equivalent graphical structure (Figure 1). If is positive, mutation increases the rate ofθ
𝑖𝑗

𝑗

mutation (denoted by an edge ). If is negative, mutation decreases the rate of𝑖 𝑗 → 𝑖 θ
𝑖𝑗

𝑗

mutation (denoted )…”𝑖 𝑗 ⟞ 𝑖

➔ In the Introduction, we first bring up the genotype MHN method in the summary of cancer
progression models (CPMs):

p.2 “... A recent method, called Mutual Hazard Networks (MHNs), does not explicitly group
exclusive mutations but re-parameterizes mutational waiting times using a matrix that encodes
both co-occurrence and exclusivity …”
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Later, we point out the main difference between TreeMHN and CPMs, including the genotype
MHN:

p.2 “... Unlike classical CPMs, including the genotype MHN method of Schill et al.,
TreeMHN considers the complete mutational histories of tumors and their subclonal structures
represented by the intra-tumor mutation tree rather than the overall presence and absence of
mutations …”

➔ We provide an informal definition of “evolutionary trajectory”:

p.2 - p.3 “... Each path from the root to a node in the tree constitutes an evolutionary
trajectory , which characterizes the successive accumulation of mutations and uniquely definesπ
a subclone …”

➔ We discuss stability selection before simulation results:

p.3 “... The number of parameters to estimate ( ) often exceeds the number of observations𝑛2

( ). To prevent model overfitting, we can run TreeMHN with stability selection [33], where the𝑁
parameters in are estimated over many subsamples of the trees, and only those having a highΘ
probability of being non-zero are kept. This procedure can significantly improve the precision of
identifying the true relationships among the mutations …”

● Because of the terse TreeMHN overview section, the simulation section in the Results is hard to
read. First, no overview of the simulation experiments is given (What range of mutations are you
considering? How many patients? How did you run other methods? What is genotype MHN?
What is stability selection?). Second, parameter N (the number of trees in the cohort) is not
described. Third, the ground truth is not clear -- what precisely is recall and precision showing?
Do you ignore the sign of the interaction? Fourth, what are "higher baseline rates", larger number
of trees and mutations? Please define baseline rate.

Along with rewriting the TreeMHN overview section, as suggested by the reviewer, we have also made
considerable revision to the simulation section in Results. In particular,

➔ We now provide an overview of the simulation experiments:

p.4 “Through simulations, we assess the performance of TreeMHN in comparison to
alternative methods in estimating exclusivity patterns and associated distributions of evolutionary
trajectories from mutation trees. For each simulation run, we randomly generate a ground truth
network with n mutations and a set of N mutation trees. Using the N simulated trees as input,Θ
we run TreeMHN along with the genotype MHN method [30], REVOLVER [7], and HINTRA [8].
We consider different configurations of simulation experiments, including varying the number of
mutations n and the number of trees N. For each configuration, we perform 100 repetitions. More
simulation details are provided in the Methods.”
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➔ Regarding the ground truth network, precision, and recall, we provide a brief description in the
simulation results as well as a formal definition in Supplementary Section D.1:

p.4 “We first evaluate how well TreeMHN can estimate the patterns of clonal co-occurrence

and exclusivity by computing the structural differences between the estimated network and theΘ
ground-truth network . Specifically, we measure the precision and recall of identifying the trueΘ

edges in . An estimated off-diagonal entry in is a true positive if and only if it is non-zero andΘ Θ
has the correct sign (Supplementary Figure S3) ...”

In both places, we have made it clear that we take into account the signs of the interactions when
assessing the structural differences.

➔ We define the baseline rates in the TreeMHN overview, which is before the simulation overview:

p.3 “... The diagonal entries are the baseline rates of evolution, indicating how{Θ
𝑖𝑗

}
𝑖,𝑗∈[𝑛]

quickly each mutation will occur and fixate in a subclone independent of the other mutations …”

➔ Other details, including how we run alternative methods, are provided in the Methods section and
Supplementary Section D in order to keep simulation results concise.

● Figure 3: was stability selection use for TreeMHN and GenotypeMHN?

Yes, we used stability selection for both TreeMHN and the genotype MHN, and we now clarify this in
simulation results:

p.5 “... For TreeMHN and genotype MHN, we additionally implemented the stability
selection procedure over a set of regularization parameters {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3},γ ∈
where larger values of promote sparser network structures and prevent model overfitting …”γ

However, it is computationally too demanding to run genotype MHN with stability selection for .𝑛 = 20
Hence, we omit the corresponding curves in Figure 3 given the clear gaps between the two methods in
other cases. This information is provided in the figure caption.

● AML data, assessment of estimation of conditional probabilities. It is not clear what the
TreeMHN baseline method corresponds to. Nor is it clear what the difference is between MHN
consensus and MHN weighted. The latter could have been introduced in the TreeMHN overview
section. Finally, Figure 6b -- the rationale of comparing against a frequency-based model is not
given. One could also use the metric used in 6c, which is more direct.

We now provide all technical details, including the description of alternative methods, in the Methods
section:
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p.14 “… We evaluate TreeMHN predictions on the AML dataset [21]. We perform both
retrospective predictions on the rooted subtrees of the 123 primary tumor trees and forward
predictions using the longitudinal samples from 15 patients in the same dataset (Figure 6a) […]
While TreeMHN is unique in this task, we adapt five alternative methods for comparison …”

As suggested by the reviewer, we have replaced the metric in Figure 6b with the metric in Figure 6c,
which is the percentile rank:

p.14 “… We say that a method has better predictive performance if the event that actually
happened ranks higher by that method compared to all other possible events. We therefore
compare the percentile ranks of the next events. In the case of ties, we take the average percentile
rank of the tied events. ”

● Figure 8: convention is to shade the observed variables, not the latent/hidden variables.

We have modified Figure 8 such that only the observed variable, the mutation tree structure, is shaded.

2. Assess tree selection

My only other remaining comment is that the TreeMHN model supports computing p(T | Theta)
and also supports multiple trees per patient. It would be good to assess using simulations whether
the ground-truth tree received maximum probability.

While TreeMHN supports computing p(T | Theta), it is not a phylogenetic tree reconstruction algorithm.
Instead of taking patient-level sequencing data as input to reconstruct a phylogenetic tree, we take a
collection of trees across patients obtained from independent phylogenetic methods (e.g. SCITE) to infer
the underlying Theta. In other words, we cannot assess whether the ground-truth tree receives the
maximum probability, because this probability is with respect to the sequencing data which we do not
work with directly. Apart from being computationally much more efficient, working directly with the
trees allows for greater flexibility of adapting TreeMHN to future improvements in phylogenetic methods.
It is also possible to combine different phylogenies from various sources (e.g. SCITE, SiFit, SCI N, etc.)Φ
to take into account different modeling assumptions. We are aware that input tree structures can be noisy
and thereby evaluated the robustness of TreeMHN against such uncertainty in simulations (see
Supplementary Section D.3, Supplementary Figure S5 & S6). For real data applications, one may sample
the trees for each patient proportionally to their posterior probabilities and take them as weighted inputs to
TreeMHN.
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Reviewer #3

Overall Comments

Overall, a nice conceptual idea (and probabilistic modeling work) that clearly extends current theories and
tools. While conceptually superior, I am not entirely convinced that the results are markedly better on the
real datasets, which are often quite sparse/heterogeneous.

