Supplementary Information

Deep-learning-enabled Brain Hemodynamic Mapping Using Resting-state fMRI

Xirui Hou^{1,2}, Pengfei Guo³, Puyang Wang⁴, Peiying Liu⁵, Doris D.M. Lin², Hongli Fan^{1,2}, Yang Li², Zhiliang Wei^{2,6}, Zixuan Lin², Dengrong Jiang², Jin Jin⁷, Catherine Kelly⁸, Jay J. Pillai^{2,9}, Judy Huang⁹, Marco C. Pinho¹⁰, Binu P. Thomas¹⁰, Babu G. Welch^{11,12}, Denise C. Park¹², Vishal M. Patel^{3,4}, Argye E. Hillis⁸, and Hanzhang Lu^{1,2,6*}

¹Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA

²The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA

³Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

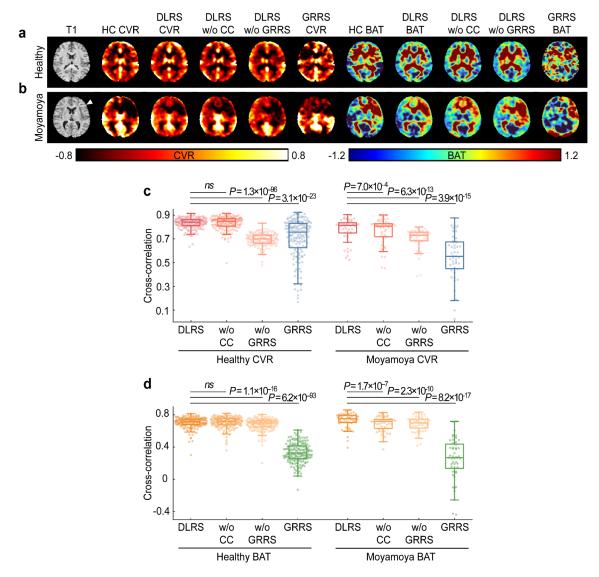
⁴Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA

⁵Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA

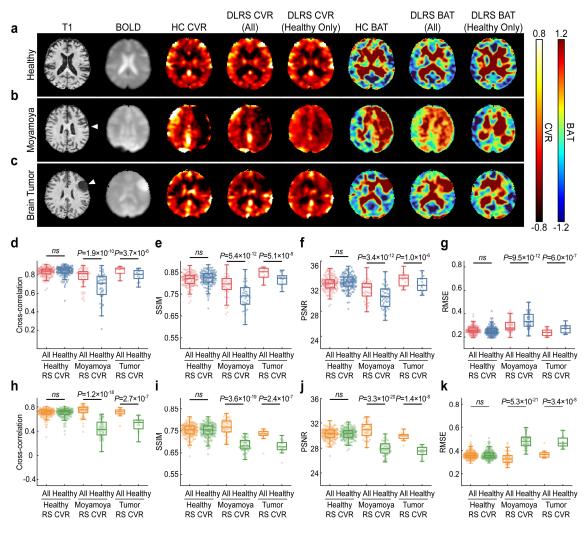
⁶F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA

⁷Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

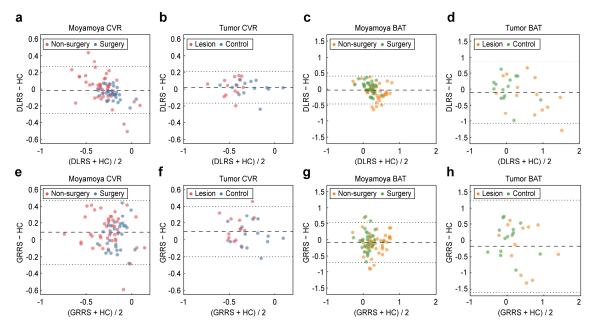
⁸Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

