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Supporting Information Text13

Materials and Methods14

Genome annotation. We annotated the Timema knulli genome using the BRAKER2 (version 2.1.6) pipeline (1). Prior to genome15

annotation, we identified and masked repeat sequences using RepeatMasker (version 4.0.7). This was done using more sensitive16

slow search option, the NCBI search engine, and an existing repeat library developed for Timema stick insects (2). Repetitive17

regions were soft masked (set to lowercase letters).18

BRAKER2 was used to automate training of the gene predictions tools GeneMark-EP+ (3) and AUGUSTUS (4, 5) using protein19

homology information. The pipeline begins with self-training using GeneMark-ES (6) to create an initial set of seed genes as20

described in the ProtHint pipeline, which uses DIAMOND (v0.9.24.125) and Spaln (version 2.3.3d) (3, 7, 8) and a protein data base.21

We used the set of 2,601,995 arthropod proteins from OrthDB (arthropod data set version 10, odb10_arthropoda_fasta.tar.gz)22

(9) as protein evidence. Output from this pipeline is then used for iterative model training with GeneMark-EP+ (3). A set of23

anchored genes from GeneMark-EP+ are then used to train AUGUSTUS (version 3.5.0) and predict the final set of genes. Functional24

annotation of the predicted T. knulli genes, specifically each CDS (coding sequence) was conducted using InterProScan25

(version 5.60-92.0) (10). Gene density was summarized based on the gene (GENE) annotations. Here, we determined the26

number of annotated genes in 5 megabase pair (mbp) windows across each T. knulli chromosome and then for the bounds of27

the Perform locus (the lower and upper bound plus or minus 5 mbps) and the remainder of the Perform locus.28

Assigning chromosome numbers. To identify chromosomes (scaffolds) homologous to the T. cristinae linkage groups in our29

T. knulli genome, we first compared the T. cristinae reference plus linkage map to a more recent yet published T. cristinae30

genome from a green striped stick insect, which was constructed based on proximity ligation of DNA in chromatin and31

reconstituted chromatin (Hi-C) and comprised 13 large scaffolds, each corresponding to one of the 13 T. cristinae chromosomes32

(2). Specifically, we constructed a blast database from the 13 scaffolds of the newer (green striped) genome and then identified33

homologous scaffolds from the older melanic genome (and linkage map) by blasting each of these scaffolds against the database.34

This was done with blastn (version 2.11.0) with a minimum e-value of 1e−50 and a minimum percent identity of 92. Only35

matches of >10,000 bps were considered (11). Then, in R (4.0.2), we computed the total length of matches between each of the36

13 linkage groups from the melanic T. cristinae genome and the 13 large scaffolds from the newer, green striped genome. In37

most cases, there was an unambiguous correspondence between linkage groups and chromosome scaffolds. However, our linkage38

groups 9 and 13 were under-assembled on the linkage map as both corresponded to a single scaffold, and much of the new39

scaffold 14101 was not mapped to any linkage group. Thus, our old linkage groups 9 and 13 were combined and are hereafter40

referred to as chromosome 9, and our new scaffold 14101 was denoted chromosome 13 (Table S2).41

We then used cactus (version 1.0.0) to align the T. knulli genome to the green striped T. cristinae genome (12, 13).42

For this, we first used RepeatMasker (version 4.0.7) to mask repetitive regions of the genome (14); this was done using43

a repeat library developed for Timema (2). We then performed a pairwise alignment between the genomes with cactus.44

The HalSynteny tool was then used to extract syntenic alignment blocks from the comparative alignment (15) (https:45

//github.com/ComparativeGenomicsToolkit/hal). We then identified homologous chromosomes by summing the total length of46

syntenic segments between each T. cristinae and T. knulli genome.47

Nanopore sequencing and structural variant calling in T. knulli. We used Oxford Nanopore long-read sequencing (16) to obtain48

additional evidence that the Perform locus is a segregating inversion within T. knulli. We chose this approach as we expected49

long DNA sequence reads to have a substantial chance of spanning and accurately detecting the expected large inversion (17).50

