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Supplementary Figure 1. The breeding scheme for production of conditional Nat10 knockout

mouse models. a IF images of growing oocytes (GO), non-surrounded nucleolus (NSN), surrounded
nucleolus (SN), MI, MIl oocytes and 2-cell, 4-cell, 8-cell, morula and blastocyst by co-staining with

NAT10 antibody (Red), Nucleophosmin (NPM, Green) and DAPI (Blue) as indicated. Dashed circle
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indicates cellular membrane of oocytes or zona pellucida of embryos. Scale bar, 20 ym. b Schematic
illustration displaying the conserved structural domains of mouse NAT10 protein. The floxed Exon 4
and 5 reside (E4/5) within DUF1726 domain. ¢ Schematic representation of the Nat10lox/lox mouse
allele. The crossing of floxed E4/5 (Nat10'/*) with Cre deletor mice led to the E4/5 knockout, resulting
in complete Nat10 knockout (Nat70-null) owing to frame-shift mutation. d Schematic diagram depicting
the breeding strategy for the crossing of Nat10'*/° allele with Cre deletor mice. e IF staining of SYCP3
and SYCP1 on surface-spread oocytes at pachytene stage from WT and Nat10-ScKO mice at birth.
Scale bar, 10um. Arrows point to the asynapsed structure between the lateral and central axes. n = 3
biologically independent samples were included in each group. Source data are provided as a source

data file.
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Supplementary Figure 2. Nat10 is required for folliculogenesis. a-b Oocyte-specific Nat10

knockout validation in the oocytes from Zp3-cre; Nat10lox/lox females by immunoblotting a and gqRT-

PCR quantification. Data are presented as the meant SEM, n=3; ****, p<0.001 by two-tailed Student’s

t-test. b. ¢ H&E staining showing ovarian histology of 3-month-old (Top), and 4-month-old (Bottom)

mice with indicated genotypes. Scale bar, 200um. Right panel is a magnified view of the dotted box in

left panel. Follicles indicated by arrows. d Comparison of the average numbers of follicles at indicated

stages in the ovaries of WT and Nat10-ZcKO mouse at 3-month-old (Left) and 4-month-old (Right).

Follicles were counted on serial ovarian sections after H&E staining. Data are presented as the meant

SEM, n=3; **, p<0.01; ***, p<0.001; ****, p<0.0001 by two-tailed Student’s t-test. 3M SF, p= 0.0021; 4M

SF, p= 0.0003. n = 3 biologically independent samples were included in each group (a, c). Source data

are provided as a source data file.
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Supplementary Figure 3. Nat10 KO caused disrupted transcriptome in GV oocytes. a Scatter
plot of mini-bulk SMART-seq2 data illustrating transcriptional changes in Nat10-ZcKO GV oocytes.
Transcripts down-regulated or up-regulated in Nat10-ZcKO GV oocyte samples were highlighted in blue

or red, respectively. (Cutoff: fold change (FC)=2, p<0.05). The TPMs of WT and Nat10-ZcKO GV

oocytes are listed in Table S4. b GO enrichment analysis of biological processes (BP) for the down-
regulated transcripts in the Nat10-ScKO GV oocytes. ¢ Heatmap showing dysregulated transcripts in
Nat10-ZcKO GV oocytes. d GO analysis for the up-regulated transcripts in Nat10-ZcKO GV oocytes.
e-g Alternative splicing identification in the Nat10-ZcKO GV oocytes. A total of 583 alternative splicing
events were detected in the Nat10-ZcKO GV oocytes e. GO analysis for the alternative spliced genes
f. Representative alternative splicing genes as visualized by sashimi snapshot (rMATS) g. h Sankey
plot showing the overlapping of the dysregulated genes in the Nat10-ZcKO GV oocytes with three types
of maternal transcripts in the WT oocytes during GV-MII transition (Up, up-regulated transcripts during
GV-MII transition; Stable, no change during GV-MII transition; Down, down-regulated transcripts during