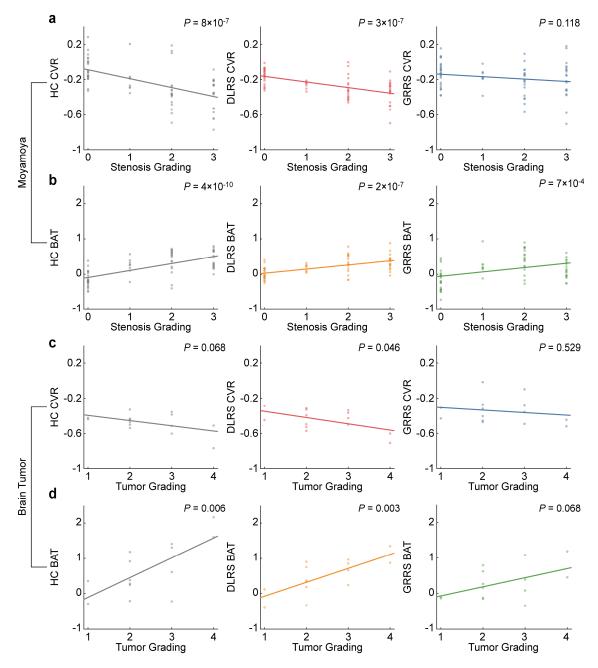

⁹Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA

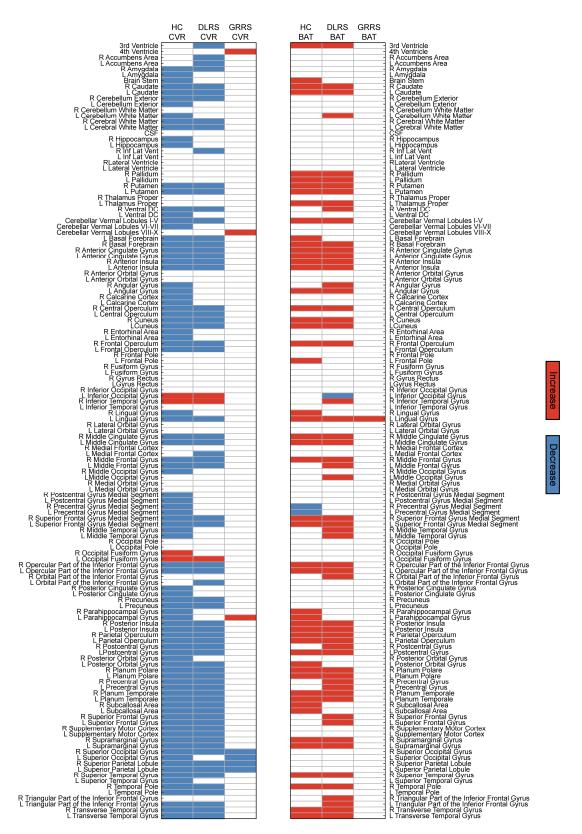
¹⁰Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA

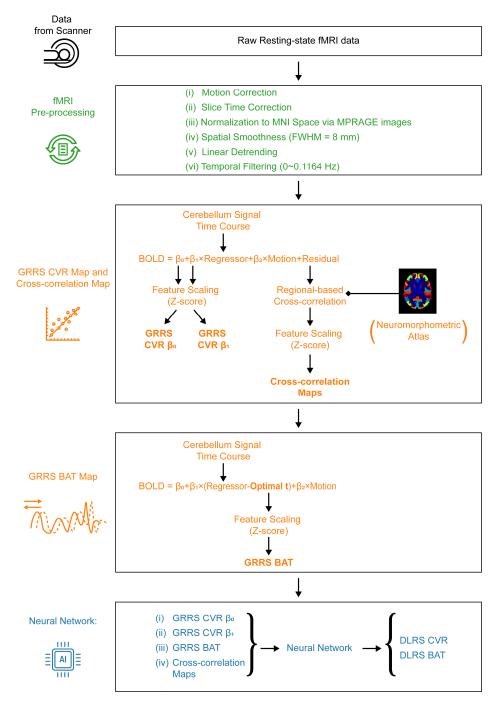

¹¹Department of Neurologic Surgery, UT Southwestern Medical Center, Dallas, TX, USA

