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SUPPLEMENTARY FIGURES  

 

Figure S1. Additional examples of chromosomal microtubule networks. ! = 0 min 

corresponds to the first nucleation event. Numbers demarcate unique microtubule plus-ends. Scale 

bars are 5 $m. Data are representative of 7 extract preparations. 
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Figure S2. Starter de novo microtubules randomly nucleate to initiate microtubule-

dependent microtubule networks near chromosomes. Snapshots shown at (a) onset of first 

microtubule-dependent nucleation event and (b) 20 minutes later. Scale bars are 10 $m. Data are 

representative of 7 extract preparations. 
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Figure S3. Average microtubule mass over time for chromosomal microtubule networks in 

control depleted (black), augmin depleted (red), and TPX2 depleted (blue) extracts. Each 

curve represents an independent extract experiment. Error bars are generated by averaging over 

multiple chromosome clusters and are plotted as standard error of the mean. Chromosome clusters 

that generated networks in the control conditions were included and all chromosome clusters in 

the depletion conditions were included. Only one chromosome cluster showed microtubule 

network formation in either depletion condition (< 1%, see Fig. 2b). %	 = 	19.7 ± 	19.8 

chromosome clusters were considered per curve (mean ± standard deviation). 
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Figure S4. Measurement of SAF gradient length scale is insensitive to the number of 

microtubules nucleated. The top images show a chromosome that nucleated relatively few 

microtubules in its vicinity, whereas the bottom images show a chromosome that nucleated a dense 

microtubule network. Even though there are qualitative differences, the estimation of - is 

unaffected, and therefore the dominant feature measured from these experiments is the length scale 

of the free, unbound GFP-TPX2 gradient. Scale bars are 5 $m. Data are from 7 chromosome 

clusters across 2 extract preparations.  
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Figure S5. Kinetochores act as a void for microtubules. (a) Images showing a snapshot of the 

representative chromosomal branched network under analysis (top row), tubulin intensity 

projection averaged over time (middle row), and microtubule tracks projection averaged over time 
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in the vicinity of the chromosome (bottom row). Both the tubulin and microtubule tracks 

projections exhibit a void at the kinetochore because microtubules cannot polymerize through 

kinetochores in our system. Scale bars are 10 $m. Zoomed-in insets of the void region are 10 $m 

x 10 $m. (b) Quantification of mean normalized intensity for kinetochore, tubulin, and chromatin 

channels. Data are from the 3 chromosome clusters across 2 extracts that had only 1 void visible. 

Every chromosome cluster featured at least 1 void. Shaded error bands represent 95% bootstrap 

confidence intervals.  



 

Figure S6. Additional examples of acentrosomal bipolar spindles in bulk extract. (a) White 

arrows mark the NuMA labeled poles. Scale bars are 10 $m. (b) Negative control immunostaining 

of bipolar spindles with a random IgG showing no distinct or significant spindle localization. Scale 

bars are 10 $m. Data are from %	 = 	173 spindles across 13 different extract preparations. 
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SUPPLEMENTARY MOVIE LEGENDS 

Movie S1. Branching microtubule nucleation at kinetochores with vanadate.  The field is 30 

$m x 30 $m. 

Movie S2. Branched microtubule network formation in control depleted (left) and augmin 

depleted (right) extracts. The fields are 140 $m x 166 $m. 

Movie S3. Branched microtubule network formation in control depleted (left) and TPX2 

depleted (right) extracts. The fields are 140 $m x 166 $m. 

Movie S4. Branching microtubule nucleation in a uniform field of SAFs. The field is 34 $m x 

22 $m. 

Movie S5. Branching microtubule nucleation at kinetochores with motor activity. The field 

is 30 $m x 30 $m. 

Movie S6. Bipolar spindle assembly around chromosomes. The field is 40 $m x 40 $m. 