GV-MII transition). Source data are provided as a source data file.
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Supplementary Figure 4. Nat10 KO elicited deficient maternal transcriptome in MIl oocytes
owing to aberrant transcript accumulation. a-d Comparison of the average numbers of retrieved GV
oocytes cultured in vitro that developed to GVBD a, Ml b-c and MIl d stages. Data are presented as
the meantSEM, n=3. ****, p<0.0001, n.s., non-significant by two-tailed Student’s t-test. e Pie chart

displaying the transcriptome-wide distribution of up-regulated genes (Red), down-regulated genes



(Blue) and the others (Gray) in Nat10-ZcKO MII oocytes. f Heatmap showing level changes in maternal
transcripts in Nat10-ZcKO MIl oocytes. g GO enrichment analysis of biological processes (BP) indicates
the potential functions of the down-regulated transcripts in the Nat10-ZcKO MIl oocytes (adjusted
p<0.05, FC > 2). h-i Summary of the alternative splicing of transcripts in MIl oocytes isolated from the
WT and Nat10-ZcKO. The numbers of predicted alternative splicing (AS) events in each category upon
Nat10 deletion are indicated h. GO enrichment analysis of biological processes (BP) indicates the
potential functions of the splicing events affected by Nat10 KO in the MIl oocytes i. Source data are

provided as a source data file.
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Supplementary Figure 5. Comparative study of three methods for examining poly(A) tail length
(PAT) - HA-PAT, LM-PAT and ePAT in mouse oocytes. a Schematic diagram depicting the key steps

executed in each method. Hairpin Adaptor PAT (HA-PAT) is a novel method developed in-house in this



study. GSP, Gene-specific primer. A0 indicates the PCR product that encompasses the full length
amplified by GSP primers excluding the poly(A) tail length. The other two methods (Ligation-mediated
PAT, LM-PAT and extension PAT, ePAT) were performed according to previous published procedures.
HA-PAT requires less hands-on operations and reagents (Top panel). b Representative images
showing the agarose gel electrophoresis of the amplified PCR products with or without preamplification
in each approach using GV and MIl oocytes from both WT and Nat10-ZcKO females. Aberrant
accumulation of poly(A) mRNAs was visualized as stronger, and higher smear PCR bands as pointed
out by blue and red lines. The in-house HA-PAT method is most sensitive as it gave rise to apparent
signal intensity in oocytes without preamplification (Top panel). Upon preamplification, HA-PAT
outperformed the other two methods in terms of sensitivity and signal intensity. Blue line points to lower
boundary of smear PCR band. Red line points to the upper boundary of smear PCR band. n = 3
biologically independent samples were included in each group. Source data are provided as a source

data file.
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Supplementary Figure 6. Validation of the aberrantly accumulated transcripts by LM-PAT in
Nat10-ZcKO Mil oocytes. a GO enrichment analysis of the overlapping transcripts that were up-
regulated in the MIl oocytes derived from Nat10-ZcKO and Cnot6l”- mice. b Representative images
showing the agarose gel electrophoresis of the amplified PCR products by LM-PAT for a cohort of up-
regulated genes as examined by HA-PAT in Figure 8. n = 3 biologically independent samples were
included in each group. ¢ The densitometric curves showing the poly(A) tail length distribution of the

corresponding transcripts in b. n = 3 biologically independent samples were included in each group.

Source data are provided as a source data file.
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Supplementary Figure 7. Genome-wide profiling of translatome by Ribo-seq in the oocytes. a

Bar plots showing the numbers of detected genes (TPM>1) by the published Ribo-seq data of Sha et