To do this, we extracted high-molecular weight DNA from a single T. knulli collected from BCE C (on Ceanothus) where the51

Ceanothus allele (that is the expected ancestral, non-inverted allele) occurs at high frequency. This was done with Qiagen’s52

MagAttract HMW DNA kit (Qiagen, Inc.) in accordance with the manufacturer’s protocol. We extracted DNA from two53

samples taken from the thorax of this individual, which yielded 803 and 1018 nanograms of DNA respectively on a dsDNA HS54

(high sensitivity) assay with a Qubit f4 fluorometer (Thermo Fisher). We then repaired and polished the DNA molecules with55

the NEBNEXT FFPE DNA Repair Mix and NEBNEXT Ultra II end-repair/dA-tailing module in accordance with Oxford56

Nanopore’s suggested protocol. The two DNA samples were then pooled and adaptor oligos for sequencing were added with57

the Oxford Nanopore ligation sequencing kit (SQK-LSK109). We sequenced the resulting library on a R9.4 flow cell with a58

MiniION using a 72 hour run time. We used guppy_basecaller (version 6.1.7_gpu) to call nucleotides from the raw output.59

This generated 471,648 sequences with a total length of 863 megabases (about 0.5× genome coverage). Note that while this is60

low coverage, it proved sufficient to validate the expected inversion as described below.61

We first used NanoFilt (18) to remove bases with quality scores less than 6 and then aligned the filtered nanopore DNA62

sequences to the T. knulli reference genome with minimap2 (version 2.23-r1117) (19). We used the preset option for mapping63

Nanopore reads against a reference (-x map-ont) and used soft clipping for supplementary alignments. samtools (version 1.12)64

was used to compress, sort and index the alignments (20). We then used sniffles2 (version 2.0.3) to call structural variants65

(21). We required an alignment length of at least 100 bps, a mapping quality of at least 15, and a minimum structural variant66

length of 35 bps supported by at least one read for variant calling. We then focused specifically on inversions on chromosome67

11 that were 1 mbp or greater in length; there were five of these, one of which spanned the Perform locus (see Figure S6 for68

details).69
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Population genomic analyses of LD and heterozygosity. We summarized patterns of linkage disequilibrium (LD) and observed70

heterozygosity on chromosome 11 within and outside of the Perform locus to further test the hypothesis that the Perform71

locus is a polymorphic inversion within T. knulli. For LD, we focused on common SNPs (minor allele frequency > 0.05) on72

chromosome 11 in the BCE population (where Redwood and Ceanothus co-occur). We then computed pairwise LD, as the73

squared genotypic correlation (r2) for each pair of the 1537 SNPs that met the above criteria. This was done separately for74

PRW PRW homozygotes, PRW PC heterozygotes, PCPC homozygotes, and the combination of PRW PRW and PCPC homozygotes.75

If Perform is a segregating inversion, we would expect elevated LD within Perform for the combined sample of PRW PRW and76

PCPC homozygotes relative to other parts of chromosome 11 and samples comprising only a single genotype. Patterns of LD77

were summarized using heatmaps. This was done in R (version 4.1.3). For observed heterozygosity, we first converted our SNP78

genotype estimates to the nearest integer value, where 1 thus denotes a heterozygote for a SNP. We then computed the mean79

heterozygosity in each Perform genotype cluster (PRW PRW homozygotes, PRW PC heterozygotes, and PCPC homozygotes)80

for each SNP on chromosome 11 (including the Preform locus). We expect elevated heterozygosity for PRW PC heterozygotes81

within the Perform locus if this locus is a segregating inversion in T. knulli. This analysis was conducted in R (version 4.1.3)82

as well.83

ABC inference of gene flow and selection. We used approximate Bayesian computation (ABC) to fit and compare alternative84

models for selection with gene flow in the T. knulli-Ceanothus-Redwood system (22, 23). We first fit a Bayesian F-model to85

estimate (putative neutral) migration rates, Nm (number of migrants per generation), between our three main populations:86