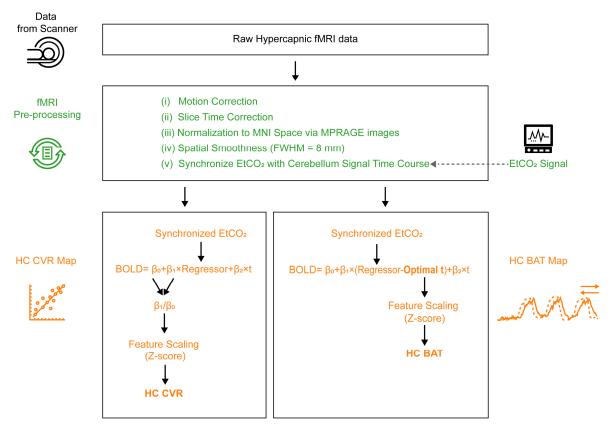
¹²Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA

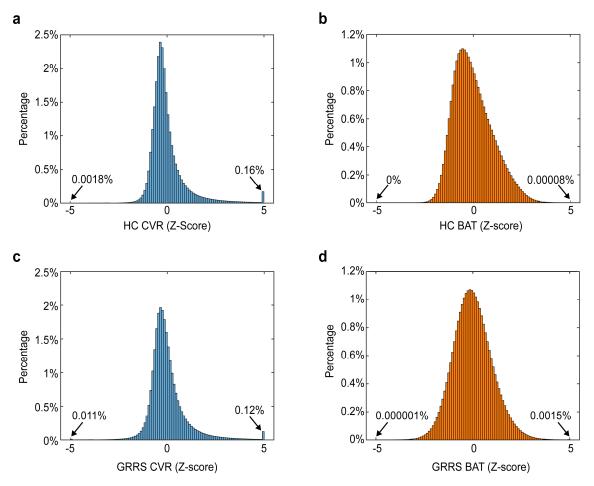

*Correspondence: Hanzhang Lu, Ph.D. The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD, USA, 21287, Email: <u>hanzhang.lu@jhu.edu</u>


Supplementary Figure 1 | **Examples and quantitative metrics of the ablation study. a, b,** Representative cerebrovascular reactivity (CVR) and bolus arrival time (BAT) images of a healthy volunteer (**a**), and a Moyamoya disease patient (**b**). From left to right, the images are T1-weighted images, hypercapnic (HC) CVR, deep-learning resting-state (DLRS) CVR, DLRS CVR without cross-correlation inputs, DLRS CVR without global-regression inputs, global-regression resting-state (GRRS) CVR, HC BAT, DLRS BAT, DLRS BAT without cross-correlation inputs, DLRS BAT without GRRS inputs, and GRRS BAT. **c**, Boxplots denote Pearson cross-correlation between RS CVR images and HC CVR images in healthy and Moyamoya disease participants. The ablated parametric maps revealed a lower correlation with the reference HC maps. The line, box, and whiskers in the boxplots represent the median, the interquartile range (IQR), and 1.5 times the IQR, respectively. **d**, Boxplots denote Pearson cross-correlation between RS BAT images and HC BAT images.


Supplementary Figure 2 | **The performance of deep-learning network trained exclusively on healthy group. a-c,** Representative cerebrovascular reactivity (CVR) and bolus arrival time (BAT) images of a healthy volunteer (a), Moyamoya disease patient (b), and brain tumor patient (c). From left to right, the images are T1-weighted images, raw BOLD images, hypercapnic (HC) CVR and BAT images, as well as deep-learning restingstate (DLRS) CVR and BAT images trained on all groups and healthy group. d-g, The boxplots display the similarity between deep-learning resting-state CVR maps and groundtruth HC CVR maps. Two types of resting-state CVR maps are studied: those trained on all groups and those specifically trained on the healthy group. Four similarity indices are studied, including Pearson cross-correlation (d), structure similarity index metric (SSIM) (e), peak signal-to-noise ratio (PSNR) (f), root-mean-square error (RMSE) (g). The line within the boxplots represents the median, the box represents the interquartile range (IQR), and the whiskers are 1.5 times the IQR. h-k, the boxplots display the similarity between deeplearning resting-state BAT maps and ground-truth HC BAT maps.


