Supporting Information

Pain Chemogenomics Knowledgebase (Pain-CKB) for Systems Pharmacology Target Mapping and PBPK Modeling Investigation of Opioid Drug-Drug Interactions

Mingzhe Shen^{1,#}, Maozi Chen^{1,#}, Tianjian Liang¹, Siyi Wang¹, Ying Xue²,

Richard Bertz^{1,*},Xiang-Qun Xie^{1,*}, Zhiwei Feng^{1,*}

¹Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States

²Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA

Figure S1. Observed and simulated concentration–time profiles of acetaminophen 650 mg iv infusion over 5 min. The simulated results were generated using 10 trials of 10 virtual healthy volunteers. Observed data¹ were highlighted in red dots while the simulated results, mean value, and the 95th/5th percentile of the simulation were shown by corresponding lines.

Figure S2. Observed and simulated concentration-time profiles of acetaminophen 1000 mg iv infusion over 15 min. The simulated results were generated using 10 trials of 10 virtual healthy Japanese volunteers. Observed data² were highlighted in red dots while the simulated results, mean value, and the 95th/5th percentile of the simulation were shown by corresponding lines.

Figure S3. Observed and simulated concentration-time profiles of fentanyl 100 μ g/kg iv bolus. The simulated results were generated using 10 trials of 10 virtual healthy volunteers. Observed data³ were highlighted in red dots while the simulated results, mean value, and the 95th/5th percentile of the simulation were shown by corresponding lines.

Figure S4. Observed and simulated concentration-time profiles of fentanyl 5 μ g/kg iv bolus. The simulated results were generated using 10 trials of 10 virtual healthy volunteers. Observed data⁴ were highlighted in red dots while the simulated results, mean value, and the 95th/5th percentile of the simulation were shown by corresponding lines.

Figure S5. The AUC Ratio of fentanyl with acetaminophen when Ki value is ranged in 2800-3200 μ M. The dosage of fentanyl and acetaminophen (inhibition substrate) is 0.003 mg/kg and 80000 mg.

Figure S6. Computational systems pharmacology-target mapping (CSP-Target Mapping) for NAPQI. The purple dots and dashed lines represent the predicted targets and interaction. Our algorithm predicted NAPQI may bind to TrxR.

References

1. Scavone, J. M., Greenblatt, D. J., Blyden, G. T., Luna, B. G., and Harmatz, J. S. (1990) Validity of a Two-Point Acetaminophen Pharmacokinetic Study, *Ther. Drug Monit.* 12, 35-39.

2. Imaizumi, T., Obara, S., Mogami, M., Iseki, Y., Hasegawa, M., and Murakawa, M. (2017) Population pharmacokinetics of intravenous acetaminophen in Japanese patients undergoing elective surgery, *J. Anesth.* 31, 1-9.

3. Brusset, A., Levron, D. J. C., Olivier, P., Schlumberger, S., Moing, J. P. L., Dubois, C., Guilmet, D., Valide, L., Guenoun, T., and Fischler, M. (1999) Comparative Pharmacokinetic Study of Fentanyl and Sufentanil after Single High-Bolus Doses, *Clin. Drug Invest.* 18, 377-389.

4. Saari, T. I., Laine, K., Neuvonen, M., Neuvonen, P. J., and Olkkola, K. T. (2008) Effect of voriconazole and fluconazole on the pharmacokinetics of intravenous fentanyl, *Eur. J. Clin. Pharmacol.* 64, 25-30.