BCE C (BCE on Ceanothus), BCE RW (BCE on Redwood; parapatric with BCE C) and BCTURN (on Ceanothus, allopatric87

with respect to BCE C and BCE RW) (24, 25). This statistical model approximates several population genetic models,88

including an island model of drift-gene flow equilibrium (26–29). Estimates of gene flow were based on allele frequencies in each89

population, but excluding chromosome 11 (i.e., the chromosome harboring the Perform locus). For this analysis, we placed90

Cauchy priors on Nm (the number of migrants) with bounds of 0 and 50, a location parameter of 0 and a scale parameter91

of 10, and Jeffery’s beta priors on the migrant allele frequencies (lower bounds = 0, upper bounds = 1, α = 0.5, β = 0.5).92

We fit this model in R using Hamiltonian Monte Carlo via the R interface with STAN (rstan version 2.21.2) (30). Posteriors93

were inferred from 10 independent Markov chain Monte Carlo (MCMC) analyses, with each chain using a random subset of94

5000 (out of 62,093) SNPs (this was done to increase computation speed and reduce LD among loci). For each run, we used 495

independent chains, each comprising 2000 iterations and a 1000 iteration burnin. The No-U-Turn sampler (NUTS) was used for96

updates (31). The Gelman-Rubin convergence diagnostic was computed to verify likely convergence of the MCMC algorithm to97

the posterior distribution.98

We next fit ABC models for selection on Perform, with gene flow based on our estimates from the F-model described in the99

preceding section. Our goal here was to compare models of divergent selection (directional selection in opposing directions on100

different hosts) to heterozygote advantage while accounting for drift and gene flow, and to estimate the strength of selection101

under these models. Here, we assumed three populations, BCE C (on Ceanothus), BCE RW (on Redwood) and BCTURN (on102

Ceanothus) with host-dependent selection on Perform, that is, we assumed one set of selection coefficients for BCE C and103

BCTURN and a second set of selection coefficients for BCE RW. We allowed for one of two models for selection on each host:104

(i) directional selection, where one homozygote was the most fit, or (ii) heterozygote advantage (overdominance), where the105

Perform heterozygotes were the most fit. With directional selection, we assumed w11 = 1 + s, w12 = 1 + hs, and w22 = 1,106

where w11, w12 and w22 are relative fitnesses for the Perform genotypes, s is the selection coefficient, and h is the heterozygote107

effect, and w11 refers to the genotype that was more fit on Redwood in the experiments and that was at higher frequency in108

BCE RW (i.e., the PRW PRW homozygote). We placed uniform priors on h (lower bounds = 0 upper bounds = 1) and log109

uniform priors on the absolute value of s with bounds of 0.001 and 0.9 (-6.91 and -0.11 on the natural-log scale). We assumed110

s was positive on Redwood and negative on Ceanothus (i.e., alternative homozygotes favored on each host). For heterozygote111

advantage (i.e., overdominance), we assumed w11 = 1 − s1, w12 = 1, and w22 = 1 − s2, where s1 and s2 denote the decrease in112

relative fitness of the two alternative homozygotes (PRW PRW and PCPC , respectively). We used the same log-uniform priors113

on s1 and s2 as were used for s, with the added constraint of s1 < s2 on Redwood and s1 > s2 on Ceanothus. We placed114

equal prior probabilities of directional selection versus heterozygote advantage on each host (i.e., 0.5 each) and allowed for the115

models to differ on the two hosts.116

We modeled evolution following a generalized Wright-Fisher model with selection and gene flow. Specifically, the expected117

allele frequency change at Perform for each population was E[∆p] = ∆ps + ∆pm, where ∆ps and ∆pm are the expected118

change caused by selection and gene flow respectively. We assumed ∆ps = sp(1 − p)[p + h(1 − 2p)] for directional selection or119