Supplementary Figure 3 | **Bland-Altman plots comparing the results of deep-learning resting-state (DLRS) and global-regression resting-state (GRRS) approaches to hypercapnic (HC) results.** Top row: DLRS results. Bottom row: GRRS results. Left half: CVR results. Right half: BAT results.


Supplementary Figure 4 | Associations between cerebrovascular physiological maps and clinical variables. a, Scatter plots between regional CVR and arterial stenosis grade in Moyamoya patients, as rated in the middle cerebral artery (MCA). Plots are shown for hypercapnic cerebrovascular reactivity (HC CVR, left), deep-learning resting-state (DLRS CVR, middle) and global-regression resting-state (GRRS CVR, right). More severe stenosis is associated with lower CVR. **b**, Scatter plot between BAT and arterial stenosis grade. More severe stenosis is associated with longer BAT. **c**, Scatter plots between regional CVR and WHO tumor grade. **d**, Scatter plots between regional BAT and WHO tumor grade.


Supplementary Figure 5 | Age-related differences in deep-learning resting-state cerebrovascular reactivity (DLRS CVR) and bolus arrival time (DLRS BAT) across the lifespan. From left to right, the heat maps represent the age differences associated with hypercapnic (HC) CVR, DLRS CVR, global-regression resting-state (GRRS) CVR, HC BAT, DLRS BAT and GRRS BAT. Cell color denotes model type: linear increasing (Red) and linear decreasing (Blue). All models are added gender as covariate and controlled the false discovery rate (FDR, q<0.05).

Supplementary Figure 6 | Illustration of the analysis pipelines of deep-learning restingstate cerebrovascular reactivity (DLRS CVR) and bolus arrival time (DLRS BAT) using resting-state fMRI data.

Supplementary Figure 7 | Illustration of the analysis pipelines of hypercapnic cerebrovascular reactivity (HC CVR) and bolus arrival time (HC BAT).

Supplementary Figure 8 | **Histograms of cerebrovascular reactivity (CVR) and bolus arrival time (BAT) after imaging clipping to a range of less than ±5. a,** Clipped distribution of hypercapnic (HC) CVR voxel-wise values after conversion to z-score. **b,** Clipped distribution of HC BAT voxel-wise values after conversion to z-score. **c,** Clipped distribution of global-regression resting-state (GRRS) CVR. **d,** Clipped distribution of GRRS BAT.

					MRA ste	enosis grade	for cerebra	larteries		
Subject number	Age (years)	Sex	R ICA	L ICA	R MCA	L MCA	R ACA	L ACA	R PCA	L PCA
1	18	F	0	3	0	2	0	0	0	0
2	21	F	1	0	1	0	0	0	0	0
3	24	F	3	0	2	0	0	2	0	0
4	24	F	3	1	3	3	0	0	0	0
5	24	F	0	3	0	2	0	0	0	0
6	25	F	0	1	0	2	0	0	0	0
7	30	F	3	1	3	3	1	0	0	0
8	30	F	1	3	2	3	1	2	0	0
9	30	F	2	2	3	2	1	0	0	0
10	31	М	3	2	3	3	2	1	0	0
11	32	F	0	0	0	2	0	0	0	0
12	32	М	2	2	2	2	2	2	0	0
13	34	F	2	1	3	1	2	1	1	1
14	34	F	3	3	3	3	1	2	0	0
15	35	M	2	2	0	2	1	1	0	0
16	35	F	0	3	0	3	0	0	0	0
17	36	F	0	0	0	2	0	0	0	0
18	37	F	0	0	0	2	0	0	0	0
19	38	F	2	0	2	0	1	0	0	0
20	38	М	1	1	3	2	0	1	0	0
21	38	F	1	2	3	1	0	0	1	0
22	38	F	0	2	0	3	0	1	0	0
23	38	F	2	1	1	2	0	0	0	0
24	39	F	2	3	2	3	2	1	1	2
25	39	F	2	3	2	3	2	1	1	2
26	40	F	2	3	2	3	2	1	1	2
27	41	F	2	2	2	2	0	0	1	0
28	41	F	2	2	0	2	0	2	0	0
29	42	F	3	3	3	3	2	2	0	0
30	45	F	2	0	1	0	0	0	0	0
31	45	F	1	0	1	0	0	0	0	0
32	46	M	3	3	3	0	0	0	1	0
33	46	F	0	0	0	3	0	0	0	0
34	48	F	0	3	0	2	2	1	0	0
35	49	F	1	3	2	3	0	1	0	0
36	49	F	2	2	2	3	0	2	0	0
37	50	F	1	0	0	0	0	0	0	0
38	50	F	2	1	1	3	0	2	0	0
39	50	F	2	1	1	3	1	2	0	0
40	51	F	3	3	2	3	1	2	0	0
41	51	F	2	2	3	3	1	2	0	0
42	52	F	3	3	3	3	2	0	0	0
43	52	F	1	1	3	2	0	2	0	0
44	53	M	0	2	0	3	2	0	0	0
45	60	F	2	1	1	2	0	0	0	0
46	60	F	2	1	1	3	0	1	0	0
40 47*	62	F	-	-	-	-	-	_	0	0
48	64	F	1	1	0	1	2	1	0	0
49	72	F	1	1	0	3	2	0	Ŭ	0