Comments and suggestions

1. Need to better describe the nature of the study cohort. Does TreeMHN require trees deriving from
independent tumors? If the tumors are not independent, i.e., in the settings of
multi-region/longitudinal sampling of same patients, how does TreeMHN deal with the
interdependence, and would the accuracy be affected?

Yes, TreeMHN takes trees reconstructed from independent tumors as input. These trees can be derived
from single-cell, multi-region (sampled from the same tumor), or bulk sequencing data. This is now
clarified in the revised TreeMHN overview section:

p.3 “To perform inference with TreeMHN, the input is a set of N independent tumor mutation
trees with a total number of n mutations, which can be constructed from bulk, multi-region, or
single-cell sequencing data using phylogenetic methods…”

While the current version of TreeMHN does not account for the case of metastasis, where tumors are in
different locations of the same body, or the case of longitudinal sampling, we believe it can serve as a
basis for future methods.

2. While illustrating the points, simulation parameters (n<100, N>100) do not match those from a
typical study cohort (n>100, N<200), e.g., the AML cohort, which often have more mutations and
less patients. In what ranges of parameters that TreeMHN perform well, comparatively to other
simpler (yet likely more robust) programs?

Yes, the reviewer is correct that the real datasets often have more mutations and fewer patients. By adding
the case in simulation experiments, we see that the performance continues to drop with𝑁 = 100
decreasing sample size. In general, the situation when the number of parameters to estimate is much
larger than the number of samples available, i.e., the N << p setting (Bühlmann & van de Geer, 2011),
poses difficulty in robust parameter estimation and is not unique to TreeMHN. We are aware of this
problem and hence implement the stability selection procedure (Meinshausen & Bühlmann, 2010), where
the parameters are estimated over many subsamples of the trees, and only those having a high probability
of being non-zero are kept (Supplementary Section B). We show in simulations that stability selection
effectively improves the precision of identifying the true parameters although at the cost of lower recall.
In real data analyses, we continue to apply stability selection to reduce the number of false positives.
Apart from stability selection, one may need additional restrictions on the set of mutational events being
considered in order to gain enough statistical power to detect any interactions between events. For
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example, the AML dataset involves 123 patients and 543 point mutations in 31 genes (Morita et al.,
2020). At the point mutation level, the same event almost never recurs across the patients, making it
impossible for any methods to infer statistically significant signals between events given the small sample
size. To increase statistical power, when collecting more data cannot be done in the short run (see related
question below), we choose to summarize the events at the gene level by assuming all non-synonymous
point mutations in the same gene to have similar effects. This assumption is also biologically motivated
and not uncommon across state-of-the-art methods for detecting repeated evolutionary trajectories
(REVOLVER, HINTRA, RECAP, CONETT, MASTRO) from a small set of heterogeneous mutation
trees. Even after reducing the number of events, interactions between rare events are still hard to detect,
and the corresponding parameters will be set to zero by stability selection (see Supplementary Figure S11
& S19). Hence, there is a tradeoff between considering each unique event versus a smaller set of more
coarse-grained events, which allows for more efficient inference of their dependencies..

In both simulations and real data applications, we have benchmarked TreeMHN against both simple
baselines and the state-of-the-art methods that we know of, including adding new comparisons with
CONETT and MASTRO for the AML dataset as suggested by Reviewer 1 (Supplementary Figure S12 &
S13). The TreeMHN results are consistent with other methods and demonstrate superior performance.

3. While overall writing (including Methods/Sup. Doc) is fine, many detailed concepts/approaches
appear cryptic to readers in the main text. Please streamline.

a. Page 3, it will be helpful to briefly describe how simulation was done and why is it
realistic, before presenting the evaluation results. Current presentation is
technical/superficial, making it difficult to appreciate the biological
relevance/significance of the results.

As suggested by the reviewer, we now provide an overview of the simulation experiments:

p.4 “Through simulations, we assess the performance of TreeMHN in comparison to
alternative methods in estimating exclusivity patterns and associated distributions of evolutionary
trajectories from mutation trees. For each simulation run, we randomly generate a ground truth
network with n mutations and a set of N mutation trees. Using the N simulated trees as input,Θ
we run TreeMHN along with the genotype MHN method [30], REVOLVER [7], and HINTRA [8].
We consider different configurations of simulation experiments, including varying the number of
mutations n and the number of trees N. For each configuration, we perform 100 repetitions. More
simulation details are provided in the Methods.”

b. Page 4, “At the same regularization level, the solutions with stability selection achieve
much higher precision although at the cost of lower recall.” At this point, the readers do
not know what is “stability selection”.

Yes, we agree that this is confusing. We now introduce stability selection as well as regularization before
showing the results:
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p.3 “... The number of parameters to estimate ( ) often exceeds the number of observations𝑛2

( ). To prevent model overfitting, we can run TreeMHN with stability selection [33], where the𝑁
parameters in are estimated over many subsamples of the trees, and only those having a highΘ
probability of being non-zero are kept. This procedure can significantly improve the precision of
identifying the true relationships among the mutations …”

p.5 “... For TreeMHN and genotype MHN, we additionally implemented the stability
selection procedure over a set of regularization parameters {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3},γ ∈
where larger values of promote sparser network structures and prevent model overfitting …”γ

c. “We also notice that both methods perform better in recovering the pairwise interactions
between mutations with higher baseline rates than those with lower baseline rates (Figure
2, Supplementary Figure S4)”. Neither figure has any indication of mutation rates. The
authors should avoid presenting too much technical details/concepts in the main
figures/text, without being able to clearly define them a priori.

Yes, as also pointed out by Reviewer 2, this confusion is caused by missing relevant information before
showing the simulation results. In the revised manuscript, we first define the baseline rates in TreeMHN
overview:

p.3 “... The diagonal entries are the baseline rates of evolution, indicating how{Θ
𝑖𝑗

}
𝑖,𝑗∈[𝑛]

quickly each mutation will occur and fixate in a subclone independent of the other mutations …”

Then, we discuss the equivalence between the off-diagonal entries of the matrix and the edges in theΘ
network, along with a clear illustration in the middle panel of Figure 1:

p.3 “... Mutations can have positive (co-occurring), negative (exclusive), or zero (no) effects
on the rates of downstream mutations. This is encoded by the off-diagonal entries with{θ

𝑖𝑗
}

𝑖,𝑗∈[𝑛]

an equivalent graphical structure (Figure 1). If is positive, mutation increases the rate ofθ
𝑖𝑗

𝑗

mutation (denoted by an edge ). If is negative, mutation decreases the rate of𝑖 𝑗 → 𝑖 θ
𝑖𝑗

𝑗

mutation (denoted )…”𝑖 𝑗 ⟞ 𝑖

The first part of the simulation experiments is to compare the structural differences between an estimated
network and the ground truth network by counting the number of correctly identified edges. We now
make this point clear before showing the results:

p.4 “We first evaluate how well TreeMHN can estimate the patterns of clonal co-occurrence

and exclusivity by computing the structural differences between the estimated network and theΘ
ground-truth network . Specifically, we measure the precision and recall of identifying the trueΘ

edges in . An estimated off-diagonal entry in is a true positive if and only if it is non-zero andΘ Θ
has the correct sign (Supplementary Figure S3) ...”
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After supplying the above information, we believe that the readers should be able to understand Figure 2
and Supplementary Figure S4. The difference is that the former includes the top half of the mutations with
higher baseline rates, whereas the latter includes all mutations. The goal here is to illustrate that the
interactions between recurrent events can be recovered more reliably than rare events. This observation
and the associated reasoning are discussed in text:

p.5 “... By sorting the rows and columns of by descending baseline rates [...] The reason isΘ
that interactions between rare mutations can hardly be observed in the trees, leading to a lack of
statistical power to correctly estimate the corresponding entries in . This limitation is in generalΘ
method-independent.”

d. “Across different sample and network sizes”. What does “network” mean? Authors
should try to use consistent terminologies. Another example is that “trajectory” and
“pathway” were used interchangeably, which could be misleading to readers.