∆ps = p(1 − p)[s2 − p(s1 + s2)] for heterozygote advantage, and ∆pm = mba(pa − pb) + mca(pa − pc) where mba and mca are120

the migration rates (proportions) from populations b and c to population pa, and pb and pc are the corresponding migrant121

and source population allele frequencies (32). We then assumed that the actual allele frequency in each population following122

selection, gene flow and drift was pt+1 ∼ binomial(p = pt + E[∆p], 2Ne), where Ne is the variance effective population size123

for the relevant population (BCE C, BCE RW, or BCTURN). We did not attempt to estimate Ne, but rather to integrate124

over uncertainty in contemporary Ne (i.e., we treat this as a nuisance parameter). Specifically, we assumed re-scaled beta125

priors on Ne for each population with a lower bound of 50, an upper bound of 1000 and α and β set to 6 (symmetrical about126

the mean of Ne = 525 and relatively flat over the range). We allowed for asymmetric gene flow with expectations set by the127

neutral gene flow Bayesian F-model defined above. Specifically, for population pair i and j, we assumed re-scaled beta priors128

on Nmij and Nmji with lower and upper bounds set to the 2.5th and 97.5th percentiles of the posterior from the neutral129

F-model and α and β set to 10 (again symmetrical and relatively but slightly less flat over the range). We then solved for, e.g.,130
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mij as mij = Nmij

Ne
(with Ne denoting Ne for population j).131

We conducted 25 million simulations of evolution to estimate the model and parameter posterior probabilities. In each132

case, the selection models and all relevant parameters were sampled from their priors. We then simulated evolution for 2500133

generations starting from Perform allele frequencies of 0.5 for all populations (this was sufficient time to remove sensitivity to134

our initial allele frequency but not so long to ensure one allele was lost, as will always ultimately be the case given sufficient135

time without recurrent mutation). Simulations were performed using a custom program written in C++ with functions from136

the Gnu Scientific Library (33). We used the vector of final (at generation 2500) Perform allele frequencies for the three137

populations as the output (summary statistics) from the simulations. Thus, the allele frequency vectors from the 25 million138

simulations were compared to the actual Perform allele frequency vector for the three populations. Using the rejection algorithm139

from the abc R package (version 2.1; R version 4.0.2) (34) we identified the 0.004% (1000 out of 25 million) of simulations140

resulting in the smallest Euclidean distance between the simulated and observed allele frequencies. Model posteriors were141

computed as the proportion of these retained simulations arising from each model (i.e., each combination of directional selection142

versus heterozygote advantage for the two host plants). The model of heterozygote advantage on both host plants had the143

highest posterior probability. Consequently, we estimated the selection coefficients (s1 and s2) on each host plant under144

the heterozygote advantage model (model-averaging is not appropriate as the selection coefficients do not have a consistent145

definition across models). This was done by considering the 0.015% (∼1000) of simulations with heterozygote advantage on146

both hosts with smallest distance between observed and simulated summary statistics, and performing ridge regression for147

parameter adjustment on the log-transformed selection coefficients. This was also done with the abc R package (version 2.1)148

(34).149

Dating the chromosomal inversion with δaδi. We estimated the divergence time between the Perform chromosomal variants in150

a population genetic context with the diffusion approximation approach implemented in δaδi (35). We specifically followed151

an approach inspired by (36), which modeled recombination between subgenomes (in polyploids) as being analogous to gene152

flow between populations. We focused on the BCE population and designated two “populations", each comprising individuals153

homozygous for one of the Perform inversion alleles. We assumed these populations were descended from a single ancestral154

population with a mutation-scaled effective population size of θ (4Nancµ, where µ is the locus mutation rate) that diverged at155

time Tsplit (measured in 2Nanc generations), which corresponds with the origin time for the inversion (i.e., the creation of the156

two distinct inversion haplotypes). We allowed for the relative effective sizes of the two inversion “populations" to increase157

or decrease over time based on population growth parameters ν1 = N1/Nanc and ν2 = N2/Nanc); this could reflect selection158

or drift in inversion allele frequencies. We modeled potential genetic exchange (recombination or gene conversion) between159

inversion alleles (populations) using the migration rate parameter from δaδi, M12 = 2Nancm12 and M21 = 2Nancm21 (here160

m12 and m21 are proportions), as in (36). Thus, our estimate of the divergence time between inversion alleles accounts for161

possible reduced DNA sequence divergence resulting from recombination within the inversion.162

