
Supplementary Note 1: TCA flux inference by non-stationary metabolic flux analysis 
 

To infer tissue specific TCA turning, anaplerotic, and anabolic fluxes we developed an isotopomer 
model that describes how labeled substrates propagate through the TCA cycle reactions in a non-
stationary manner1,2. This TCA labeling model is derived from a reaction network of the TCA cycle 
accounting for TCA cycle reactions, malic enzyme, pyruvate carboxylase, phosphoenolpyruvate 
carboxykinase, as well as the aspartate and glutamate transaminases. The model further 
considers that labeling from the circulation (from infused [U13C] lactate or [U13C] glutamine tracer) 
is diluted by tissue production of lactate/pyruvate from unlabeled glucose, two-carbon 
contributions from fatty-acid β-oxidation and five-carbon contributions via glutamine/glutamate. 
We construct the model around metabolite mass balances for a combined tissue lactate/pyruvate 
pool (pyr), acetyl-CoA (accoa), citrate/isocitrate (cit), a-ketoglutarate (akg), glutamate (glu), 
succinate (succ), malate (mal), oxaloacetate (oaa) and aspartate (asp) resulting from the reaction 
network presented in Figure S1. We further assume that all reactions operate far from equilibrium 
except for fumarase, succinate dehydrogenase, malate dehydrogenase, and the transaminases 
(AST, GOT).  

 

  

Figure S1: TCA model and parameters. PC: pyruvate carboxylase, PDH pyruvate dehydrogenase, CS 
citrate synthase, ACO2 aconitase, IDH isocitrate dehydrogenase, GOT glutamate transaminases, OGDC 
oxoglutarate dehydrogenase complex, SCS succinate synthase, SDH succinate dehydrogenase, FH 
fumarase, MDH malate dehydrogenase, PPCK phosphoenolpyruvate carboxykinase, AST aspartate 
aminotransferase, ME malic enzyme, EXLAC blood lactate exchange, EXGLN blood glutamine exchange, 
EXFA Fatty Acid exchange, EXASP aspartate exchange.  

From this reaction network and its associated carbon atom mappings (see Table S1), we then 
compute all possible isotopomers that can be produced from a specific tracer, such as [U-13C] 
lactate or [U-13C] glutamine. For computational efficiency, condensation reactions between 
labeled substrates are omitted, since the mean labeling of isotopic forms is 3% (max 11%), 
making the typical condensation product too rare to merit consideration, i.e. typical fraction of 
(3%)2 < 0.1% (see Table S1). Moreover, for several tested tissues, modeling including all 
condensation reactions and associated isotopic forms yielded indistinguishable fluxes from those 
obtained with omission of these minor species (Extended Data Figure 3D). 

The list of possible isotopomers connected by the reactions in the above presented network 
allows us then to construct a model describing the time evolution of the labeled isotopomer 
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compounds as an ordinary differential equation (ODE)1,2. This model is derived from the individual 
mass balances of the isotopomer concentrations ": 
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where (! are isotopomer-specific transition rates and & is a matrix describing the isotopomer 
specific stoichiometry: for example, one such transition is the transition from a-ketoglutarate 
00011, with carbon-13 atoms in the 4 and 5 positions, to succinate 1100 with carbon-13 atoms in 
the 1 and 2 positions. It is convenient to express the isotopomer concentrations in terms of their 
pool sizes, i.e. the concentration of the parent metabolite ) (which includes all possible 
isotopomers), and the respective isotopomer enrichments *": 
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where , is a diagonal matrix containing the total pool size [,#] associated with the respective 
isotopomer labeling fraction *$. Similarly, we can express the isotopomer specific transition rates 
in terms of the labeling fractions of the products and the fluxes of the respective biochemical 
reaction / as: 
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where 0% is the flux of the reaction / associated with the isotopomer transition 2, and 3"!+  is the 
positivized substrate stoichiometry: 
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Since the infusions are minimally perturbative (Extended Data Figure 1D), we can consider the 
system (except for isotopes/isotopomers) to be at approximate steady-state throughout the 
infusion period: 
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where = = A[pyr], [accoa], [cit], [akg], [glu], [succ], [mal], [oaa]R, contains the pool concentrations,  > 
is the stoichiometric matrix, and ? is a vector of fluxes for the reactions denoted in >. We can then 
rewrite Eq. 1 as: 
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Thus, describing the non-stationary propagation of the carbon label through the network & 
reduces to finding a set of fluxes ? that are able to explain time dependency of the labeling of the 
m+1,2,3 isotopic forms. Since we consider the system to operate at steady state, these fluxes are 
not independent from one another.  

We express the dilution effects from lactate, fatty acids and glutamine as fractional flux 
contributions: #, is circulating lactate contribution to the tissue pyruvate production; ## is tissue 



pyruvate contribution to tissue acetyl-CoA production; #- is blood glutamine contribution to tissue 
glutamate production and / is the fraction of pyruvate consumed by pyruvate dehydrogenase 
(while the remainder is consumed by pyruvate carboxylase). These parameters allow us to 
reformulate the model in terms of three free fluxes: i) TCA turning flux 0./0, ii) malic enzyme flux 
012, and iii) phosphoenolpyruvate carboxykinase flux (i.e. gluconeogenic flux) 033/4. All the other 
fluxes of the model can be back-calculated from the mass balance constraints. (For derived 
expressions see Table S2). 

