Occurrence and backtracking of microplastic mass loads including tire wear particles in northern Atlantic air

Isabel Goßmann¹, Dorte Herzke^{2,3}, Andreas Held⁴, Janina Schulz¹, Vladimir Nikiforov² Christoph Georgi⁴, Nikolaos Evangeliou⁵, Sabine Eckhardt⁵, Gunnar Gerdts⁶, Oliver Wurl⁷, Barbara M. Scholz-Böttcher^{1*}

¹Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany

²NILU - Norwegian Institute for Air Research, The FRAM Centre, P.O. Box 6606, Langnes, 9296 Tromsø, Norway

³NIPH – Norwegian Institute for Public Health, P.O.Box 222 Skøyen, 0213 Oslo, Norway

⁴Chair of Environmental Chemistry and Air Research, Technische Universität Berlin, 10623 Berlin, Germany

⁵NILU - Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway

⁶Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, 27483 Heligoland, Germany

⁷Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany

Table S1. Summary of marine atmospheric MP data, acquired by active sampling published according to Allen et al., 2022¹ and further literature.

Reference	Location	MP count	Size	Pre-	Type of	Polymer composition
		[particles m ⁻³]	range⁵	dominant	analysis	
				size range ^b		
Ding et al.,	South China	0.013 - 0.063	50 µm -	<200 µm	visual, FTIR	Polyester (29%), Rayon
2021 ²	Sea		2.21 mm			(19%), PP (15%), PE (13%),
						PS (10%)
Ding et al.,	Northwestern	0.0046 -	10 –		µ-FTIR	Rayon (67%), PET (23%)
2022 ³	Pacific Ocean	0.064	4556 µm			
Ferrero et	Baltic Sea and	0 – 85 (301ª)	? µm –	127 µm	visual,	Polyester (39.5%), PC
al., 2022 ⁴	Gotland Island		5 mm	length	µ-Raman,	(35.5%), PE (11.8%), PET
				17 µm width	FTIR	(5.3%), PU (5.3%)
Liu et al.,	Western	0 – 1.37	20 µm –	318 µm	visual, FTIR	PET (56%), epoxy resin
2019 ⁵	Pacific Ocean		2 mm			(10%), PE-PP (7%), PS
	(Shanghai –					(6%)
	Mariana					
	Islands)					
Trainic et	North Atlantic	0 - 0.079	5 µm –	5–10 µm	µ-Raman	PS > PE & PP
al., 2020 ⁶	Ocean		5 mm		and visual	
					(confocal	
					microscope)	
Wang et al.,	Pearl River	0 - 0.077	58 –	851 µm	visual, FTIR	PET (50.0%), PP (22.2%),
2020 ⁷	Estuary, South		2252 µm			other (e.g. phenoxy resin,
	China Sea,					poly(acrylonitrile-co-acrylic
	Indian Ocean					acid), poly(ethylene-co
						propylene) (27.8%)
Wang et al.,	South China	0 - 0.013	19 –	<200 µm	visual, FTIR	PET (54.55%), PMMA
2021 ⁸	Sea		948 µm			(13.64%), EVA (9.09%), PE
						(9.09%)

^amax. value detected in the study, with origin from Gdansk Harbour, Poland; ^bNote that in FTIR and Raman spectroscopy studies, MP sizes are typically reported as length in the largest dimension which is different from the concept of the aerodynamic diameter used when sampling PM2.5 and PM10 fractions. In order to characterize the MP aerodynamic behavior, both the major and the minor dimensions of the particle are important (e.g. Gonda & Abd El Khalik, 1985⁹).

Absolute polymer concentrations of LV samples incl. operational blanks [ng sample⁻¹]

Fig. S1. Absolute polymer concentration ng sample⁻¹ without consideration of total sample volume of the low-volume (LV) samples for transects (T1 – T7) and blanks (B1 – B3). The x-axis reflects the chronological order of sample and blank collection.