We used δaδi (with Python 3.9.7) to first infer the joint site frequency spectrum for our two populations, one comprising163

25 PRW PRW homozygotes (the allele more common on Redwood) and one comprising 33 PCPC homozygotes (the all more164

common on Ceanothus) (all from BCE); this was done within δaδi directly from the filtered vcf file. We down-sampled the165

data at this stage to 70% of the smaller size (i.e., 70% of 25 diploids). We then used δaδi to estimate the model parameters,166

specifically θ, Tsplit, ν1, ν2, and the genetic exchange parameters M12 = 2Nancm12 and M212Nancm21 (here m12 and m21167

are proportions) (see https://github.com/zgompert/TimemaRW/blob/main/im_dadi_old.py). We used three rounds of numerical168

optimization, comprising 20, 10 and five iterations each to estimate the model parameters.169

We then used the average of two published per-base mutation rates for insects, 2.9e−9 for Heliconius and 2.8e−9 for170

Drosophila (37), to convert our estimates of divergence time to time in years (or equivalently generations as Timema are171

univoltine). This conversion also required an estimate of the number of sequenced bases for the Perform locus so that we172

could compute the per-locus mutation rate (µ in δaδi). Importantly, this is not the same as the total length of the locus as173

not all bases were sequenced, and even considering only sequenced bases not all were sequenced to high coverage or exhibited174

properties that would have allowed a SNP to have been called at a nucleotide position even if it were variable. Thus, we first175

used the samtools (version 1.5) depth command to determine the number of bases within Perform sequenced to at least 2×176

coverage (average per individual), which was the same threshold used for variant calling. We then tried to account for the177

fact that a subset of these sites would not pass other filtering criteria. Specifically, we calculated the proportion of SNPs that178

passed the coverage filter but failed quality control based on other filters (about 2/3rds of the initial SNPs) and assumed that179

this same proportion of non-SNPs would have been filtered out if they had been variable. This gave us an effective number of180

sequenced bases of 53,538.3, which we used in combination with the per-base mutation rate to calculate the divergence time in181

years (see https://github.com/zgompert/TimemaRW/blob/main/ComputeDate.R). Confidence intervals on the divergence time were182

inferred using a block-jackknife procedure to account for the non-independence among SNPs within Perform. Specifically, the183

SNPs within Perform were divided into 100 contiguous 18 SNP windows and divergence time estimates were obtained for each184

unique data subset of 99 of the 100 SNP windows.185
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Table S1. Summary of samples and genetic data used to measure host-associated genetic differentiation. Host abbreviations are: C =
Ceanothus, P = Pseudotsuga menziesii (Douglas fir), A = Arctostaphylos (Manzanita), Pi = Pinus, Q = Quercus, RW = Sequoia sempervirens
(Redwood). N1 and N2 denote the sample sizes for populations 1 and 2, respectively. See Riesch et al. (38) for additional information about
these populations.

Species Population 1 Population 2 N1 N2 Number of SNPs
T. californicum SM on A SM on Q 17 20 7858
T. knulli BCE on RW BCWP on C 15 12 1139
T. knulli BCTUR on C BCTUR on Pi 17 16 1139
T. landelsensis BCBOG on C BCBOG on Q 23 20 8548
T. landelsensis BCSUM on C BCSUM on Q 20 11 8548
T. poppensis TBARN on P TBARN on RW 20 20 7157

Table S2. Summary of the relationships between our current chromosome number system (based on T. cristinae), our previous T. cristinae
genome that used linkage groups (39), and the numbers (IDs) for the chromosome-scale scaffolds in T. cristinae (GS = green striped morph), T.
knulli, and T. chumash genomes here based on whole genome-alignments. Note that our earlier linkage groups corresponded with T. cristinae
chromosomes with two exceptions, one chromosome (now 9 = T. cristinae GS scaffold 16151) was split between two linkage groups, and the
sex chromosome, X (now 13 = T. cristinae GS scaffold 14101) was not assigned to any linkage group.

