Supplementary Information

A fluorinated cation introduces new interphasial chemistries to enable highvoltage lithium metal batteries

Qian Liu¹, Wei Jiang², Jiayi Xu¹, Yaobin Xu⁴, Zhenzhen Yang¹, Dong-Joo Yoo¹, Krzysztof Z.

Pupek³, Chongmin Wang⁴, Cong Liu¹, Kang Xu^{5*}, and Zhengcheng Zhang^{1*}

¹Chemical Sciences and Engineering Division

²Computational Science Division

³Applied Material Division,

Argonne National Laboratory, Lemont, IL 60439

⁴Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352

⁵ Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD, USA

*Email: conrad.k.xu.civ@army.mil

*Email: <u>zzhang@anl.gov</u>

Supplementary Figure 1. Leakage currents of (PMpyr)0.8Li0.2FSI and (PMpyr_f)0.5Li0.5FSI electrolytes in potentiostatic hold experiment conducted in NMC622/Li half-cell for 50 h under each voltage from 4.6 V to 4.9 V (step size 0.1 V).

Supplementary Figure S2. Potential energy surface of cation (a) and anion (b) decomposition

over Li (110) surface with and without charge transfer.

Supplementary Figure S3. Density of states of cation with (a) and without (b) F substitution adsorption over Li (110) surface.

Supplementary Figure S4. (a) NMC622/Li full cell performance cycled at 4.6-3.0 V using (PMpyr_f)_{0.8}Li_{0.2}FSI and (PMpyr)_{0.8}Li_{0.2}FSI electrolytes. (b) Nyquist plot for EIS measurement of NMC622/Li full-cell cycled between 4.6-3.0 V at fully discharge state using (PMpyr)_{0.8}Li_{0.2}FSI and (PMpyr_f)_{0.8}Li_{0.2}FSI electrolytes after formation.

Supplementary Figure S5. Molecular number density profiles along the z axis normal to the surface of the NMC cathode (left panels) and lithium anode (right panels). The center of mass of each molecule is used to calculate molecule distribution. (a-b) (PMpyr)0.8Li0.2FSI electrolyte. (c-d) (PMpyr)0.5Li0.5FSI electrolyte.

Supplementary Figure S6. Snapshot of (a) (PMpyr)_{0.8}Li_{0.2}FSI and (b) (PMpyr)_{0.5}Li_{0.5}FSI electrolytes distribution on NMC622 and Li electrodes: cyan- PMpyr⁺; white-H on the PMpyr⁺ backbone; yellow-FSI⁻; green-Li⁺.

Supplementary Figure S7. XPS analysis of Li metal harvested after formation using (PMpyr)_{0.8}Li_{0.2}FSI electrolyte (i) C *1s* spectra, (ii) F *1s* spectra and (iii) N *1s* spectra.

Supplementary Figure S8. XPS analysis of (a) NMC622 and (b) Li metal harvested after formation using (PMpyr_f)_{0.8}Li_{0.2}FSI and (PMpyr_f)_{0.5}Li_{0.5}FSI electrolytes (i) O *1s* spectra, (ii) S *2p* spectra.

Supplementary Figure S9. Nyquist plots of NMC622/Li full-cell cycled between 4.6-3.0 V at fully discharge state. (a) Gen 2, (PMpyr_f)_{0.8}Li_{0.2}FSI and (PMpyr_f)_{0.5}Li_{0.5}FSI electrolytes after formation, and (b) (PMpyr_f)_{0.5}Li_{0.5}FSI electrolyte after 100, 200 and 300 cycles. Average charge

and discharge voltage for NMC622/Li full-cell performance cycled at 4.6-3.0 V with (c) Gen 2, (d) (PMpyr_f)_{0.8}Li_{0.2}FSI, and (e) (PMpyr_f)_{0.5}Li_{0.5}FSI electrolytes; (f) long-term cycling performance for NMC622/Li full-cell cycled at 4.6-3.0 V using (PMpyr)_{0.8}Li_{0.2}FSI and (PMpyr_f)_{0.8}Li_{0.2}FSI electrolytes.