Absolute polymer concentrations of HV samples incl. operational blanks [ng sample⁻¹]

Fig. S2. Absolute polymer concentration ng sample⁻¹ without consideration of total sample volume of the high-volume (HV) samples for transects (T1 - T7) and blanks (B1 - B3). The x-axis reflects the chronological order of sample and blank collection.

Table S2. Limit of detection (LOD) and limit of quantification (LOQ) for respective polymers analysed in this study (*representative for a system in optimum condition).

Polymer	Limit of detection (LOD) S/N \geq 3	Limit of quantification (LOQ) S/N
	(ng absolute*)	≥10 (ng absolute*)
C-PE	100-300	100-300
C-PP	< 100 ^b	500
C-PET ^a	10-50	50
C-PS ^a	1	2
C-PVC ^a	10-50	50
C-PMMA	< 100 ^b	100-300
C-PC ^a	1	2
C-MDI-PUR	100-300 ^b	500
C-PA6	100-300 ^b	500

^abased on dissolved standards; ^bderived from lowest calibration point for orientation only

Table S3. Quantitative results of the low-volume (LV) samplers in ng sample⁻¹ for the 5 -10 μ m and > 10 μ m size fractions. C-PE and C-PA6 are excluded from the table since they were not detected in any transect nor sampler type.

	C-PP	C-PET	C-PS	C-PVC	C-PC	С-РММА	C-MDI-	СТТ	ттт					
5 - 10							FUR							
um		ng sample ⁻¹												
T1	191.8	n.d.	13.0	1,059.9	n.q.	20.4	n.d.	n.d.	n.d.					
B1	176.4	n.d.	n.d.	0.0	n.q.	n.q.	n.d.	n.d.	n.d.					
T2	189.8	n.d.	n.d.	261.4	n.q.	43.6	n.d.	n.d.	n.d.					
Т3	179.8	17.4	n.d.	n.q.	n.q.	38.7	n.d.	n.d.	n.d.					
T4	175.3	19.1	n.d.	n.q.	n.q.	13.7	n.d.	n.d.	n.d.					
T5	180.2	20.2	n.d.	456.7	n.q.	n.q.	n.d.	n.d.	n.d.					
B2	177.7	n.d.	n.d.	n.q.	n.q.	6.9	n.d.	n.d.	n.d.					
Т6	186.6	n.d.	n.d.	179.6	n.q.	10.4	n.d.	n.d.	n.d.					
T7	215.2	166.9	n.d.	1,853.0	30.1	197.8	n.d.	n.d.	n.d.					
B3	190.5	n.d.	n.d.	n.q.	n.q.	8.6	n.d.	n.d.	n.d.					
> 10 µm					ng sample ⁻¹	1								
T1	201.7	20.2	6.0	1,468.4	31.0	17.7	n.d.	n.d.	n.d.					
B1			L	Not ana	lysed, filter fe	ell down		L	L					
T2	186.4	19.3	5.1	0.1	47.8	4.9	n.d.	n.d.	n.d.					
Т3	192.7	25.6	5.7	n.q.	30.7	23.4	n.d.	n.d.	n.d.					
T4	222.6	20.0	6.2	461.9	31.1	15.3	n.d.	n.d.	n.d.					
T5	211.4	19.3	5.2	847.6	30.0	3.4	n.d.	n.d.	n.d.					
B2	200.2	n.d.	n.d.	83.5	30.0	18.7	n.d.	n.d.	n.d.					
Т6	175.2	19.7	5.8	0.2	29.9	1.9	n.d.	n.d.	n.d.					
T7	182.9	44.3	5.5	n.q.	n.q.	n.q.	n.d.	n.d.	n.d.					
B3	175.6	n.d.	16.3	n.q.	30.0	2.4	n.d.	n.d.	n.d.					

n.d. = not detectable; n.q. = not quantifiable

Table S4. Quantitative results of the high-volume (HV) samplers KO and VM and the mean values of the transects T (bold) in ng sample⁻¹ for the > 10 μ m size fractions. C-PE and C-PA6 are excluded from the table since they were not detected in any transect nor sampler type.