Supplementary Table 1 | Demographic and clinical data of Moyamoya patients.

Supplementary Tab	le 2 Demographic	and clinical data	of brain tumor patients.	
Subject number	Age (years)	Sex	WHO Grade	Histology
1	21	М	3	Anaplastic astrocytoma
2	24	М	2	Astrocytoma
3	25	F	2	Oligodendroglioma
4	26	F	3	Astrocytoma
5	33	М	4	Glioblastoma
6	34	М	3	Anaplastic glioma
7	35	М	2	Diffuse astrocytoma
8	41	F	2	Diffuse astroctoma
9	42	М	1	Glioma
10	46	М	1	Glioma
11	58	М	4	Glioblastoma
12	59	F	2	Infiltrating glioma
13	68	м	2	Infiltrating glioma
14	81	F	3	Astrocytoma

Supplementary Table 2 | Demographic and clinical data of brain tumor patients.

Subject number	Age (years)	Sex	Time of scan post-stroke (Weeks)	NIHSS
1	27	F	0	3
2	28	F	51	4
3	33	F	22	11
4	36	м	9	6
5	39	F	31	
6	39	F	1	2
7	40	м	49	1
8	46	м	2	1
9	46	F	32	9
10	47	М	1	0
11	49	м	52	0
12	50	м	1	1
13	50	м	12	1
14	52	м	0	1
15	54	F	0	11
16	54	F	20	3
17	54	м	59	2
18	56	м	56	2
19	56	м	24	2
20	57	F	24	1
21	57	м	10	2
22	57	F	0	2
23	59	м	2	1
24	60	F	4	5
25	60	м	52	4
26	60	м	30	23
27	61	F	63	3
28	61	м	64	5
29	62	м	16	6
30*	63	F	12	-
31	63	м	7	0
32	64	м	0	2
33	65	м	0	1
34	66	м	0	2
35	71	F	11	2
36	74	м	17	5
37	76	м	0	2
38	87	F	0	10

Supplementary Table 3 | Demographic and clinical data of stroke patients used for clinical test.

Subject number	Age (years)	Sex	a of stroke patients used for reproducibility test. Time of scan post-stroke (Weeks)	NIHSS
1	24	F	8	0
2	34	M	0	0
3	36	M	16	20
4	37	М	1	3
5	41	F	55	4
6	42	F	16	2
7	46	м	62	0
8	48	м	30	3
9	52	м	30	7
10	53	м	14	1
11	56	м	0	1
12	56	М	34	2
13	56	М	42	5
14	57	М	51	1
15	57	М	31	7
16	57	М	28	11
17	60	F	0	9
18	63	F	33	1
19	63	F	0	1
20	64	м	12	0
21	65	М	14	5
22	66	М	1	0
23	66	F	62	6
24	68	М	21	1
25	70	F	11	7
26	70	F	0	4
27	70	М	19	4
28	72	М	1	1
29	76	F	20	8
30	80	F	1	1

Supplementary Table 4 | Demographic and clinical data of stroke patients used for reproducibility test.