Furthermore, we reformulate the forward 0%5 and reverse flux 0%6 of the reversible reactions in 
terms of the respective net flux that is constrained by the overall mass balance and a 
dimensionless reversibility U% that approaches U% → 1 for the case that the reaction operates far 
from equilibrium and U% → ∞ for the case that the reaction is close to equilibrium: 
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This results in a reduced model that requires us to identify 14 parameters: three free fluxes 
{0./0, 012 , 033/4} ∈ ℝ

8, four dimensionless flux contributions `#, , ##, #-, /a ∈ [0,1],	as well as 
seven dimensionless reversibilities `U,9:,$&, U-,<,$&, U9=#,$&, U1>? , U.0@ , U00/. , UA>?,5Ba ∈ [1,∞).  

We then find 14 parameters that best explain the observed labeling dynamics by minimizing least-
square residuals between the measured and simulated time-dependent isotope enrichments for 
a fixed set of metabolite concentrations (selected based on the experimental measurements of 
those concentrations and their error, see below). We simulate these labeling patterns by solving 
the initial value problem for Equation 6, assuming that at $ = 0 all isotope-labeled fractions *" are 
zero (as these reflect the measured labeling after correction for natural isotope abundance). The 
output of the simulation provides us with the labeling dynamics of all the isotopomers for a given 
set of parameters (fluxes, reversiblities, and flux contributions). We then calculate the residuals 
of the time-dependent cumulative labeling from the isotope-labeled forms containing m+1,2,3 
carbon-13-labeled atoms using the experimental data, i.e. tissue glutamate, malate, aspartate, 
and succinate resulting from tissue sampling at different timepoints after primed tracer infusion, 
as well as arterial blood labeling of tracer metabolite (i.e. lactate or glutamine). We solve the 
resulting least-square optimization problem using the Levenberg–Marquardt algorithm3,4. 

To find a global optimum under the uncertainty of the pool size measurements , we initialize 2000 
initial guesses with the pool sizes sampled from a normal distribution following the experimental 
observations of the pool size concentrations, i.e. tissue concentrations of glutamate, malate, 
aspartate, succinate, a-ketoglutarate, and citrate/isocitrate, and uniformly distributed initial 
parameter guesses. To determine the error of the flux estimate we solve the optimization problem 
with different initial guesses and tissue concentrations drawn from a normal distribution. 
Subsequently we estimate the median flux and its 95% confidence interval by bootstrapping: we 
randomly resample the best 20 fits from 2000 parameter estimates 100 times  

 

 

 



Table S1: Atom mapping for the reactions of the reduced TCA model.  

Reaction  Symetric Substrates Products 
PDH no pyr  (abc) accoa (bc) 
CS no accoa (ab) , oaa (cdef)  cit (fedbac) 
ACO2/IDH no cit (abcdef)  akg (abcde) 
GOT (F) no akg  (abcde) glu  (abcde) 
GOT (R) no glu  (abcde) akg  (abcde) 
OGDC/SCS no akg (abcde) succ (bcde) 
SDH/Fh (F)  yes succ (abcd) mal (abcd) 
SDH/Fh (R)  yes mal (abcd) succ (abcd) 
MDH no mal (abcd) oaa (abcd) 
PC no pyr (bcd), oaa (abcd) 
ME no mal (abcd) pyr (bcd)  
AST (F) no oaa (abcd) + glu (efghi) asp (abcd) + akg (efghi) 
AST (R) no asp (abcd) + akg (efghi) oaa (abcd) + glu (efghi) 

 

Table S2: Expressions relating reaction rate to model variables 

Reaction  Symbol Type Expression  
PDH 03>? dependent 0./0#9 
CS 0/A independent 0./0 
ACO2/IDH 00/CD/F>? independent 0./0 

GOT  0@C. dependent 
#-

1 − #-
0./0 

OGDC/SCS 0C@>//A/A dependent 
#-

1 − #-
0./0 +	0./0 

SDH/Fh   0@A>?/5B dependent 
#-

1 − #-
0./0 +	0./0 

MDH 01>? dependent 
#-

1 − #-
0./0 +	0./0 − 012 

PC 03/ dependent 0./0
#9

/
(1 − /)	 

ME 012 independent 012 
PPCK 033/4 independent 033/4 

AST 00A. dependent 0./0
#9

/
(1 − /) − 012 − 033/4 +

#-

1 − #-
0./0 

EXLAC 02GH0/ dependent b0./0
#9

/
− 012c

1

#,
 

EXFA 02G50 dependent (1 − #9)	0./0 

EXGLN 02G@H( dependent 012 + 033/4 − 0./0
#9

/
(1 − /) 

EXASP 02G0A3 dependent 0./0
#9

/
(1 − /) − 012 − 033/4 +

#-

1 − #-
0./0 
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