	C-PP	C-PET	C-PS	C-PVC	C-PC	C-	C-MDI-	СТТ	ттт
						PMMA	PUR		
				r	ng sample ⁻¹	1			
KO1	n.q.	18.2	8.3	n.q.	32.6	n.q.	n.d.	17,773.8	991.7
VM1	224.5	27.0	1.8	n.q.	30.5	n.q.	n.d.	17,807.6	969.9
T1	112.2	22.6	5.1	n.q.	31.5	n.q.	n.d.	17,790.7	980.8
B1	n.q.	67.8	n.q.	n.q.	30.3	30.3	n.d.	n.d.	n.d.
KO2	39.9	18.0	n.q.	1091.4	30.0	n.q.	n.d.	n.d.	n.d.
VM2	65.6	20.7	0.4	453.8	30.3	n.q.	n.d.	n.d.	n.d.
T2	52.7	19.4	0.2	772.6	30.2	n.q.	n.d.	n.d.	n.d.
KO3	449.1	3290.5	280.8	39,523.1	49.0	501.4	525.7	33,164.3	1,069.1
VM3	339.5	793.9	34.9	n.q.	27.3	n.q.	n.d.	19,360.7	963.5
Т3	394.3	2,042.2	157.9	19,761.6	38.1	250.7	262.9	26,262.5	1,016.3
KO4	23.0	90.2	7.6	661.7	24.8	n.q.	n.d.	n.d.	n.d.
VM4	4.7	105.2	8.6	724.8	24.8	n.q.	n.d.	n.d.	n.d.
T4	13.8	97.7	8.1	693.3	24.8	n.q.	n.d.	n.d.	n.d.
KO5	59.9	119.0	n.q.	21680.4	24.7	19,290.9	617.2	n.d.	n.d.
VM5	56.9	79.9	10.7	702.1	25.5	n.q.	n.d.	n.d.	n.d.
T5	58.4	99.5	5.3	1,1191.3	25.1	9,645.4	308.6	n.d.	n.d.
B2	110.2	45.7	6.6	2,057.5	25.9	121.2	n.d.	n.d.	n.d.
KO6	13.2	108.1	0.0	n.q.	24.3	2064.0	n.d.	n.d.	n.d.
VM6	111.5	451.4	7.5	n.q.	24.6	2694.3	n.d.	n.d.	n.d.
Т6	62.4	279.8	3.7	n.q.	24.5	2,379.2	n.d.	n.d.	n.d.
KO7	0.0	104.0	n.q.	607.4	24.4	1,904.3	n.d.	n.d.	n.d.
VM7	14.6	219.1	n.q.	1,896.4	24.3	4,541.2	n.d.	n.d.	n.d.
T7	7.3	161.5	n.q.	1,251.9	24.3	3,222.7	n.d.	n.d.	n.d.
B3	n.q.	89.8	n.q.	885.8	24.5	958.8	n.d.	n.d.	n.d.

n.d. = not detectable; n.q. = not quantifiable

Fig. S3. Filter cake of HV sample KO3 from transect T3 with clearly visible fiber accumulation.

Atmospheric transport and dispersion models

Fig. S4. FLEXPART FLEXible PARTicle dispersion model) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model results for evaluation of particle and air mass origin for the respective transects, T1 - T7. (a) FLEXPART footprints simulating emissions of microplastic (MP) < 10 μ m size fraction at heights from 0 – 100 m above sea level for a duration of 30 days. (b) HYSPLIT back trajectories for the height of 30 m above sea level for a 24-hour duration.