Module	Block P_Conv1	Layer Conv+ReLU+BN Conv+ReLU+BN	Input Layer Images Prev	Input Size 3x96x112 64x96x112	Num of Filters 64 64	Kernal Size		Stride	Pa		Padding	Padding Module Block	Padding Module Block Layer 1 Transpose Conv Franspose Conv P_Con 1 C_DeConv1 Concetenture P_Conv46	Padding Module Block Layer Input Layer 1 C_DeConVI Transpose ConV P_ConV4-S_ConV5 1 C_DeConVI Concetenate P_ConV4-S_ConV4-Prev	Padding Module Block Layer Input Input Num of 1 Transpose Conv P_Conv5+5_Conv5 2048x6x7 512 1 C_DeConv1 Concatenate P_Conv4+5_Conv4 512 1 C_DeConv1 Concatenate P_Conv4+Fev 1536x12x14 -	Padding Module Block Layer Input Input Num of Kernal 1 Transpose Conv P_Conv5+S_Conv5 2048x6x7 512 2 1 C_DeConv1 Concatenate P_Conv4+S_Conv4+Prev 1536x12x14 - - 1 C_DeConv1 Concatenate P_Conv4+S_Conv4+Prev 1536x12x14 - -	Padding Module Block Layer Input Input Input Num of Kernal st 1 Transpose Conv P_Conv5-S_Conv5 2048x6x7 512 2 1 C_DeConv1 Concatenate P_Conv4-S_Conv4-Prev 153xx12x14 - -
	P_Conv1	Conv+ReLU+BN Conv+ReLU+BN MaxPool Conv+ReLU+BN	Images Prev Prev P_Conv1	3x96x112 64x96x112 64x96x112 64x96x112	128 ⁶⁴	ωνωω	- 2		- 0	- 0		C_DeConv1	C_DeConv1 Concetenate Concetenate Conv+ReLU+BN Conv+ReLU+BN Transpose Conv	C_DeConv1 Concetenate P_Conv+5_Conv4+Prev C_DeConv1 Conv+ReLU+BN Prev Conv+ReLU+BN Prev Transpose Conv C_DeConv1	rranspose Conv P_Conv+5-2_Conv-5 ZV42xxx / C_DeConv1 Concetenate P_Conv4-EX_Conv4-Prev IS36x12x14 Conv+ReLU+BN Prev IS36x12x14 Conv+ReLU+BN Prev 512x12x14 Transpose Conv C_DeConv1 512x12x14	C_DeConv1 Transpose conv P_Conv+5_Conv4-Prev 526412x14 - C_DeConv1 Convertente P_Conv4-Prev 1536x12x14 - Conv+ReLU+BN Prev 1536x12x14 512 Conv+ReLU+BN Prev 512x12x14 512 Transpose Conv C_DeConv1 512x12x14 256	Inanspose conv C.conv+1_Conv+1_Conv. Z.4X8X/ 2 C_DeConv1 ConvetAste Prev 1336/12x14 - - C_DeConv1 Conv+ReLU+BN Prev 1536/12x14 512 3 Gonv+ReLU+BN Prev 512x12x14 512 3 Transpose Conv C_DeConv1 512x12x14 512 3
	P_Conv2	Conv+ReLU+BN Conv+ReLU+BN MaxPool	P_Conv1 Prev Prev	64x48x56 128x48x56 128x48x56	128 128 1	Νωω	N - -		0	0	1 C_DeConv2	C_DeConv2	C_DeConv2	Transpose Conv C_DeConv1 C_DeConv2 Concatenate P_Conv3+5_Conv3+Prev C_DeConv2 Conv+ReLU+BN Prev Conv+ReLU+BN Prev 2	Transpose Conv C_DeConv1 512x12x14 C_DeConv2 Concatenate P_Conv3+5_Conv3+Frev 768x24x28 C_DeConv2 Conv+ReLU+BN Prev 768x24x28 Conv+ReLU+BN Prev 256x24x28	Transpose Conv C_DeConv1 512x12x14 C_DeConv2 Concatenate P_Conv3+5_Conv3+Frev 768x24x28 C_DeConv2 Conv+ReLU+BN Prev 768x24x28 Conv+ReLU+BN Prev 256x24x28 Conv+ReLU+BN Prev 256x24x28	Tanspose Conv C_DeConv1 512x12x14 256 C_DeConv2 Concatenate P_Conv3+5_Conv3+Frev 768x24x28 - C_DeConv2 Conv+ReLU+BN Prev 768x24x28 256 Conv+ReLU+BN Prev 256x24x28 256