 



1 Theory - Derivation

1.1 Dynamic instability

The first step of our theory is to introduce a model for the dynamic instability of micro-
tubules. Following the now standard approach [1], we define m (t, x, `) (ms (t, x, `)) as the
probability density of observing a growing (shrinking) microtubule of length ` with minus
end at x at time t. We adopt the physiological picture that microtubules grow (shrink)
from their plus end at speed U (Us) and are nucleated and stabilized at their minus end. A
growing (shrinking) microtubule can stochastically transition into a shrinking (growing)
microtubule at a frequency fc (fr) called the catastrophe (rescue) frequency. This entire
process occurs far from equilibrium and is regulated by the rate at which GTP-tubulin is
hydrolyzed into GDP-tubulin [2]. Because h`i/U ⌧ h`i2/DM is easily satisfied [3], where
h`i is the average microtubule length and DM is the thermal di↵usivity of a microtubule,
we may neglect di↵usive transport of microtubules. We do not consider active transport
by motors in this theory. Therefore, the master equations for the probability densities in
the continuum limit are

@tm+ U@`m = frms � fcm (1a)

@tms � Us@`ms = �frms + fcm, (1b)

which are of course only valid on a length scale greater than multiple tubulin dimers.
We now make two simplifying assumptions. Firstly, we utilize the fact that rescue

events are rare and take fr = 0 [4, 5]. That is, once a growing microtubule catastrophes,
it will inevitably shrink to zero length. Secondly, we take advantage of the fact that
Us � U [6]. That is, microtubules shrink much faster than they grow, and so we take
them to e↵ectively disappear once they catastrophe. Under these conditions equations
(1) reduce to

@tm+ U@`m = �fcm. (2)

The essential feature of equation (2) is the eventual enforcement of a bounded micro-
tubule length distribution: m(t ! 1, x, l) ⇠ exp (�`/h`i), where h`i = U/fc is the
average microtubule length. Such exponential distributions have indeed been experimen-
tally verified [3, 7, 8]. Closure of equation (2) requires an initial condition, which we take
to be m (t = 0, x, `) = 0, as well as a specification of how new microtubules are nucleated
in time and space, which we shall encode in m (t, x, ` = 0).

1.2 Microtubule nucleation

We now introduce our model for branching microtubule nucleation regulated by the
RanGTP pathway. Branching nucleation, whereby new microtubules nucleate o↵ of pre-
existing ones, is catalyzed by proteins e↵ectors that bind to microtubules, some of which
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(e.g. TPX2 [9–11]) are spatially regulated by the RanGTP pathway and are referred to
as a spindle assembly factors (SAFs) [12]. At the onset of spindle assembly, SAFs are
sequestered by so-called importin proteins [13]. They are freed to participate in nucle-
ation processes only when RanGTP binds to the importin-SAF complex, which releases
the SAF. RanGTP is produced at chromosomes through the RCC1 pathway and released
into the cytoplasm, where it can either bind to importin-SAF complexes or be hydrolyzed
into its inactive RanGDP form. Thus, RanGTP exists as a gradient around chromosomes.

The simplest model of branching nucleation one can posit is that a branched micro-
tubule is most likely to nucleate wherever the concentration of SAFs bound to preexisting
microtubules is highest. Hence, the probability of nucleating a branched microtubule is
proportional to the local concentration of bound SAFs, which we denote by cb (t, x). We
note that in reality multiple factors must bind to nucleate a branch [8, 11, 14], some of
which are not spatially regulated by RanGTP. However, SAFs bind first [8]. Therefore
our model is only strictly valid if the binding of SAFs is rate-limiting. However, taking
into account multiple binding events does not a↵ect the main qualitative conclusions of
this work [8]. Given these considerations we write the nucleation condition as

m (t, x, ` = 0) =
1

h`i (� (x) + cb (t, x)) , (3)

where �(x) is the Dirac delta function. The first term captures the initial nucleation of a de
novo microtubule at x = 0 and the second term represents the contribution due to branch-
ing nucleation. The prefactor 1/h`i sets the units so that M (t, x) =

R1
0

d` m (t, x, `)
measures the number density of minus ends and P (t, x) =

R1
0

d` m (t, x� `, `) measures
the number density of plus ends.

To close the problem, we must express cb in terms of m through the reaction-di↵usion
network regulated by RanGTP (Fig. 4a). It is not our goal here to model the delicate
intricacies of the full chemical kinetics involved in the RanGTP pathway [13,15]. Rather,
we seek the simplest tractable description that will preserve the essential microtubule
behavior. In this spirit, we first assume the importin binding kinetics are fast enough to
come to local equilibrium, which allows us to write the algebraic relation

kIc [Importin� SAF] = k(r)

I
[Importin� RanGTP] cu, (4)

where c is the concentration of free RanGTP and cu is the concentration of unbound SAFs.