Transect	start	End	Start	End	Volume air
	(in UTC)	(in UTC)	(coordinates)	(coordinates)	[m³]
T1	2021-06-06 08:00:00	2021-06-07 04:40:00	57° 11,705' N 005° 31,688' E	60° 44,967' N 004° 01,033' E	92.5
B1	2021-06-06 08:00:00	2021-06-07 04:40:00	57° 11,705' N 005° 31,688' E	60° 44,967' N 004° 01,033' E	
T2	2021-06-08 18:00:00	2021-06-09 06:00:00	60° 45,016' N 002° 38,951' E	60° 46,176' N 001° 49,459' W	53.6
Т3	2021-06-13 11:00:00	2021-06-17 06:00:00	60° 46,847' N 004° 36,204' E	74° 31,340' N 008° 59,414' E	417.0
Τ4	2021-06-20 10:30:00	2021-06-21 04:00:00	74° 26,573' N 016° 44,146' E	71° 50,691' N 019° 38,382' E	78.9
B2	2021-06-25 17:09:00	2021-06-25 17:10:00	69° 38,792' N 017° 17,684' E	69° 38,792' N 017° 17,684' E	
Т5	2021-06-25 17:10:00	2021-06-26 05:25:00	69° 38,792' N 017° 17,684' E	69° 30,100' N 011° 47,634' E	55.6
Т6	2021-06-29 12:00:00	2021-07-02 03:50:00	68° 33,017' N 013° 24,097' E	63° 11,532' N 003° 22,853' E	164.4
Τ7	2021-07-04 07:50:00	2021-07-05 07:50:00	60° 41,173' N 003° 27,712' E	56° 26,053' N 006° 04,095' E	108.1
B3	2021-07-05 07:50:00	2021-07-05 07:51:00	56° 26,053' N 006° 04,095' E	56° 26,053' N 006° 04,095' E	

Table S5. Sampling details for the low-volume (LV) sampling.

Table S6. Sampling details for the high-volume (HV) sampling.

Transect	Sampler	start (in UTC)	End (in UTC)	Start (coord.)	End (coord.)	Volume air [m ³]
T1	VM1	2021-06-06 08:00:00	2021-06-07 05:00:00	57° 11,705' N 005° 31,688' E	60° 44,967' N 004° 01,033' E	504
	KO1	2021-06-06 08:00:00	2021-06-07 05:00:00	57° 11,705' N 005° 31,688' E	60° 44,967' N 004° 01,033' E	504
B1		2021-06-07 05:05:00	2021-06-07 05:06:00	60° 44,967' N 004° 01,033' E	60° 44,967' N 004° 01,033' E	
T2	VM2	2021-06-08 18:00:00	2021-06-09 06:00:00	60° 45,016' N 002° 38,951' E	60° 46,176' N 001° 49,459' W	288
	KO2	2021-06-08 18:00:00	2021-06-09 06:00:00	60° 45,016' N 002° 38,951' E	60° 46,176' N 001° 49,459' W	288
T3ª	VM3a	2021-06-13 11:00:00	2021-06-14 11:00:00	60° 46,847' N 004° 36,204' E	64° 39,213' N 006° 02,122' E	1,728
	VM3b	2021-06-14 11:00:00	2021-06-15 11:00:00	64° 39,213' N 006° 02,122' E	68° 40,381' N 010° 16,242' E	
	VM3c	2021-06-15 11:00:00	2021-06-16 11:00:00	68° 40,381' N 010° 16,242' E	72° 23,252' N 009° 30,462' E	
	KO3	2021-06-13 11:00:00	2021-06-17 06:00:00	60° 46,847' N 004° 36,204' E	74° 31,340' N 008° 59,414' E	2,184