Yes, the terminologies should be more consistent throughout the manuscript. To avoid confusion, we
replace “network size” by “the number of mutations” and use only the term “trajectory” after revision.

4. What order (rows or columns?) should the readers follow to read the MHN plots, e.g., Fig. 4? In
other words, which axis corresponds to i (ancestors), and which to j (descendants)? Directionality
is unclear. Would it be helpful to also label genes on the X axis?

We agree that the directionality can be confusing for the readers. Following the paper that first introduced
the concept of Mutual Hazard Networks (Schill et al., 2020), a non-zero off-diagonal entry θ

𝑖𝑗

corresponds to an edge from (ancestors) to (descendants), which is now illustrated in the middle panel𝑗 𝑖
of Figure 1. To make this clear throughout the paper, we label the columns of the MHN plots with
“ancestor” and rows with “descendant”.

5. The AML study was based only on data from the Nature Communication paper. It will be great if
the authors can try to consolidate data/observations from the Nature (Ross Levine) paper as well
(which was published at similar time). For example, in the Nature paper, FLT3 and NRAS
mutations are often late instead of early events. And that NPM1 and NRAS mutations rarely
cooperate. Were these observations contradictory to the pathways shown in Fig. 5? Why do the
first mutations appear at similar timing in Fig. 5? These need to be clarified if not improved.

➔ Since the start of the project in 2020, we have been making sustained efforts to consolidate the
AML datasets from various sources, which involves three research groups from different
institutes. As of now this task is still ongoing. We will continue to push this forward, but the
consolidated dataset is still being prepared, and this effort is beyond the scope of the present
manuscript.
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➔ Regarding Figure 5, we do not find the reported trajectories contradictory to the results in the
Nature paper. First, FLT3 and NRAS mutations are not always late events. In a number of cases
they can also serve as initiating mutations or exist in single-mutant clones, as illustrated in Fig. 3c
and Extended Data Fig. 3e of the Nature paper. In the AML dataset we analyzed, 18 out of the
123 tumor trees have FLT3 or NRAS as early events (see figure below for a few examples). This
ratio is not over-represented in Figure 5, where 6 out of the top 40 trajectories have one of these
two mutations as the first event, and these trajectories can all be found in the observed trees (see
the new Supplementary Figure S12). Moreover, the estimated network in Figure 4 shows that
DNMT3A and IDH2 mutations have the highest baseline rates and positive effects on the
occurrence of many other mutations (e.g. RUNX1, SRSF2), indicating that they are more often
early events and promoting the occurrence of downstream mutations, which is consistent with the
Nature paper.

Second, the Nature paper states that the RAS-NPM1 co-mutant clones are significantly larger
than the RAS mutant-only clones but not significantly larger than the single-mutant NPM1
clones. They did not say that RAS and NPM1 mutations are mutually exclusive. In fact, they even
show a trajectory involving NPM1 and NRAS in their Fig. 3b. Therefore, it is not contradictory to
have NPM1 and NRAS co-occurring in the most probable evolutionary trajectories. The size of the
co-mutant clone, is not information the TreeMHN model can infer, and we have noted this
limitation in Discussion:
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p.10 “Nevertheless, TreeMHN does not take into account the subclone sizes, which can be
viewed as consequences of clonal selection [62]. As noted by [63], inferring mutation rates and
fitness values jointly may have promise but is challenging. On the one hand, larger subclone sizes
can be attributed to both their earlier appearance or higher fitness [63]. On the other hand, the
mutation rates in cancer progression models are rates of evolution, which implicitly involve
subclone fitness. Thus, any attempts to modify TreeMHN to model clonal selection need to be
taken with caution …”

Due to the small sample size, each paper may find slightly different patterns given the extensive
heterogeneity in the tumor samples, but the overall conclusions should be consistent. We hope to
gain more insight into AML after integrating the datasets in the future, and methods like the
TreeMHN we developed here will be crucial for such analyses.

➔ The last question relates to the expected waiting times between events. In TreeMHN, we model
the waiting times until the occurrence of the next mutations using independent exponential
random variables. Suppose there are three mutations A, B, and C, of which the waiting times are
independent and exponentially distributed with rates , , and . By competing exponentials,λ

𝐴
λ

𝐵
λ

𝐶

the minimum waiting time of the three mutations is also exponentially distributed with rate
, and the expected waiting time until one of these three mutations occurs given thatλ

𝐴
+ λ

𝐵
+ λ

𝐶

it is the first event is . In other words, no matter which mutation comes first,1
λ

𝐴
+λ

𝐵
+λ

𝐶

mathematically the expected waiting time is the same. Therefore, the first mutations in Fig. 5
share the same expected waiting time. We talk about the expected waiting times in Discussions:

p.10 “... Given the estimated parameters, TreeMHN allows us to compute the probabilities of
different evolutionary trajectories and the expected waiting times between mutational events.
However, in general, these waiting times cannot be interpreted as real calendar time since they
are with respect to the unknown sampling times and the scaling factor is therefore unknown. One
remedy is to use longitudinal data, where the sampling time is either provided or can be inferred
from data. Including observed sampling times is technically possible [54], but such data are often
difficult to obtain without having treatment interventions. Modelling drug response data, or
including other exogenous factors, is a crucial but challenging direction to explore, for which
TreeMHN may serve as a basis.”

6. Fig. 6 legend is in sort of paragraph style, not figure legend style, and is inconsistent with the
legend styles in other figures. I also have difficulty understand what Fig. 6b means? What are
methods being compared: e.g., TreeMHN (baseline), MHN (weighted) ...? These were not
defined in the context. What is the last column “Frequency” in Fig. 6c, “frequency based model”?
Again, perhaps too much technical details to explain in the main text and for the readers to follow.
In Fig. 6c, did I understand correctly that there is little performance gain over RESOLVER: 91.7
vs 89.2 on this cohort? Why is that? Any explanation? [REVOLVER is worse in the retrospective
case]
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➔ In the previous manuscript, we put too much technical information in the legend of Figure 6,
making it unnecessarily long and confusing. We now elaborate on the related technical details in
the Methods section, including the description of alternative approaches being compared, which
were originally in the supplementary materials:

p.14 “… We evaluate TreeMHN predictions on the AML dataset [21]. We perform both
retrospective predictions on the rooted subtrees of the 123 primary tumor trees and forward
predictions using the longitudinal samples from 15 patients in the same dataset (Figure 6a) […]
While TreeMHN is unique in this task, we adapt five alternative methods for comparison …”

To improve interpretability of the plots, as suggested by Reviewer 2, we have replaced the metric
in Figure 6b with the metric in Figure 6c, which is the percentile rank:

p.14 “… We say that a method has better predictive performance if the event that actually
happened ranks higher by that method compared to all other possible events. We therefore
compare the percentile ranks of the next events. In the case of ties, we take the average percentile
rank of the tied events. ”

We also report the estimated probabilities of the next events in Supplementary Figure S17 & S18
for both retrospective and forward predictions. As discussed in our reply to Reviewer 1 on page 4,
the rationale of reporting the percentile ranks instead of the probabilities is that it is only
meaningful to discuss how large the probabilities of the next events are if we know the
probabilities of the other possible events.