Primary Encoder	P_Conv3	Conv+ReLU+BN Conv+ReLU+BN MaxPool	P_Conv2 Prev Prev	128x24x28 256x24x28 256x24x28	256 256 1	Nωω	2 1 1		0	CVR 1 1 0		CVR Decoder	CVR Decoder C_DeConv3	CVR Transpose Conv Decoder C_DeConv3 Concatenate Conv+ReLU+BN Conv+ReLU+BN	CVR Transpose Conv C_DeConv2 Decoder C_DeConv3 Concatenate P_Conv2+S_Conv2+Prev Conv+ReLU+BN Prev Conv+ReLU+BN Prev	CVR Transpose Conv C_DeConv2 256x24x28 Decoder C_DeConv3 Concetenate P_Conv2+5_Conv2+Frev 384x48x56 Conv+ReLU+BN Prev 384x48x56 Conv+ReLU+BN Prev 128x48x56	CVR Transpose Conv C_DeConv2 256x24x28 128 Decoder C_DeConv3 Concatenate P_Conv2+5_Conv2+Prev 384x48x56 - Conv+ReLU+BN Prev 384x48x56 128 Conv+ReLU+BN Prev 128x48x56 128
	P_Conv4	Conv+ReLU+BN Conv+ReLU+BN MaxPool	P_Conv3 Prev Prev Prev	256x12x14 512x12x14 512x12x14	512 1	Νωω	2	0	-		C_DeConv4		C_DeConv4	Transpose Conv C_DeConv4 Concetenate Conv+ReLU+BN Conv+ReLU+BN	Transpose Conv C_DeConv3 C_DeConv4 Concatenate P_Conv1+S_Conv1+Prev Conv+ReLU+BN Prev Conv+ReLU+BN Prev	Transpose Conv C_DeConv3 128x48x56 C_DeConv4 Concatenate P_Conv1+5_Conv1+Frev 192x96x112 C_DeConv4 Conv+ReLU+BN Prev 192x96x112 Conv+ReLU+BN Prev 64x96x112	Transpose Conv C_DeConv3 128x48x56 64 C_DeConv4 Concatenate P_Conv1+S_Conv1+Frev 192x96x112 - C_DeConv4 Conv+ReLU+BN Prev 192x96x112 64 Conv+ReLU+BN Prev 64x96x112 64
	P_Conv5	Conv+ReLU+BN Conv+ReLU+BN	P_Conv4 Prev	512x6x7 1024x6x7	1024 1024	ωω					C_Output	C_Output Conv+Tanh		Conv+Tanh	Conv+Tanh C_DeConv4	Conv+Tanh C_DeConv4 64x96x112	Conv+Tanh C_DeConv4 64x96x112 1
	S_Conv1	Conv+ReLU+BN Conv+ReLU+BN MaxPool	Images Prev Prev	133x96x112 64x96x112 64x96x112	- 64 - 64	Νωω	~	0			B_DeConv1	Transpose Conv Concatenate B_DeConv1 Conv-ReLU-BN Conv+ReLU+BN		Transpose Conv P_Conv5+S_Con Concatenate P_Conv4+S_Conv4- Conv+ReLU+BN Prev Conv+ReLU+BN Prev	Transpose Conv P_Conv5+S_Conv5 Concatenate P_Conv4+S_Conv4+Prev Conv+ReLU+BN Prev Conv+ReLU+BN Prev	Transpose Conv P_Conv5+S_Conv5 2048x6x7 Concatenate P_Conv4+S_Conv4+Prev 1536x12x14 Conv+ReLU+BN Prev 1536x12x14 Conv+ReLU+BN Prev 512x12x14	Transpose Conv P_Conv5+S_Conv5 2048x6x7 512 Concatenate P_Conv4+S_Conv4+Prev 1536x12x14 - Conv+ReLU+BN Prev 1536x12x14 512 Conv+ReLU+BN Prev 512x12x14 512