Τ4	VM4	2021-06-20 10:30:00	2021-06-21 03:30:00	74° 26,573' N 016° 44,146' E	71° 50,691' N 019° 38,382' E	408
	KO4	2021-06-20 10:30:00	2021-06-21 03:30:00	74° 26,573' N 016° 44,146' E	71° 50,691' N 019° 38,382' E	408
B2		2021-06-25 17:09:00	2021-06-25 17:10:00	69° 38,792' N 017° 17,684' E	69° 38,792' N 017° 17,684' E	
Τ5	VM5	2021-06-25 17:10:00	2021-06-26 05:10:00	69° 38,792' N 017° 17,684' E	69° 30,100' N 011° 47,634' E	288
	KO5	2021-06-25 17:10:00	2021-06-26 05:10:00	69° 38,792' N 017° 17,684' E	69° 30,100' N 011° 47,634' E	288
Т6	VM6	2021-06-29 12:00:00	2021-07-02 03:50:00	68° 33,017' N 013° 24,097' E	63° 11,532' N 003° 22,853' E	1,532
	KO6	2021-06-29 12:00:00	2021-07-02 03:50:00	68° 33,017' N 013° 24,097' E	63° 11,532' N 003° 22,853' E	1,532
Τ7	VM7	2021-07-04 07:50:00	2021-07-05 07:50:00	60° 41,173' N 003° 27,712' E	56° 26,053' N 006° 04,095' E	576
	KO7	2021-07-04 07:50:00	2021-07-05 07:50:00	60° 41,173' N 003° 27,712' E	56° 26,053' N 006° 04,095' E	576
B3		2021-07-05 07:50:00	2021-07-05 07:51:00	56° 26,053' N 006° 04,095' E	56° 26,053' N 006° 04,095' E	

^aDue to technical problems of HV air sampler VM during transect T3, the pre-cleaned aluminum rings were changed two times during sampling. For MP quantification, the lab-blank corrected raw data of the three sub-samples were added up.

High-volume sampler

Fig. S5. Pictures of the low- and high-volume sampler.

Table S7. Conditions for Py-GC/MS.

Micro furnace pyrolyzer & autosampler (EGA/PY-3030D, AS-1020E, (FrontierLabs))						
Carrier gas	Helium					
Temperature	590°C					
Pyrolysis time	1 min					
Transfer line temperature	320°C					
Gas chromatograph (6890N (Agilent))						
Injector	Split/split less					
Mode	Split 1:12.5					
Temperature	300°C					
Pre-column	Trajan P/N 064062; 10 m x 250 µm/363 µm					
	VSDP tubing					
Column	DB5 (J&W); 30 m x 0.25 mm ID, film thickness					
	0.25 μm					
Flow (const.)	1.2 mL min ⁻¹					
Temperature program	35°C (2 min) \rightarrow 310°C (30 min) at 4°C min ⁻¹ \rightarrow					
	hold 60 min					
Transfer line temperature	280°C					
Mass spectrometer (MSD 5973 (Agilent)	·					
Ionization energy	70 eV					
Scan rate	2.48 scans s ⁻¹					
Scan range	<i>m/z</i> 50-650					
EI-Source temperature	230°C					
Quadrupole temperature	150°C					

Table S8. Table of characteristic Py-GC/MS composition products used for identification and quantification of detected polymer clusters indicated by "C-" as pure polymers and potentially included polymer related derivatives according to Goßmann et al., 2022¹⁰.