➔ We investigated closely into why the predictive performance of REVOLVER on longitudinal
samples is better than in the retrospective case. Other than limited sample size, we found that the
precise definition of percentile ranks on tie cases can largely change the results. Note that
REVOLVER is not originally designed for predictions. We describe in Methods how we adapt it
for such tasks:

p.14 “REVOLVER: We first convert the subclonal genotypes into cancer cell fractions, the
proportion of cancer cells having a specific mutation, followed by running REVOLVER to obtain
the information transfer matrix (Supplementary Figure S16). An entry is the number of𝑤 𝑤

𝑖𝑗

times mutation occurs before mutation in the patients. By row-normalizing , we can obtain𝑖 𝑗 𝑤
the empirical probability of mutation being the descendant of mutation . The probability of a𝑗 𝑖
new event with mutation can be computed as the probability of randomly selecting a node to𝑗
place the new event multiplied by the entry if the direct ancestor is mutation .”𝑤

𝑖𝑗
𝑖

We add a new Supplementary Figure S16 to show the normalized information transfer matrix
learned by REVOLVER on the 123 primary tumor samples. Using this sparse matrix to compute
the probabilities of next events can result in many ties, as illustrated by the probability
distributions in Supplementary Figure S18. In particular, we observe that the event “Root →
SF3B1 SRSF2 NRAS WT1” in panel (i) and “Root NPM1 IDH2 PTPN11” in→ → → → → →
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panel (iii) of Supplementary Figure S18 are in ties with many other events receiving the lowest
probability. In the original implementation, we assign the best ranking to the tied events, but this
approach can be too optimistic. For example, if there are three events with probabilities

, then the percentile ranks would be when all tied events(0. 01,  0. 01,  0. 98) (0. 67,  0. 67,  1)
receive the maximal ranking. On the contrary, if all tied events receive the minimal ranking, then
the percentile ranks would be . Another definition would be to take the average(0. 33,  0. 33,  1)
ranking of the tied events, resulting in . While all three definitions are valid, we(0. 5,  0. 5,  1)
find the one with average ranking most representative of the predictive performance. We now
clarify this in Methods:

p.14 “... In the case of ties, we take the average percentile rank of the tied events.”

After adjustment, we see that the standard deviation of the REVOLVER predictions is relatively
large in both retrospective and forward predictions (Figure 6b & 6c) because there are many ties.
The performance gain of TreeMHN over REVOLVER is more evident.

7. Regarding the githup repo:

a. Installation on Mac OS was not entirely smooth. There may be some path setting issues.
We had to set "/opt/homebrew/bin/g++-12" to make the installation work. In general it
would usually be "/opt/homebrew/bin/g++-[whatever version]". It would be helpful to
include this in Q&A or the guide.

We changed the instruction from “CXX=g++-11” to “CXX=$(brew --prefix)/bin/g++-[INSTALLED
VERSION]”.

b. The tutorial is detailed and runs smoothly. It reproduces a good portion of the results in
the manuscript. Code had helpful inline comments with some computationally intensive
steps accelerated using C++.

We would like to thank the reviewer for taking the time to verify the code.

c. Some steps take a significant amount of time (~20 min). It would be helpful to mention
the ballpark range of expected running time to give users a reasonable expectation.

We added the expected running times for the relevant code chunks.

d. I encourage the authors to further develop the githup front page so it can potentially
attract more users.

We further developed the GitHub frontpage, including adding a new logo for TreeMHN and a quick start
section.

19



Reviewer comments, second round 

 

Reviewer #2 (Remarks to the Author): 

 

My comments have been addressed. I believe the revised manuscript to be of strong interest to 

the readership of this journal. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have largely addressed our criticisms. 

Some very minor presentation issue, e.g., it will be helpful to also add "ancestor/descendant" to 

the matrix form in Fig. 1. 

In the Introduction, I am not sure trees from multi-regional sequencing of the same tumor can be 

regarded as independent trees. But I understand these are likely semantic difference and 

addressing longitudinal sampling issue is out of the scope of the work. 

 

 

Reviewer #4 (Remarks to the Author): 

 

I thank the Authors for revising and improving the manuscript, as well as performing additional 

experiments. I particularly appreciate that they have clearly marked (in red-blue text) what parts 

of the manuscript were edited, which facilitated reviewing on my end. 

 

I am now satisfied with the experimental side of the work and have no additional major criticism, 

except some minor suggestions provided below. 

 

Unfortunately, I am still unable to fully follow the methods description. 

 

To start with a positive side, Page 12 and part of Page 13 are now clear, including Equations (1) - 

(3). I have some questions about Equation (1), but they are not related to the concerns described 

in the next paragraphs of this review. Algorithm presented in Supplementary Section A.1. is also 

clear and it is noticeable that the Authors put an effort in making sure that their pseudocode is 

correct and well documented. 

 

However, when I move to Supplementary Section A.2. I get stuck. Already in Supplementary 

Equation (1) I can not properly link lambda with Figure S1. Why is there (0,1,3) in some 

subscripts and (0,3) in others? When looking into lambda_{0,3} (fifth row, second column), I 

thought that (0,3) might be representing the edge present in the row tree and absent in the 

column tree. But then I checked the fourth row, second column entry and noticed that this 

reasoning is not correct. Considering that there is no precise definition of what tree_2\tree_1 is in 

Supplementary Equation (1) I am already feeling uncomfortable about proceeding. Then I come to 

Supplementary Equation (2), which I assume originates from some theoretical results on Markov 

chains but no details about its derivation nor easy-to-check reference are provided. There is a 

mention of unit vector e_{tree} with 1 at position of {tree}. What are the other positions in this 

vector corresponding to (if it is to some trees, which trees?) and what is its dimension? Then in 

Supplementary Equation (3), p(tree | Theta) is computed by using some formula given in the first 

line of the equation without any clear connection made between this formula and Equation (2) 

from the main text. Why is the probability given in Equation (2) in the main text equal to the 

formula given in the first line of Supplementary Equation (3)? Even change between line 2 and 3 in 

Supplementary Equation (3) is not well known. Where does this formula come from? While for this 

formula only a reference can be provided as it is a problem of integral calculation, thorough 

description and clear links should be established between the first line of Supplementary Equation 

(3) and Equation (2) in the main text. It is worth reiterating that I understand Equation (2) in the 

main text. 

 

The main contributions of this paper are methodological and I believe that the Methods could have 



a potential to attract attention of others and get adopted and extended in the future method 

developments. One of the main prerequisites for this is that the methods description is easy to 

follow and understand by a broader audience of Nature Communications, in particular method 

developers. I do not believe this is currently the case. 

 

 

If the examples I provided above suggest that I am possibly lacking familiarity with some very 

basic mathematical concepts, I recommend the Authors to communicate with the Editorial Board 

on this matter and discuss potential addition of another reviewer or even excluding me from the 

rest of the review process of this work. 

 

Importantly, I do not suspect that the Authors are hiding something or doing anything wrong. I am 

not hunting for mistakes, but I am just interested in understanding the entire methodological side 

of the work, which I am unable to do in its currently presented form. 