Therefore we have that cu =
⇣
kI/k

(r)

I

⌘
([Importin� SAF] /[Importin� RanGTP]) c :=

KIc, where we define KI to be a constant that encodes all the kinetic activity of the
importin molecules. Hence, in this approximation the unbound SAF concentration cu is
simply proportional to the RanGTP concentration c. Together with equation (4), we find
that c satisfies the reaction-di↵usion equation

@tc = D@2xc� kHc, (5)
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where D is the di↵usivity of RanGTP and kH is the hydrolysis rate of RanGTP !
RanGDP. We now assume that protein di↵usion is fast compared to microtubule dy-
namics, i.e. hli2/D ⌧ hli/U , so that the RanGTP gradient is quasistatic with respect
to the microtubule dynamics [4, 5]. In this limit equation (5) becomes 0 = d

2c
dx2 � kHc.

Enforcing the boundary conditions �D dc
dx (x = d) = J and c (|x|! 1) ! 0, where J is

the flux of RanGTP into the cytoplasm produced by chromosomes, furnishes the solution
c (x) = c0 exp (�|x� d|/�), where c0 = J�/D is the maximum RanGTP concentration
at x = 0, � =

p
D/kH is the characteristic length scale of the RanGTP/SAF gradient,

and d is the distance between the chromosome and the minus end of the initial de novo
mother microtubule. Hence the concentration profile of unbound SAFs satisfies

cu (x) = KIc0e
�|x�d|/�. (6)

We now obtain the concentration of bound SAFs cb needed to close the nucleation
condition (3). The simplest way to proceed is to assume that the binding of SAFs to a
microtubule occurs at local equilibrium, so that oncuF [m, x] = o↵cb, or

cb(t, x) = Kcu(x)F [m, x] (7)

where K = on/o↵ is the ratio between on and o↵ rates of SAFs binding to and un-
binding from a microtubule. F [m, x] is a functional that expresses the concentration of
microtubule lattice at x that can serve as a binding site for unbound SAFs at x, given
the minus end distribution m (t, x0, `). We can write this functional as

F [m, x] =

Z 1

0

d`

Z x

0

dx0 ⇥ (`� (x� x0))m (t, x0, `) (8)

where ⇥ is the Heaviside step function. The structure of equation (8) ensures that a
microtubule with minus end at x0 can nucleate a branched microtubule at x so long as its
length ` is such that ` > x� x0. This introduces strong nonlocality to the mathematical
formalism and allows us to describe the evolution and variation of the resulting branched
network on length scales comparable to and even smaller than the average microtubule
length. This generalizes previous continuum theories which were only valid over length
scales larger than the average microtubule length [3, 16, 17]. At this stage we have for-
mulated the theory in one spatial dimension, which is justified by the fact that branching
angles are shallow, which ensures that the resulting branched networks are highly polar.

1.3 Rescaling and problem statement

We now rescale equations (2), (3), and (7) using the dimensionless variables T = tfc,
X = x/hli, L = l/hli, and  = mhli2 to arrive at the dimensionless problem statement

@T + @L = � (9a)

 (T = 0, X, L) = 0 (9b)

 (T,X, L = 0) = � (X) + Be�|
X�D

⇤ |F [ , X] , (9c)
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where F [ , X] =
R1
0

dL0 R X

0
dX 0 ⇥ (L0 � (X �X 0)) (T,X 0, L0). We identify the number

B = KKIc0hli = KKIc0U/fc as representing the competition between how many new
microtubule branches nucleate versus how many microtubules are lost to catastrophes.
Hence we refer to B as the branching number. Note that in n spatial dimensions we would
have B = KKIc0hlin. Additionally, two geometric ratios appear. ⇤ = �/hli is the ratio
of the SAF gradient length scale to the average microtubule length, and D = d/hli is the
ratio of the distance between the initial de novo nucleation event and the chromosome to
the average microtubule length.

Solution of this partial integrodi↵erential equation for the distribution  will estab-
lish how dynamic microtubules are organized by branching nucleation processes spatially
regulated by chromosomes, and hence o↵er insight into early spindle assembly.

2 Theory - Branching in a uniform field of SAFs

We first consider the case where the concentration of SAFs is uniform, which corresponds
to the limit ⇤ ! 1 in equations (9). There are two reasons to work in this limit.
Firstly, we can perform experiments using a non-hydrolyzable mutant version of RanGTP,
RanQ69L, that produces a uniform field of SAFs in X. laevis extract, allowing us to
benchmark our model on a simpler system (Fig. 3). Secondly, the model has an exact
closed-form solution in this limit, which will give us analytical insight into the organization
of these dynamic branched networks.