Basic polymer	Cluster associated	Characteristic decomposition	Indicator ions	
cluster	compounds	products	[<i>m/z</i>]	
	HDPE, LDPE, PE-containing	Alkanes (e.g. C20)	282 [M], 85	
C-PF	copolymers and rubbers,	α-Alkanes (e.g. C20)	280 [M], 83	
	ethylene-vinyl acetate (EVA), EPDM rubber	α, ω-Alkanes ^a (e.g. C20)	278 [M], 95, 82	
		2,4-Dimethylhept-1-ene	126 [M], 70	
	DD EDDM rubber	2,4,6,8-Tetramethyl-1-undeceneb	210 [M], 100, 69	
6-22		2,4,6,8-Tetramethyl-1-undecenec	210 [M], 100, 69	
		2,4,6,8-Tetramethyl-1-undecened	210 [M], 100, 69	
	PS, PS-containing copolymers	Styrene	104 [M]	
C-PS	(e.g., ABS, SAN), PS- or acryl	2,4-Diphenyl-1-butene	208 [M], 91	
	styrene binders, varnish	2,4,6-Triphenyl-1-hexene	312 [M], 91	
	DV/C (hard and plasticized)	Benzene	78 [M]	
C-PVC	chlorinated rubber	Chlorbenzene	112 [M]	
	chiofiliated fubbel	Napthalene	128 [M]	
C-PET	PET, polybutylene terephthalate	Dimethyl terephthalate ^e	194 [M], 163	
	PMMA; polyalkylated	Methacrylate	86 [M], 55	
С-РММА	methacrylate, acryl containing binder	Methyl methacrylate	10 0 [M], 69	
		p-Methoxy-tert-butylbenzenee	242 [M], 164, 149	
C-PC	PC, epoxide resin	2,2-Bis(4'-methoxy-	256 [M] 241	
		phenyl)propane ^e	256 [IVI], 241	
C-PA6	PA6	ε-Caprolactam	11 3 [M]	
01710		N-methyl caprolactam ^e	127 [M]	
		4,4'-Methylenbis(N-methylaniline) ^e	226 [M]	
	MDI-PUR MDI-PUR based	N,N-Dimethyl-4-(4-	240 [M]	
C-MDI-PUR	formulations	methylamino)benzylaniline	240 [10]	
	Infinitiono	4,4'-Methylenbis(N,N-	254 [M], 253, 210,	
		dimethylaniline) ^e	134	
		2,4-Dimethyl-4-vinylcyclohexene	136 [M], 121, 93,	
ттт	Truck tire tread, bus tire tread	(DMVCH)	68	
		1-Methyl-4-(1-methylethenyl)-	136 [M], 121, 93,	
		cyclohexene	68	
		Ethenylbenzene	104 [M], 78, 51	
СТТ	Car tire tread	Cyclohexenylbenzene (SB)	158 [M], 129, 115, 104	

[m/z] = mass to charge ratio; [M] = molecular ion; bold = indicator ions used for calibration and quantification; ^aMean of *n*-C₁₆-C₂₆-alkadiens used for quantification of PE. ^bisotactic. ^cheterotactic. ^dsyndiotactic. ^eonly after TMAH treatment.

Table S9.	Plastic standards	used for	quantification.

Polymer standard	Acronym	Additional information	Supplier
Polyamide 6 (K891),	PA6	Low viscosity	Ter Hell, GmbH,
Alkulon® K222-D			Hamburg, Germany
Polycarbonate,	PC		Bayer Material, Science
Markoplon 2558			
Polyethylene, Lupolen	HDPE	High density	LyondellBasell
4261 AG UV			
Polyethylene	PET		Neogroup
terephthalate, NEOPET			
80			
Polymethyl methacrylate,	PMMA		Plexiglas®
PLEXIGLAS® 7N			
Polypropylene, HL508FB	PP		Borealis
Polystyrene, TOTAL PS	PS	High impact PS for	Ter Hell, GmbH,
impact 7240		extrusion industry	Hamburg, Germany
Polystyrene, Styrolution	PS	Raw material	IINEOS Styrosolution
PS 158N/L			
Polyurethane	PUR	MDI-PUR	GEBA GmbH
Polyvinylchloride, Vinnolit	PVC	Hard PVC, raw	Vinnolit
S3268		material	
All-season truck tire tread	TTT		Goodyear Tire & Rubber
			Company
All-season car tire tread	CTT		Semperit (Continental
			AG)

Table S10. Overview of calibration measurements.