	S_Conv2	Conv+ReLU+BN Conv+ReLU+BN MaxPool	S_Conv1 Prev Prev Prev	64x48x56 128x48x56 128x48x56	128 128	Νωω	2 1 1	0 -1 -1			B_DeConv2	Transpose Conv +Concatenate B_DeConv2 Conv+ReLU+BN Conv+ReLU+BN		Transpose Conv +Concatenate Conv+ReLU+BN Conv+ReLU+BN	Transpose Conv B_DeConv1 +Concatenate P_Conv3+S_Conv3+Prev Conv+ReLU+BN Prev Conv+ReLU+BN Prev	Transpose Conv B_DeConv1 512x12x14 +Concatenate P_Conv3+5_Conv3+Prev 768x24x28 Conv+ReLU+BN Prev 768x24x28 Conv+ReLU+BN Prev 256x24x28	Transpose Conv B_DeConvl 512x12x14 256 +Concatenate P_Conv3+S_Conv3+Prev 768x24x28 - Conv+ReLU+EN Prev 768x24x28 256 Conv+ReLU+BN Prev 256x24x28 256
Supplementary Encoder	/ S_Conv3	Conv+ReLU+BN Conv+ReLU+BN MaxPool	S_Conv2 Prev Prev Prev	128x24x28 256x24x28 256x24x28	256 256 1	Νωω	2 1 1	0		BAT Decoder	BAT Decoder B_DeConv3		B_DeConv3	Transpose Conv Concatenate Conv-ReLIJ-H9N Conv-ReLIJ-H9N	Transpose Conv B_DeConv2 B_DeConv3 Concatenate P_Conv2+S_Conv2+Prev Conv+ReLU+BN Prev Conv+ReLU+BN Prev	Transpose Conv B_DeConv2 256x24x28 B_DeConv3 Concatenate P_Conv2+F_COnv2+Prev 384x48x56 Conv+ReLU+BN Prev 384x48x56 384x48x56 Conv+ReLU+BN Prev 128x48x56 128x48x56	Transpose Conv B_DeConv2 256x24x28 128 B_DeConv3 Concatenate P_Conv2+5_Conv2+Prev 384x48x56 - Conv+ReLU+EN Prev 384x48x56 128 Conv+ReLU+EN Prev 128x48x56 128
	S_Conv4	Conv+ReLU+BN Conv+ReLU+BN MaxPool	S_Conv3 Prev Prev	256x12x14 512x12x14 512x12x14	512 1	Νωω	2 1 1	0 -1 -1			B_DeConv4	Transpose Conv E_DeConv4 Concatenate Conv+ReLU+BN Conv+ReLU+BN		Transpose Conv Concatenate Conv+ReLU+BN Conv+ReLU+BN	Transpose Conv B_DeConv3 Concatenate P_Conv1+S_Conv1+Prev Conv+ReLU+BN Prev Conv+ReLU+BN Prev	Transpose Conv B_DeConv3 128x48x56 Concatenate P_Conv1+5_Conv1+Prev 192x96x112 Conv+ReLU+BN Prev 192x96x112 Conv+ReLU+BN Prev 64x96x112	Transpose Conv B_DeConv3 128x48x56 64 Concatenate P_Conv1+S_Conv1+Prev 192x56x112 - Conv+ReLU+EN Prev 192x56x112 64 Conv+ReLU+EN Prev 64x96x112 64
	S_Conv5	Conv+ReLU+BN Conv+ReLU+BN	S_Conv4 Prev	512x6x7 1024x6x7	1024 1024	ωω					B_Output	B_Output Conv+Tanh		Conv+Tanh	Conv+Tanh B_DeConv4	Conv+Tanh B_DeConv4 64x96x112	Conv+Tanh B_DeConv4 64x96x112

Supplementary Table 5 | Architectural details of the deep-learning network used in this work.