 

I have a few additional comments, mostly minor. Two major comments are listed below. 

 

(i) Can some motivation be provided for Equation (1)? Why do these variables follow the given 

distributions? 

 

 

(ii) In Equation (1), for a given clone \pi, the emergence of clone (\pi, i) seems to be only 

dependent on the set of mutations defining \pi. But how biologically reasonable this assumption is? 

Isn't the overall subclonal composition of a tumor playing very important role? For example, if in 

tumor 1 subclone \pi has much higher growth dynamics/potential than other subclones, waiting 

time for (\pi, i) might be much shorter than in a tumor 2 in which \pi is growing slow compared to 

the other subclones. 

 

 

MINOR 

 

The sentence "For example, two parallel studies of acute myeloid leukemia (AML) using single-cell 

panel sequencing [20, 21] show that the reconstructed trees typically contain a small number of 

clones and can vary considerably between any two patients." can give an impression that AML 

samples typically contain a small number of clones. While this might be true, it can not be 

concluded based on the targeted single-cell data generated in the cited studies. So please either 

edit this sentence or provide a more relevant reference (if it exists). Analogous applies to the 

sentence starting on Page 5 and ending on Page 6, which states that trees reported by SCITE 

represent the complete evolutionary history of these tumors. 

 

While I am familiar from REVOLVER from before, I think that a reader of this work not familiar with 

REVOLVER could find it difficult to get an idea about the main assumptions and goals of REVOLVER 

based on the brief summary of this method provided in the Introduction. I recommend rewriting 

this in order to make the summary of REVOLVER more clear and informative. 

 

 

Please provide some basic information about the number of patients whose tumor development 

supports the following: "This observation aligns with previous studies, where some patients 

developed secondary resistance to FLT3 inhibitors due to off-target mutations (e.g. genes in the 

RAS pathways), which were present in small cell populations prior to treatment [37, 38].". In 

addition, what are the total sizes of the patient cohorts analyzed in the referenced studies? How 

many of the patients have mutations in the genes of interest? 

 

 

I did not understand the purpose of some sentences, usually those related to the biological side. 

For example, why is the sentence "EGFR-mutant tumors with co-occurring TP53 were found to 

have higher degrees of genomic instability and shorter progression-free survival after EGFR TKI 

therapy [47]." relevant in the context where it is mentioned? Please revisit all sentences in the 

manuscript related to the biological side and keep only those that are informative and related to 



this work. Also, make it more clear in what way TreeMHN relates to the mentioned biological 

observations and results. 

 

I recommend adding brackets in the right hand side of Equation (3) so that it looks like 

argmax_Theta [sum_1 - lambda*sum_2]. 

 

 

Methods section, paragraph 2: "... evolutionary trajectories in \pi ... " -> "... evolutionary 

trajectory in \pi ..." 
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Reviewer #2

My comments have been addressed. I believe the revised manuscript to be of strong interest to the readership
of this journal.

We would like to thank the reviewer again for the time and effort in reviewing the manuscript and for the
positive feedback.

Reviewer #3

The authors have largely addressed our criticisms. Some very minor presentation issue, e.g., it will be helpful
to also add "ancestor/descendant" to the matrix form in Fig. 1. In the Introduction, I am not sure trees from
multi-regional sequencing of the same tumor can be regarded as independent trees. But I understand these are
likely semantic difference and addressing longitudinal sampling issue is out of the scope of the work.

We sincerely appreciate all constructive comments from the reviewer, which have helped us considerably
improve the quality and the clarity of the manuscript.

As suggested by the reviewer, we have added “ancestor/descendant” to the matrix form in Fig. 1. In the
Introduction, we meant to highlight the dependencies from multi-region sequencing samples of the same
tumor encoded in one tree, which is not accounted for in previous CPMs but TreeMHN does, as opposed to
one tree per sampling region. To make this clearer we referenced these dependencies at the end of the third
and start of the last paragraphs of the Introduction.

Reviewer #4

I thank the Authors for revising and improving the manuscript, as well as performing additional experiments.
I particularly appreciate that they have clearly marked (in red-blue text) what parts of the manuscript were
edited, which facilitated reviewing on my end.

I am now satisfied with the experimental side of the work and have no additional major criticism, except some
minor suggestions provided below.

We would like to thank the reviewer again for their suggestions of the additional experiments in improving
the manuscript. We hope that the following response addresses all additional comments.

Unfortunately, I am still unable to fully follow the methods description.

To start with a positive side, Page 12 and part of Page 13 are now clear, including Equations (1) - (3). I have
some questions about Equation (1), but they are not related to the concerns described in the next paragraphs

1



of this review. Algorithm presented in Supplementary Section A.1. is also clear and it is noticeable that the
Authors put an effort in making sure that their pseudocode is correct and well documented.

We thank the reviewer for the positive feedback.

However, when I move to Supplementary Section A.2. I get stuck.

We have re-written supplementary section A.2 and explain the new structure before answering each specific
question below. We had previously implicitly used the equivalence between the tree-generating process de-
scribed in the main text and the continuous-time Markov chain with an independent exponentially-distributed
sampling time defined in Supplementary Section A. However, we agree that we had not made this link explicit,
which could make it harder for the readers to follow. We have now completely revised this and make the
connection fully explicit. In particular we now split the original Supplementary Section A.2 into two sections.
In the new Supplementary Section A.2, we provide precise definitions and notations associated with the
continuous-time Markov chain and elaborate on its connection with the tree-generating process using Markov
chain theory from the classical textbook by Norris [1998]. The new Theorem 1 establishes the equivalence
between the definition of the Markov chain and the waiting time distributions of subclones given in main
Equation (1). Specifically:

Supp. p.4 “

Theorem 1. A right-continuous process (Xt)t≥0 with values in the space of tumor mutation
trees Sn

T is continuous-time Markov(δT0
, Q) if and only if the waiting times of subclones π ∈ T

for any T ∈ Sn
T are exponential random variables such that

T(0) = 0, Tπ ∼ Tpa(π) + Exp(λπ). (5)

”

Theorem 2 provides a formula for computing the marginal likelihood of a tree in main Equation (2):

Supp. p.7 “

Theorem 2. Let Θ ∈ Rn×n be a Mutual Hazard Network, where n ∈ N+ is the number of
mutations. Let (Xt)t≥0 be continuous-time Markov(δT0

, Q). Suppose T ∈ Sn
T is an output of

the tree generating process. Then the marginal probability of observing T is given by

p(T | Θ) := P

(
max
π∈T

Tπ < Ts < min
π′∈Exit(T )

Tπ′

∣∣∣∣∣ Θ
)

=
(
λs(λsI −Q)−1

)
T0,T

. (6)

”

In the new Supplementary Section A.3, we further simplify the calculation of the likelihood using techniques
from linear algebra.

All page and reference numbers in our response are based on the revised manuscript, unless otherwise stated.
The page and reference numbers mentioned in the reviewers’ comments are kept intact and refer to the
original manuscript.