	PE	PP	PET	PS	PVC	PC	PMMA	PA6	MDI-	CTT	TTT
									PUR		
Low-volur	ne samples										
Date of me	easurement s	sequence: 21	.02.22								
В	/	-0.05332	-0.03803	-0.00436	0.01165	-0.24395	0.37917	/	-0.18625	/	/
Slope	/	0.32666	2.40678	1.18516	0.04308	8.1797	0.32929	/	0.12031	/	/
r²	/	0.92801	0.98071	0.79199	0.91577	0.96756	0.9581	/	0.79199	/	/
High-volu	me samples										
Date of me	easurement s	sequence: 21	.02.22								
В	/	+	-0.03803	0.00236	0.01304	-0.24395	0.29926	/	-0.17117	-0.06598	-0.19719
Slope	/	+	2.40678	0.80346	0.04212	8.1797	0.33749	/	0.12545	0.0039	0.20466
ľ2	/	+	0.98071	0.98299	0.81325	0.96756	0.92302	/	0.84494	0.85046	0.85684
Date of me	easurement s	sequence: 03	3.03.22								
В	/	+	-0.0867	-0.00488	0.0096	-0.21184	0.08916	/	-0.01688	-0.06627	-0.19719
Slope	/	+	2.61034	0.99491	0.04102	8.67124	0.61426	/	0.05375	0.0039	0.20466
ľ2	/	+	0.92496	0.92572	0.91309	0.98733	0.96461	/	0.86592	0.92807	0.85684
Date of me	easurement s	sequence: 28	3.03.22								
В	/	+	-0.0852	0.01204	0.02129	-0.16804	0.06868	/	0.02272	/	/
Slope	/	+	1.54062	0.92369	0.04332	6.95696	0.57043	/	0.03838	/	/
r²	/	+	0.67752	0.94112	0.82014	0.99002	0.97171	/	0.66994	/	/

B = y-intercept, $r^2 = coefficient of determination, / = not identified in samples and therefore not calibrated, + = 1-Point-calibration$

Supplementary References

- Allen, D. *et al.* Microplastics and nanoplastics in the marine-atmosphere environment. *Nat. Rev. Earth Environ.* **3**, 393–405 (2022).
- Ding, Y. *et al.* The abundance and characteristics of atmospheric microplastic deposition in the northwestern South China Sea in the fall. *Atmos. Environ.* 253, 118389 (2021).
- 3. Ding, J. *et al.* Atmospheric microplastics in the Northwestern Pacific Ocean: Distribution, source, and deposition. *Sci. Total Environ.* **829**, 154337 (2022).
- Ferrero, L. *et al.* Airborne and marine microplastics from an oceanographic survey at the Baltic Sea: An emerging role of air-sea interaction? *Sci. Total Environ.* 824, 153709 (2022).
- 5. Liu, K. *et al.* Consistent Transport of Terrestrial Microplastics to the Ocean through Atmosphere. *Environ. Sci. Technol.* **53**, 10612–10619 (2019).
- 6. Trainic, M. *et al.* Airborne microplastic particles detected in the remote marine atmosphere. *Commun. Earth Environ.* **1**, 64 (2020).
- 7. Wang, X. et al. Atmospheric microplastic over the South China Sea and East Indian

Ocean: abundance, distribution and source. J. Hazard. Mater. 389, 121846 (2020).

- 8. Wang, X. *et al.* Efficient transport of atmospheric microplastics onto the continent via the East Asian summer monsoon. *J. Hazard. Mater.* **414**, 125477 (2021).
- Gonda, I. & Abd El Khalik, A. F. On the Calculation of Aerodynamic Diameters of Fibers. *Aerosol Sci. Technol.* 4, 233–238 (1985).
- 10. Goßmann, I., Süßmuth, R. & Scholz-Böttcher, B. M. Plastic in the air?! Spider webs as spatial and temporal mirror for microplastics including tire wear particles in urban air. *Sci. Total Environ.* **832**, 155008 (2022).