T. cristinae Old T. cristinae T. cristinae (GS) T. knulli T. chumash
chromosome number linkage group scaffold number scaffold number scaffold number

1 1 8483 29 43
2 2 14640 813 1392
3 3 42935 29 43
4 4 42912 6886 43
5 5 18722 6895 56
6 6 9928 6839 1469
7 7 10660 934 1510
8 8 7748 6852 113
9 9,13 16151 1305 43
10 10 14160 30 1213
11 11 12033 500 48
12 12 12380 6840 1403
13 NA 14101 775 1308

Table S3. Summary of samples for the T. knulli performance experiment and associated genetic analyses. Host abbreviations are: C =
Ceanothus and RW = Redwood (Sequoia sempervirens). BCE, BCSH and BCXD are very near each other and all treated as “BCE" for analyses
the simply exclude BCTURN. N denotes sample size.

Population Host Latitude (◦N) Longitude (◦W) N
BCE C 36.07 121.60 68
BCE RW 36.07 121.60 24
BCSH RW 36.07 121.60 1
BCTURN C 36.08 121.61 37
BCXD C 36.07 121.60 8
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Table S4. Sample sizes from population BCE in the rearing experiment used in the regression analysis connnecting Perform genotype to
performance. Counts are given for each combination of source host (RW = Redwood, C = Ceanothus), Perform genotype, host treatment
(columns, Redwood or Ceanothus) and sex. Variability in sample sizes for different source and genotype combinations reflects the different
frequencies of Perform alleles on different hosts.

Redwood Ceanothus
Source Genotype female male female male

PRW PRW 5 1 5 6
RW PRW PC 3 3 2 0

PCPC 0 0 0 0
PRW PRW 3 2 2 1

C PRW PC 11 5 14 5
PCPC 12 4 13 4

Table S5. Summary of regression models for 15-day weight in the T. knulli experiment. Results are shown for the Redwood (RW) and
Ceanothus host treatments for models with Perform genotype (G), host source (H), or both factors and their interaction (G:H). Effects of sex
and developmental stage were removed prior to analysis. Regression parameter estimates (β) and associated P-values are reported along with
the overall model r2, P-value and Akaike information criterion metric (AIC). The model with the lowest AIC (i.e., the best model) for each host
treatment is denoted with an asterisk.

Genotype Host Genotype:Host Model
Model β P β P β P r2 P AIC
RW G* -0.009 0.033 0.106 0.033 -213.43
RW H 0.013 0.071 0.077 0.071 -212.09
RW G:H -0.004 0.428 0.038 0.075 0.020 0.120 0.179 0.051 -213.09
C G* -0.018 0.010 0.132 0.010 -184.45
C H 0.013 0.339 0.019 0.339 -178.35
C G:H -0.027 0.006 -0.056 0.192 0.030 0.323 0.169 0.035 -182.65

Table S6. Summary of regression models for 21-day weight in the T. knulli experiment. Results are shown for the Redwood (RW) and
Ceanothus host treatments for models with Perform genotype (G), host source (H), or both factors and their interaction (G:H). Effects of sex
and developmental stage were removed prior to analysis. Regression parameter estimates (β) and associated P-values are reported along with
the overall model r2, P-value and Akaike information criterion metric (AIC). The model with the lowest AIC (i.e., the best model) for each host
treatment is denoted with an asterisk.