Already in Supplementary Equation (1) I can not properly link lambda with Figure S1. Why is there (0,1,3)
in some subscripts and (0,3) in others? When looking into lambda_0,3 (fifth row, second column), I thought
that (0,3) might be representing the edge present in the row tree and absent in the column tree. But then I
checked the fourth row, second column entry and noticed that this reasoning is not correct. Considering that
there is no precise definition of what tree_2 \tree_1 is in Supplementary Equation (1) I am already feeling
uncomfortable about proceeding.
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This question concerns the definition and the interpretation of the generator matrix Q of the continuous-time
Markov chain. In the revision, we first clarify that subclones in tumor mutation trees are sequences of
mutations, and tumor mutation trees are sets of subclones. For example, the tree displayed in Supplementary
Figure 1(b) is a set of four subclones {(0), (0, 1), (0, 3), (0, 1, 3)}. In particular, we use the following notation:

Supp. p.4 “ ...

• π ∈ T means that π is a subclone of the tree T .

• We use |T | to denote the number of subclones in tree T .

• We say that T1 is a subtree of T2 if all subclones in T1 can be found in T2 and write
T1 ⊆ T2. If T1 is a subtree of T2 and |T1| < |T2|, then we write T1 ⊂ T2.

• We use T2 \ T1 to denote the set of subclones in T2 that are not subclones of T1. The
number of such subclones are denoted by |T2 \ T1|.

... ”

Then, we follow the terminology of Norris [1998] and define tumor progression as a continuous-time Markov
chain (Xt)t≥0 on the state space of all tumor mutation trees. In the new Supplementary Equation (2), the
generator matrix Q is indexed by trees (the states) and defined as

qT1,T2 :=


λT2\T1

T1 ⊂ T2, |T2 \ T1| = 1

−
∑

T ̸=T1
qT1,T T1 = T2

0 otherwise.

The direction of the transitions in the original Supplementary Equation (1) was from column states to row
states. However, to be consistent with the definition of the Q-matrix in [Norris, 1998], the direction in the
new Supplementary Equation (2) is from row states to column states, which is why the new Supplementary
Figure S1(c) is an upper-triangular matrix, whereas the old one was lower-triangular. This direction now
matches the reviewer’s intuition in their comment. The interpretation of the off-diagonal entries in Q is that:

Supp. p.4 “ ... transitioning from T1 to T2 is only possible if T2 has exactly one extra
subclone than T1, and this new subclone π = T2 \ T1 must be a child of one of the existing
subclones in T1 ...”

The transition rate λT2\T1
is not only associated with the mutation that labels the extra vertex, i.e. the most

recent mutation in the subclone π = T2 \ T1, but actually all the mutations accumulated in the subclone,
which was previously defined in Equation (1) of the main text and now reiterated in the new Supplementary
Equation (3):

Supp. p.4 - 5 “ ... The transition rate is associated with all mutations in π = (pa(π), i) for
some i ∈ [n] \ pa(π) and parameterized by a Mutual Hazard Network Θ ∈ Rn×n,

λT2\T1
= λπ := exp

(
θii +

∑
j∈pa(π)

θij

)
= Θii

∏
j∈pa(π)

Θij , (3)

which is equivalent to the definition in Equation (1) of the main text (notation-wise shifted by one
mutation).”

For example, the entry qT1,T2
in the matrix shown in Figure 1 below is λ(0,1,3), which is different from the

entry qT1,T3
= λ(0,3), even though the extra vertex in both T2 and T3 is the same mutation 3. This is because

by our definition T2 \ T1 = (0, 1, 3) but T3 \ T1 = (0, 3).
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Figure 1: The sub-matrix QT , which corresponds to the tree T in Supplementary Figure 1(b) and is defined
in Supplementary Equation (36).

We would also like to emphasize that QT is only a sub-matrix of Q, where the columns and rows correspond
to all subtrees of T . The dimension of QT is much smaller than the dimension of Q, allowing us to minimize
the dimension of matrix inversion for calculating the likelihood by replacing Supplementary Equation (6)
with Supplementary Equation (13).

Then I come to Supplementary Equation (2), which I assume originates from some theoretical results on
Markov chains but no details about its derivation nor easy-to-check reference are provided. There is a mention
of unit vector e_{tree} with 1 at position of {tree}. What are the other positions in this vector corresponding
to (if it is to some trees, which trees?) and what is its dimension?

The reviewer is correct that the original Supplementary Equation (2), which is now the new Supplementary
Equation (8), originates from Markov chain theory. This is now clarified in the proof of Theorem 2 with
reference to [Norris, 1998]:

Supp. p.7 “Next, the matrix P (t) = etQ is the transition probability matrix of (Xt)t≥0, which
by Theorem 2.1.1 of [Norris, 1998] solves the backward equation,

d

dt
P (t) = QP (t), P (0) = I. (7)

The transition probability from T1 to T2 in time t is given by

P (Xt = T2 | X0 = T1) = pT1,T2(t),

where pT1,T2
(t) is the (T1,T2) entry in etQ, the row is indexed by T1, and the column is indexed

by T2. In particular, starting with X0 = T0, the probability of observing T at sampling time ts
is

P (Xts = T | X0 = T0) = pT0,T (ts) =
(
etsQ

)
T0,T

, (8)

which is the (T0,T ) entry in etsQ.”
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Like the generator matrix Q, the unit vector eT is also indexed by the states of the Markov chain, which
are the trees. The number of rows and columns in Q as well as the number of entries in eT is size of the
state space, which grows super-exponentially in the number of mutations n (see Supplementary Equation
(1)). We introduce the unit vector eT with 1 at the position of the tree T and 0 at all other positions (one-hot
encoding) in order to extract the (T0,T ) entry in the matrix etsQ via e⊤T0

(etsQ)eT . We give an example of
eT in Figure 2 below, where the state space contains 9 trees for n = 2 mutations.
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Figure 2: Example of a unit vector on the state space of tumor mutation trees for n = 2.

Then in Supplementary Equation (3), p(tree | Theta) is computed by using some formula given in the first line
of the equation without any clear connection made between this formula and Equation (2) from the main text.
Why is the probability given in Equation (2) in the main text equal to the formula given in the first line of
Supplementary Equation (3)? Even change between line 2 and 3 in Supplementary Equation (3) is not well
known. Where does this formula come from? While for this formula only a reference can be provided as it is
a problem of integral calculation, thorough description and clear links should be established between the first
line of Supplementary Equation (3) and Equation (2) in the main text. It is worth reiterating that I understand
Equation (2) in the main text.

We agree that the equivalence between main Equation (2) and the original Supplementary Equation (3) for
computing the marginal probability p(T | Θ) was unclear. We now prove this result in Theorem 2:

Supp. p.7 “

Theorem 2. Let Θ ∈ Rn×n be a Mutual Hazard Network, where n ∈ N+ is the number of
mutations. Let (Xt)t≥0 be continuous-time Markov(δT0

, Q). Suppose T ∈ Sn
T is an output of

the tree generating process. Then the marginal probability of observing T is given by

p(T | Θ) := P

(
max
π∈T

Tπ < Ts < min
π′∈Exit(T )

Tπ′

∣∣∣∣∣ Θ
)

=
(
λs(λsI −Q)−1

)
T0,T

. (6)

”
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Here π′ ∈ Exit(T ) implies π′ ̸∈ T and π′ ∈ A(T ) by definition:

Supp. p.4 “Given a tree T , we define the exit set of T as

Exit(T ) = {π | π /∈ T ,pa(π) ∈ T },

which contains the children of the existing subclones that are not yet in T , i.e. all subclones that
could appear next. Then, we define the augmented tree as

A(T ) := T ∪ Exit(T ), i.e., Exit(T ) = A(T ) \ T .