-12-



al. (two replicates, ‘Rep1’ and ‘Rep2’) and Ribo-seq in this study (three replicates, ‘Rep1’, ‘Rep2’ and
‘Rep3’). b Scatter plots comparing the Ribo-seq data from Sha et al. and this study. Spearman
correlations are also shown. ¢ The UCSC browser tracks of Ribo-seq signal (RPF) for Zp2, Tubb2a and
Cpeb1. d Bar plots showing the numbers of genes detected by Ribo-seq (TPM > 1). e Bar plots showing
the mapping reads distribution in 5’UTR, CDS and 3’'UTR regions. f Bar plots showing the percentages
of footprints that match the reading frames. g Scatter plots comparing replicates of Ribo-seq for GV

and MIl from WT and Nat10-ZcKO mice. Source data are provided as a source data file.
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Supplementary Figure 8. Nat10 deposits ac4C modification on the key transcripts from CCR4-
NOT complex genes. a Gene Ontology (GO) enrichment analysis of gene transcripts with ac4C
modification identified by RIP-seq in the GV oocytes. b acRIP-PCR assay confirmed selected genes
with or without ac4C modification in HelLa cells. IgG B, IgG beads. Ac4C B, ac4C beads. IgG S, IgG
supernatant. Ac4C S, ac4C supernatant. Experiments were performed in triplicates; a representative
image is shown in the 2% agarose gel. n = 3 biologically independent samples were included in each
group. ¢ acRIP-PCR results validated the ac4C modification on the transcripts for Cnot6él, Cnot7 and
Btg4 in WT GV oocytes. n = 3 biologically independent samples were included in each group. d acRIP-
gPCR assay showing the efficiency of IP for Cnot6l, Cnot7 and Btg4 transcripts in WT GV oocytes.
Data are presented as the meant SEM, n=3; ****, p<0.0001 by two-tailed Student’s t-test. Source data

are provided as a source data file.
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Supplementary Figure 9. ac4C modification regulates the translation efficiency for transcripts
enriched in translation, chromosome segregation and tRNA processing. a Venn diagram showing
the overlapping of transcripts with ac4C modification (FC [TPM (ac4C/IgG)]>2), up-regulated RPF (FC
[TPM (Nat10-ZcKO/WT)]>2) and up-regulated mRNA (FC[TPM(Nat10-ZcKO/WT)]>2). b Gene
Ontology (GO) enrichment of overlapping genes in a. c-d Box plots showing the relative mRNA levels
of 185 and 265 genes in WT and Nat10-ZcKO oocytes at the GV and MII stages as indicated. Data are
presented as meant SEM, n=3. P-value by two-tailed Student’s t-test. The box indicates the upper and
lower quantiles, the thick line in the box indicates the median and whiskers indicates 2.5th and 97.5th
percentiles. e The trend patterns of mMRNA with (185 genes) or without (265 genes) ac4C modification
during the GV-MII transition. Each light-yellow line represents the levels of one RPF, and the blue and
red lines represent the median expression levels in WT and Nat10-ZcKO, respectively. f-g Box plots
showing the relative RPF levels of 185 and 265 genes in WT and Nat10-ZcKO oocytes at the GV and
MIl stages as indicated. The box indicates the upper and lower quantiles, the thick line in the box
indicates the median and whiskers indicates 2.5th and 97.5th percentiles. Data are presented as meant
SEM, n=3 biologically independent samples. P-value by two-tailed Student’s t-test. h The trend patterns
of RPF with (185 genes) or without (265 genes) ac4C modification during the GV-MII transition in WT
and Nat10-ZcKO oocytes as in e. i-j Box plots showing the relative TE levels of 185 and 265 genes in
WT and Nat10-ZcKO oocytes at the GV and Ml stages as indicated. The box indicates the upper and
lower quantiles, the thick line in the box indicates the median and whiskers indicates 2.5th and 97.5th
percentiles. Data are presented as meant SEM, n=3 biologically independent samples. P-value by two-
tailed Student’s t-test. k The trend patterns of TE with (185 genes) or without (265 genes) ac4C
modification during the GV-MII transition in WT and Nat10-ZcKO oocytes as in e. | Heatmap showing
the integrative hierarchical clustering for all DEGs with the corresponding RPF levels, TE levels and

ac4C levels. The enriched GO terms are listed. Source data are provided as a source data file.
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