Genotype Host Genotype:Host Model
Model β P β P β P r2 P AIC
RW G -0.004 0.418 0.016 0.418 -186.15
RW H* 0.026 0.004 0.189 0.004 -194.48
RW G:H 0.004 0.469 0.038 0.162 -0.006 0.709 0.201 0.032 -191.08
C G* -0.019 0.019 0.116 0.019 -163.68
C H 0.006 0.703 0.003 0.703 -158.04
C G:H -0.023 0.030 0.033 0.495 -0.044 0.196 0.184 0.032 -163.44
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Table S7. Summary of regression models for survival in the T. knulli experiment. Results are shown for the Redwood (RW) and Ceanothus
host treatments for models a null model (intercept only) and models with Perform genotype (G), host source (H), sex (S) or combinations of
two factors and their interaction (G:H and G:S). The overall model r2 and P-value from a simple linear model fit and the Akaike information
criterion metric (AIC) assuming a normal or binomial error distribution are reported. The model with the lowest AIC based on the binomial error
distribution (i.e., the best model) for each host treatment is denoted with an asterisk.

Model r2 P AIC (normal) AIC (binomial)
RW null* NA NA 25.95 34.30
RW G 0.002 0.759 27.85 36.20
RW H 0.001 0.810 27.89 36.23
RW S 0.006 0.596 27.65 35.98
RW G:H 0.020 0.818 30.94 39.83
RW G:S 0.009 0.934 31.48 38.73
C null NA NA 32.90 39.19
C G* 0.115 0.014 28.52 34.60
C H 0.121 0.012 28.21 35.83
C S 0.079 0.044 30.63 37.44
C G:H 0.169 0.029 29.25 37.52
C G:S 0.188 0.018 28.08 36.61
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Table S8. Number and proportion (in parantheses) of T. knulli surviving to the end of the experiment as a function of Perform genotype, host
treatment (Redwood or Ceanothus) and sex.

Redwood Ceanothus
Genotype female male female male
PRW PRW 8/8 (1.00) 3/3 (1.00) 6/7 (0.86) 4/7 (0.57)
PRW PC 11/14 (0.79) 7/8 (0.88) 15/16 (0.94) 4/5 (0.80)
PCPC 11/12 (0.92) 4/4 (1.00) 13/13 (1.00) 4/4 (1.00)
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Table S9. Model parameter estimates from δaδi. The scaled parameters presented are defined as follows: θ = 4Nancµ, ν1 = N1/Nanc,
ν2 = N2/Nanc, Tsplit = 2Nanctsplit, M12 = 2Nancm12, M21 = 2Nancm21, where N and t denote actual effective population sizes and
time in generations (years) and µ is the total mutation rate for the locus. 95% CIs denote 95% block-jackknife confidence intervals. Here,
populations 1 and 2 refer to homozygotes for Ps (more common on Ceanothus) and Pg (more common on Redwood), respectively.