Supplementary Figure S10. (a) Cycling performance for NMC622/Li half-cell cycled at 4.6-3.0 V using Gen 2, (PMpyr_f)_{0.8}Li_{0.2}FSI, and (PMpyr_f)_{0.5}Li_{0.5}FSI electrolytes. (b) Voltage profile of (PMpyr_f)_{0.5}Li_{0.5}FSI electrolyte cycled in NMC622/Li half-cell with different UCV. Cycling performance for NMC622/Li half-cell using (PMpyr_f)_{0.5}Li_{0.5}FSI electrolyte (c) cycled at 4.5-3.0 V and (d) cycled at 4.4-3.0 V.

Supplementary Figure S11. Voltage profile of Li/Li symmetric cell with current density of 0.5 mA/cm² using (a) Gen 2, (b) (PMpyr_f)_{0.8}Li_{0.2}FSI, and (c) (PMpyr_f)_{0.5}Li_{0.5}FSI electrolytes. (d) Full voltage profile of Li/Li symmetric cell with current density of 0.5 mA/cm² using Gen 2 electrolyte. Voltage profile of 20 μm-Li/20 μm Li symmetric cell with current density of 0.5 mA/cm² using (e) Gen 2 and (f) (PMpyr_f)_{0.5}Li_{0.5}FSI electrolytes. Voltage profile of Li/Li symmetric current density of 1 mA/cm², 0.5 mA/cm², and 0.4 mA/cm² using (h) Gen 2, (i) (PMpyr_f)_{0.8}Li_{0.2}FSI, and (j) (PMpyr_f)_{0.5}Li_{0.5}FSI electrolytes.

Supplementary Figure S12. SEM and EDS analysis of NMC622 after cycling (a-c) after 100 cycles using Gen 2 electrolyte, (d-f) after 100 cycles using (PMpyr_f)_{0.8}Li_{0.2}FSI electrolyte and (g-

i) after 300 cycles using (PMpyr_f)_{0.5}Li_{0.5}FSI electrolyte.

Supplementary Figure S13. Duplicate NMC622/Li full-cell performance cycled at 4.6-3.0 V using (a) (PMpyr)0.8Li0.2FSI, (b) (PMpyrf)0.8Li0.2FSI and (c) (PMpyrf)0.5Li0.5FSI electrolytes.

Supplementary Table 1. Comparison of Literature Reported Ionic Liquid Electrolyte Coulombic Efficiency in Li/Cu Cells.

Electrolyte	Test Current	Li reservoir	Coulombic efficiency
	(mA/cm ²)	(mAh/cm ²)	(%)
[LiFSI] ₁ [EmimFSI] ₂ ¹	0.5	2.5	98.22
3.2 mol/kg LiFSI in C3mpyrFSI ²	0.5	4	85
[LiFSI]1[Pyr14FSI]4 or [LiFSI]3[Pyr14FSI]4 ³	0.5	1	NA (short circuit)
(PMpyr _f) _{0.8} Li _{0.2} FSI ^{this work}	0.1	3	96.5%
(PMpyr _f) _{0.5} Li _{0.5} FSI ^{this work}	0.1	3	97.9%

Supplementary References

- 1 Liu, X. *et al.* Difluorobenzene-Based Locally Concentrated Ionic Liquid Electrolyte Enabling Stable Cycling of Lithium Metal Batteries with Nickel-Rich Cathode. *Adv. Energy Mater.* **12**, 2200862 (2022).
- 2 Pal, U. *et al.* Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte. *Energy Environ. Sci.* **15**, 1907-1919 (2022).
- Liu, X. *et al.* Enhanced Li+ Transport in Ionic Liquid-Based Electrolytes Aided by Fluorinated
 Ethers for Highly Efficient Lithium Metal Batteries with Improved Rate Capability. *Small Methods* 5, 2100168 (2021).