In this limit, the spatial bias imposed by the SAF gradient vanishes. Therefore the
kernel of F has translational invariance, which motivates solution by Laplace transform.
We define  ̃ =

R1
0

dT esT (T,X, L). Taking the Laplace transform of equation (9a),
using the initial condition (9b), and integrating in L gives

 ̃ =  ̃ (X,L = 0; s) e�(s+1)L. (10)

We get  ̃ (X,L = 0; s) by Laplace transforming the nucleation condition (9c), resulting
in the double integral equation

e(s+1)L ̃ � BF
h
 ̃, X

i
=
� (X)

s
. (11)

To make progress, we define the spatial Laplace transform of  ̃ as ˆ̃ =
R1
0

dX e�kX ̃(X,L; s).
Taking the spatial Laplace transform of equation (11) gives

e(s+1)L ˆ̃ � B
Z 1

0

dL0
Z 1

0

dX

Z X

0

dX 0 e�kX⇥ (L0 � (X �X 0))  ̃ (X 0, L0; s) =
� (X)

s
(12)

Swapping integration orders on X and X 0 factors the spatial integrals into a product of
two spatial Laplace transforms in X 0 and X �X 0, the latter of which may be explicitly
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computed. The result is the single integral equation

e(s+1)L ˆ̃ � B
k

Z 1

0

dL0
⇣
1� e�kL0

⌘
ˆ̃ (L0; s, k) =

1

s
, (13)

for which the solution may be obtained by proposing the anzats e(s+1)L ˆ̃ = B
k c(s, k) +

1

s
for a to be determined function c(s, k) [18]. Substituting this anzats into equation (13)
and preforming the necessary integrations gives c = k

s(s+1)(s+k+1)�sB , and so we find

ˆ̃ =

⇢
B

(s+ 1)(s+ k + 1)
+ 1

�
1

s
e�(s+1)L. (14)

The inverse spatial Laplace transform of equation (14) may be computed and expressed
in terms of elementary functions, giving the result

 ̃ =

⇢
B

s+ 1
e[

B
s+1�(s+1)]X + � (X)

�
1

s
e�(s+1)L. (15)

From equation (15) we may directly compute the dimensionless plus end distribution
� =

R1
0

dL  (T,X�L,L) =) �̃ =
R1
0

dL  ̃(X�L,L; s), which is the main quantity of
interest to us since we can directly track microtubule plus ends. Performing the integration
and neglecting the redundant B = 0 solution gives

�̃ =
1

s
e[

B
s+1�(s+1)]X (16)

for the plus end distribution. �̃ has a simple pole at s = 0 and an essential singularity at
s = �1. Such essential singularities often manifest whenever there are strongly nonlocal
physics, such as in the Kosterlitz-Thouless transition [19]. The essential singularity ren-
ders the principal part of the local Laurent expansion infinite, precluding the application
of standard residue calculus [20]. Therefore, the inverse Laplace transform of equation
(16) cannot be computed exactly in terms of known functions, so we employ the Bromwich
integral representation

� =
1

2⇡i

Z i1

�i1
ds

1

s
esT+[ B

s+1�(s+1)]X , (17)

where the notation means we integrate along a vertical line in the complex s plane. Note
that we have let the integration path tend towards the imaginary axis, since s = 0 is just
a simple pole, and so the integral is to be interpreted in the principal value sense. Thus,
we have derived an exact formula for the plus end distribution of dynamic microtubules
branching in a uniform field of SAFs.

We first ask whether the plus end distribution � can attain a bounded distribution,
which would imply the existence of statistically stationary branched networks. Recall
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that the final value theorem states limT!1 �(T,X) = lims!0 s�̃(X, s) so long as |�| is
bounded as T ! 1. Application of the final value theorem to equation (16) immediately
gives

� ! e(B�1)X for T ! 1, B < 1, (18)

where we require B < 1 since e(B�1)X is no longer bounded for all X if B > 1. The
case where B = 0 recovers the known result that dynamic microtubules nucleating from a
local source have exponentially distributed lengths in the bounded growth regime [1]. The
physical interpretation of the distribution (18) is simple: when B < 1, more microtubules
are lost to catastrophes than are produced via branching nucleation. Hence, the branched
network can only propagate a finite distance before reaching a steady state (Fig. 3d).