”

The change from line 2 to 4 in the original Supplementary Equation (3) follows from the Laplace transform
[Spiegel, 1965] of the backward equation dP (t)/dt = QP (t) with P (0) = I and the non-singularity of the
matrix λsI −Q, which we now show in the proof of Theorem 2:

Supp. p.8 “Here, L(P (t)) =
∫∞
0

e−λstsP (ts)dts =
∫∞
0

e−λstsetsQdts = A(λs) is the
Laplace transform of P (t). [...] Therefore, the marginal probability in main Equation (2) is

p(T | Θ) = P

(
max
π∈T

Tπ < Ts < min
π′∈Exit(T )

Tπ′

∣∣∣∣∣ Θ
)

= (λsA(λs))T0,T

=
(
λs(λsI −Q)−1

)
T0,T

.

”

The main contributions of this paper are methodological and I believe that the Methods could have a potential
to attract attention of others and get adopted and extended in the future method developments. One of the
main prerequisites for this is that the methods description is easy to follow and understand by a broader
audience of Nature Communications, in particular method developers. I do not believe this is currently the
case.

If the examples I provided above suggest that I am possibly lacking familiarity with some very basic
mathematical concepts, I recommend the Authors to communicate with the Editorial Board on this matter and
discuss potential addition of another reviewer or even excluding me from the rest of the review process of this
work.

Importantly, I do not suspect that the Authors are hiding something or doing anything wrong. I am not hunting
for mistakes, but I am just interested in understanding the entire methodological side of the work, which I am
unable to do in its currently presented form.

We greatly appreciate the reviewers’ questions and comments regarding Supplementary Section A and its
connection with the main Methods section, allowing us to improve the clarity of the manuscript. The main
purpose of introducing the Markov chain version is to provide a way to compute the likelihood. Considering
the length of the manuscript, we decided to keep the tree-generating process as is in the main text, which
facilitates readability for the general audience, and leave the supplement to the interested method developers.
In the Methods section, we have added cross-references to the new content:

p.12 “Both p(T | Θ) and its gradients ∂p(T | Θ)/∂λπ can be computed efficiently by
inverting specific triangular matrices, which are constructed using the rates associated with the
events in A(T ), and the dimensions depend only on the number of subtrees in T (

::
see

::::::::
Theorem

:
1
::::
and

:
2
::
in

:
Supplementary Section A.2

:
&

:::
the

::::::::::
derivations

::
in

::::::::::::
Supplementary

:::::::
Section

:::
A.3). ”
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I have a few additional comments, mostly minor. Two major comments are listed below.

(i) Can some motivation be provided for Equation (1)? Why do these variables follow the given distributions?

In main Equation (1), we model the waiting time until a new mutation i occurs and fixates in an existing
subclone π, resulting in a new subclone (π, i), with exponential distributions. This is because the exponential
has the memoryless property, meaning that the waiting time until an event happens does not depend on how
much time has elapsed already, which is the most reasonable assumption to make when we know little about
the time dependency of the process and a common choice for cancer progression models [Beerenwinkel and
Sullivant, 2009, Beerenwinkel et al., 2015, Cristea et al., 2017, Schill et al., 2020]. The parameterization of the
rates with a Mutual Hazard Network follows from the observation that mutations do not occur completely at
random but exhibit patterns of clonal co-occurrence and exclusivity, which has been noted in the Introduction:

p.1 “ In particular, both studies report over-represented pairs of co-occurring or clonally
exclusive mutations in the subclones. [...] Mutations that co-occur more frequently in the same
clonal lineage may indicate synergistic effects on cell proliferation and survival [4]. Clonally
exclusive mutations, on the other hand, occur more frequently in different lineages. They
may suggest either clonal cooperation, where cell populations harboring complementary sets
of mutations collaborate to promote tumor growth [23], or synthetic lethality, meaning that
acquiring both mutations on the same genome will significantly reduce the viability of the clone
[24]. Since clonal interactions have a major impact on intratumor heterogeneity and the observed
evolutionary trajectories, it would be natural to incorporate mutational interdependencies within
and between subclones when modelling tumor progression.”

(ii) In Equation (1), for a given clone π, the emergence of clone (π, i) seems to be only dependent on the
set of mutations defining π. But how biologically reasonable this assumption is? Isn’t the overall subclonal
composition of a tumor playing very important role? For example, if in tumor 1 subclone π has much higher
growth dynamics/potential than other subclones, waiting time for (π, i) might be much shorter than in a tumor
2 in which π is growing slow compared to the other subclones.

While the rate of a subclone (π, i) depends only on the set of mutations defining (π, i), the future state of the
tumor depends on the set of subclones that could emerge next, which is determined by the current composition
of the tumor, i.e. the exit set of the tree

Supp. p.4 “Given a tree T , we define the exit set of T as

Exit(T ) = {π | π /∈ T ,pa(π) ∈ T },

which is the children of the existing subclones that are not yet in T , i.e. all subclones that could
appear next. Then, we define the augmented tree as

A(T ) := T ∪ Exit(T ) ⇔ Exit(T ) = A(T ) \ T .

”

This result follows directly from competing exponentials and is reflected in main Equation (14) as well as
Supplementary Equation (6) and (9):

p.14 “By competing exponentials, we calculate the probability of an event π happens before
all the other events in A(T ) \ T as

p(π | T ,Θ) =
λπ∑

π′∈A(T )\T λπ′
× 1{π ∈ A(T ) \ T }, (14)

where λπ is the rate associated with event π (Eq. (1)).”
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Supp. p.5 “The diagonal entries are chosen such that the row sums of Q are zero. We interpret
the off-diagonal row sum

qT1
:=

∑
T ̸=T1

qT1,T =
∑

π∈Exit(T1)

λπ, (6)

as the rate of leaving the state T1, which is the sum of the rates of all events that could happen
next. [...] Furthermore, we define the jump matrix Ξ = (ξT1,T2

: T1,T2 ∈ Sn
T ) of Q as

ξT1,T2
:=

{
qT1,T2/qT1 T1 ̸= T2 and qT1 ̸= 0

0 T1 ̸= T2 and qT1
= 0,

ξT1,T1 :=

{
0 qT1

̸= 0

1 qT1
= 0.

(9)

By Theorem 2.8.2 of [Norris, 1998], the jump chain (Yk)k≥0 associated with (Xt)t≥0 is a
discrete-time Markov chain with initial distribution δT0

and jump matrix Ξ, where the entry
ξT1,T2

is the probability of jumping from T1 to T2.”

For example, suppose Exit(T1) = {π1, π2} and Exit(T2) = {π1, π3} with rates λπ1
= 1, λπ2

= 0.5,
and λπ3

= 1.2. The probability of π1 appearing next in T1 is 1
1+0.5 ≈ 66.67%, which is greater than

1
1+1.2 ≈ 45.45%, the probability of π1 appearing next in T2. This property allows us to model heterogeneous
growth patterns in tumors even though TreeMHN does not explicitly model subclone sizes, which has been
noted in Discussion:

p.10 “Nevertheless, TreeMHN does not take into account the subclone sizes, which can be
viewed as consequences of clonal selection [64]. As noted by [65], inferring mutation rates and
fitness values jointly may have promise but is challenging. On the one hand, larger subclone
sizes can be attributed to both their earlier appearance or higher fitness [65]. On the other hand,
the mutation rates in cancer progression models are rates of evolution, which implicitly involve
subclone fitness. Thus, any attempts to modify TreeMHN to model clonal selection need to be
taken with caution.”