Parameter Estimate 95% CI lower 95% CI upper
θ 111.184 41.845 234.364
ν1 0.231 0.106 0.631
ν2 3.901 1.875 10.386
Tsplit 13.833 2.573 28.976
M12 0.367 0.134 0.782
M21 0.110 0.040 0.248
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Fig. S1. Graphical overview of forms of balancing selection that can maintain genetic variation. Panel (A) shows the case of heterozygote advantage (overdominance) where
the heterozygote (a/A) has the highest Darwinian fitness. This can occur for several reasons, including life-history trade-offs where the heterozygote has the highest mean
fitness across life-history stages. Panel (B) shows negative frequency-dependent selection where selection is always directional (favoring a/a or A/A homozygotes) but where
the rarer homozygote is most fit. The illustration contrasts cases where the frequency of A (p) is 0.1 versus 0.9. Panel (C) shows balancing selection caused by divergent
selection, that is directional selection favoring alternative alleles or genotypes in different populations, combined with gene flow between populations occupying different
habitats. Thus, unlike the first two cases, this third case necessarily involves multiple populations. All forms of balancing selection shown here can maintain polymorphism at
the population and species level.
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Fig. S2. Manhattan plots of genome-wide genetic differentiation for parapatric Timema populations on different hosts. Points denote FST for individual SNPs organized by T.
cristinae linkage groups. Host abbreviations are A = Adenostoma, C = Ceanothus, P = Pseudotsuga menziesii (Douglas Fir), Pi = Pinus (pine), Q = Quercus (oak), and RW =
Sequoia sempervirens (Redwood).
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Fig. S3. Heatmap shows the proportion synteny blocks on of each T. knulli scaffold that aligned to each of the T. cristinae chromosomes.
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Fig. S4. Plots show gene density along T. knulli chromosomes. Gene density was calculated as the number of genes overlapping 500 mbp windows. Numerous factors likely
contribute to variation in gene density along chromosome, including the location of centromeres (which is not known in T. knulli), but notable spikes in gene density are apparent
near the bounds of the Perform inversion on chromosome 11, as indicated by vertical red lines.
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Fig. S5. Heatmap showing patterns of pairwise linkage disequilibrium (LD) between SNPs for chromosome 11 in PRW PC T. knulli heterozygotes. LD was quantified using
the squared genotypic correlation (r2). Heatmaps for additional genotypes and genotype combinations are shown in the main text.
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Fig. S6. The dot plot shows the alignment of chromosome 11 for T. knulli (from Redwood) and T. cristinae. Line segments denote aligned genome regions with the orientation
of the alignment shown by the direction of the lines. The bounds of the Perform locus in the T. knulli genome are denoted by the vertical red lines. The location of the five
inversions detected on chromosome 11 for the T. knulli genome from Ceanothus relative to the Redwood T. knulli genome are shown with horizontal orange lines. The location
of these along the y-axis is arbitrary. These inversions were delineated based on nanopore DNA sequence data. The main text focuses on the largest of these five inversions.
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Fig. S7. Barplots show the number of individuals with each Perform genotype at the start (bar) and end (colored portion of bar) of the rearing experiment on Redwood (A) and
Ceanothus (B).
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Fig. S8. Summary of the ABC results. Panels (A) and (B) given model posterior probabilities. In (A) posteriors are given for DS = divergent directional selection on both hosts,
HA RW = heterozygote advantage on Redwood and directional selection on Ceanothus, HA C = directional selection on Redwood and heterozygote advantage on Ceanothus,
and HA = heterozygote advantage on both hosts. In (B) marginal posteriors are shown for directional (DS) versus heterozygote advantage (HA) on each host (indicated by
color). Panel (C) shows the joint posterior for the fitness of PRW versus PC homozygotes on each host, where points denote individual samples from the posterior with
contours overlain. (D) gives posterior estimates of the selection coefficients s1 and s2 (heterozygote advantage) on Ceanothus (C) versus Redwood (RW). Points and numbers
denote posterior medians and vertical bars indicate 95% credible intervals.
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Fig. S9. Boxplots show the PRW allele frequency from simulations for BCTURN (A), BCE RW (B) and BCE C (C) after 250,000 generations of evolution with heterozygote
advantage (HA) and gene flow, directional selection (DS) and gene flow, or HA without gene flow. Results are shown for 50 replicate simulations under each set of conditions.
Boxes denote the 1st and 3rd quartile, with the median given by the midline and whiskers extending to the minimum and maximum value or 1.5× the interquartile range. Points
show the allele frequency for each replicate simulation. The observed PRW allele frequency in each population is shown with a red, dashed line.
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Fig. S10. Summary of model fit for divergence time models in δaδi. The top panels show the observed (data) and predicted (model) joint site frequency spectra for Perform
locus. The bottom panels show the corresponding residuals, that is the deviation between the observed and model-predicted joint site frequency spectra.
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Fig. S11. Inversion divergence time estimates from δaδi. The boxplot summarizes estimates of divergence time (in millions of years ago = MYA) for each of 100 block-jackknife
replicates. Boxes denote the 1st and 3rd quartile, with the median given by the midline and whiskers extending to the minimum and maximum value or 1.5× the interquartile
range. Gray points denote the estimate for each replicate; the larger black dot indicates the estimate from the full data set.
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