The case of B = 1 is subtle. The final value theorem (18) would suggest that � ! 1,
but this is not the whole story. Upon numerically evaluating the inverse Laplace transform
(17) for B = 1 using de Hoog’s method [21, 22], we see that the solution represents
traveling waves of constant microtubule density, and therefore no steady state exists (Fig.
3e). In this regime, microtubules are made via branching nucleation as often as they
are lost to catastrophes, and so the system can propagate indefinitely while sustaining a
constant density. We computed the position of the inflection point of � (T,X) versus time,
X⇤ (T ), and found a linear relationship, confirming that these profiles indeed correspond
to traveling waves. Interestingly, the system selects a wave speed of V ' U/2. Traveling
waves of constant microtubule density have been observed in the study of branching
asters [16], where the authors provide a similar physical interpretation of the waves, as
well as simulations of the traveling microtubule density profiles. Here, we see that their
results are a special case of our theory when B = 1, and furthermore, we provide an exact,
parameter free formula for such profiles via equation (17).

When B > 1, the production of new microtubule branches out competes the loss
of microtubules due to catastrophes, and so a branched network forms that propagates
outwards and grows autocatalytically with time (Fig. 3f). Interestingly, the position of
the maximum of this network, Xmax (T ), also increases linearly with time at a wave speed
of V ' U/2. We see that our experimental branched networks fall in this regime for the
first ⇠ 10 min with B = 1.7 (Fig. 3c). However, after this autocatalytic growth, the
experimental branched network saturates in a way consistent with a limiting number of
available nucleators.

3 Theory - Branching in a SAF gradient

We now consider the full problem of microtubules branching in SAF gradient described
by equations (9). Because the SAF gradient profile Cu(X) = exp

�
�|X�D

⇤
|
�
breaks the

translational invariance of the problem, an exact closed-form solution is no longer pos-
sible. Furthermore, regular perturbation methods are ill-suited for systems that exhibit
autocatalytic growth. Hence, we proceed to solve the complete equations (9) numerically.
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We begin by working with the Laplace transformed distribution  ̃. In the case where
there is a SAF gradient, equation (11) becomes

e(s+1)L ̃ � BCu(X)F
h
 ̃, X

i
=
� (X)

s
. (19)

We now substitute the ansatz

 ̃ =


�(X)

s
+ ỹ

�
e�(s+1)L (20)

into equation (19) for a to be determined function ỹ = ỹ(X; s). Evaluating the integrals
appear upon this substitution results in

ỹ � BCu(X)

Z 1

0

dL e�(s+1)L

Z X

0

dX 0 ⇥(L� (X �X 0))ỹ(X 0) =
BCu(X)e�(s+1)X

s(s+ 1)
, (21)

which is an integral equation for ỹ(X; s). In order to solve equation (21) numerically, we
discretize all variables onto a regular grid X ! Xi and ỹ(X; s) ! ỹi(s) for i = 0, ...,M
and we choose �X = Xi+1 �Xi = 0.1. We first evaluate the integral over X 0 using the
trapezoidal rule and then evaluate the integral over L analytically. The result is

ỹi�
BCu(Xi)�X

s+ 1

"
e�(s+1)Xi

2
ỹ0 +

i�1X

m=1

e�(s+1)(Xi�Xm)ỹm +
1

2
ỹi

#
=

BCu(Xi)e�(s+1)Xi

s(s+ 1)
. (22)

Equation (22) has the structure of the linear system (�im�wim)ỹm = bi (Einstein summa-
tion convention is used here), which we invert using standard LU decomposition to find
the desired ỹi(s).

With ỹi(s) now constructed, we numerically compute the inverse Laplace transform us-
ing de Hoog’s method [21, 22] to generate yi(T ), which allows us to compute  (T,Xi, L)
using equation (20). The desired plus end distribution is computed from �(T,Xi) =R1
0

dL  (T,Xi � L,L) using linear interpolation and the trapezoidal rule. We bench-
marked our numerical method using Cu(X) = 1 to ensure that it reproduced the results
of the uniform field branched networks.

We find that the parameter choice of B = 2 best reproduces the plus-end distribution
of the experimental branched networks that form around chromosomes (Fig. 4c), using
the experimentally measured value of ⇤ = 3 (Fig. 4b).
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