MINOR

The sentence "For example, two parallel studies of acute myeloid leukemia (AML) using single-cell panel
sequencing [20, 21] show that the reconstructed trees typically contain a small number of clones and can vary
considerably between any two patients." can give an impression that AML samples typically contain a small
number of clones. While this might be true, it can not be concluded based on the targeted single-cell data
generated in the cited studies. So please either edit this sentence or provide a more relevant reference (if it
exists). Analogous applies to the sentence starting on Page 5 and ending on Page 6, which states that trees
reported by SCITE represent the complete evolutionary history of these tumors.

We agree with the reviewer that the two cited studies only focus on a number of driver mutations of interests,
omitting unknown driver mutations as well as passenger mutations. Together with sampling bias and noise,
the trees reconstructed by phylogenetic methods may not be the true complete evolutionary history of the
tumors. Hence, we modify those sentences as follows:

p.1 “For example, two parallel studies of acute myeloid leukemia (AML) using single-cell
panel sequencing [20, 21] show that the reconstructed trees typically contain

::::::::
contained a small

number of clones
:::::
based

::
on

:::
the

::::::
specific

::::::
driver

::::::::
mutations

:::
that

:::::
were

::::
part

::
of

::
the

:::::
panel

:
and can vary

:::
that

::::
they

:::::
varied considerably between any two patients.”
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p.5 “
::
We

::::::
assume

::::
that the mutation trees reconstructed by SCITE [33], a single-cell phyloge-

netic method, represent the complete evolutionary histories of the tumors.”

While I am familiar from REVOLVER from before, I think that a reader of this work not familiar with
REVOLVER could find it difficult to get an idea about the main assumptions and goals of REVOLVER based
on the brief summary of this method provided in the Introduction. I recommend rewriting this in order to
make the summary of REVOLVER more clear and informative.

We would like to thank the reviewer for this suggestion. Given the length of the manuscript, however, we
prefer to focus on the parts of REVOLVER that are relevant to this work and refer the interested readers to
the cited paper. Hence, we only made slight modifications to the summary of REVOLVER:

p.2 “Based on transfer learning, REVOLVER [7] reconciles the heterogeneous phylogenetic
trees of

::::
infers

::::
the

:::::::::::
phylogenetic

::::
trees

:::
for

:
a cohort of patients

::::::::::::
simultaneously

::::
and

:::::::::
reconciles

::
the

:::::::::::::
heterogeneous

::::
trees

:
using a matrix summarizing the frequencies of all pairwise ancestor-

descendant relationships across tumors and outputs the trees having the smallest distance to the
matrix. The entries in the normalized matrix are empirical estimates of the probability of one
mutation being the ancestor of another mutation, which can be used to compute the probability
of a possible evolutionary trajectory.”

Please provide some basic information about the number of patients whose tumor development supports
the following: "This observation aligns with previous studies, where some patients developed secondary
resistance to FLT3 inhibitors due to off-target mutations (e.g. genes in the RAS pathways), which were
present in small cell populations prior to treatment [37, 38].". In addition, what are the total sizes of the
patient cohorts analyzed in the referenced studies? How many of the patients have mutations in the genes of
interest?

As suggested by the reviewer, we have added relevant patient statistics from the cited studies to the quoted
sentence:

p.6 “This observation aligns with previous studies
::::::::::::::::::::::
[Kennedy and Smith, 2020], where some

patients
:::
(e.g.

::::
3/11

::
in
:::::::::::::::::
[Peretz et al., 2019]

:::
and

:::::
15/41

:::
in

:::::::::::::::::::
[McMahon et al., 2019]

:
) developed sec-

ondary resistance to FLT3 inhibitors due to off-target mutations (e.g. genes in the RAS pathways),
which were present in small cell populations prior to treatment[McMahon et al., 2019, Kennedy and Smith, 2020]
. ”

Here, [Kennedy and Smith, 2020] is a review paper on FLT3 mutations in AML, in which the “Off-Target
Resistance in Parallel or Downstream Pathways” section provides references to recent studies that support our
observation, including [Peretz et al., 2019] and [McMahon et al., 2019]. As these aspects are covered in much
more detail in the original cited paper and our work is method-oriented, we found the current presentation
(interpretation of the results + references) to be more concise.

I did not understand the purpose of some sentences, usually those related to the biological side. For example,
why is the sentence "EGFR-mutant tumors with co-occurring TP53 were found to have higher degrees of
genomic instability and shorter progression-free survival after EGFR TKI therapy [47]." relevant in the
context where it is mentioned? Please revisit all sentences in the manuscript related to the biological side and
keep only those that are informative and related to this work. Also, make it more clear in what way TreeMHN
relates to the mentioned biological observations and results.

We would like to thank the reviewer for the question and suggestion. One of the key goals of TreeMHN is to
infer the patterns of clonal exclusivity and co-occurrence by estimating the Mutual Hazard Network from
a cohort of tumor mutation trees (see Figures 1, 4, & 7). In real data applications, we try to associate the
estimated patterns with known biological results and observe that they are often linked to clinical outcome.
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For example, in the section where we analyzed the NSCLC dataset [Jamal-Hanjani et al., 2017, Caravagna
et al., 2018], we first observe the co-occurrence between EGFR and TP53 in Figure 7. Then, the sentence
quoted by the reviewer relates this co-occurrence to worse prognosis, suggesting that TreeMHN results
may be of interest to clinicians. The remaining sentences related to the biological side are for the same
purpose. To clarify the link between TreeMHN patterns and the biological results, we have made the following
modifications in the manuscript:

p.2 “Our estimated exclusivity patterns and most probable evolutionary trajectories not only
confirm previous

::::::::
biological findings but also provide new insights into the interdependencies of

mutations,
::::::
which

:::::
could

::
be

::::::::::
informative

:::
for

::::::
clinical

::::::::
decisions.”

p.8 - 9 “ ... EGFR-mutant tumors with co-occurring TP53 were found to have higher
degrees of genomic instability and shorter progression-free survival after EGFR TKI therapy
[...]

:::::
These

::::::::::
observations

:::::::
indicate

::::
that

:::
the

:::::
tumor

::::::::::
progression

:::::::::
processes

::::::
leading

::
to

:::
the

::::::::
observed

:::::::::::
co-occurrence

:::
of

::
the

::::::
genes

:::
may

:::::
have

:::::
direct

::::::
clinical

::::::::::::
consequences.

:
”

p.9 - 10 “The estimated network on all trees captures combined signals, which are mainly
driven by the largest subgroups with HR+/HER2- status (Supplementary Figure S22). [...]

::::::::
Therefore,

:::::::::
TreeMHN

::
is
:::::::
capable

:::
of

:::::::::
extracting

:::
key

:::::::
patterns

:::::::
related

::
to

:::::::
clinical

:::::::
outcome

:::::
from

:::::
highly

:::::::::::::
heterogeneous

:::::
tumor

::::::::
mutation

:::::::::
histories.”

I recommend adding brackets in the right hand side of Equation (3) so that it looks like argmax_Theta [sum_1
- lambda*sum_2].

We have added the brackets to Equation (3).

Methods section, paragraph 2: "... evolutionary trajectories in π ... " -> "... evolutionary trajectory in π ..."

We have corrected this typo.
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