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Scaling of lunge costs 

 

Humpback whales are among the smaller rorqual whales and are hypothesized to have both smaller 
mass specific and absolute costs associated with feeding lunges compared to the larger fin 
(Balaenoptera physalus) and blue whales (Balaenoptera musculus) (6, 27, 83–86). This is due both 
to their smaller size and the allometric increase in mass-engulfment capacity in larger rorquals, 
which increases their mechanical costs of lunging (6, 87, 88). To investigate whether the humpback 
whales from this study were performing cheaper lunges mass specifically than the larger fin and 
blue whales we compared our data to that of one tagged fin whale tagged off Tasiilaq, East 
Greenland during September 2017, with 28.7 hours of tag data (Fig. S13)  and two blue whales 
from a previous published study (bw180827-46 and bw180905-53) (Fig. S14) (29, 89). The same 
methodology for breath and lunge detection was implemented as previously described. Even 
though the data consists of only three whales, these show a very similar trend in relative lunge cost 
compared to that of humpback whales (Fig. S10, Fig. 2). Using the same modelling approach as 
we used with humpback whales (glmmPQL, poisson family, log link and corrected for 
autocorrelation but with no random effect of ID since N=1 or 2), the results were: for the fin whale, 
log(breaths) = 4.1162+0.007753·lunges), slope = 0.53 (estimated from minimum and maximum 
values) and for the blue whales log(breaths) = 3.4591+0.01528·lunges), slope = 0.56 (estimated 
from minimum and maximum values). When estimating the absolute cost of a lunge for the fin 
and blue whales we used the same procedure as for humpback whales but used a body mass of 45t 
for fin whales (55, 90) and 100t for blue whales (55) to calculate TLC (eq. 2). This resulted in 
estimates for the maximum energy invested in performing a lunge of 1.35MJ for fin whales and 
2.98MJ for blue whales, thus the absolute break-even costs increased as expected for these larger 
whales, but the mass specific costs are very similar. However, as fin and blue whales have a larger 
engulfment capacity than humpback whales with a mean of 41m3 and 86 m3

,
 respectively (11, 27), 

the density of prey can be as low as 0.01kg m-3 and still meet the maximum break-even cost of 
lunging (~396g of krill for fin whales and ~872g of krill for blue whales), assuming an energetic 
value for krill of 3800kj kg-1 (9, 74). Thus, the estimated break-even prey density for the tagged 
fin and blue whales is slightly smaller than the value estimated for the larger set of humpback 
whales in our study. When computing the mechanical work done, it appears that the tagged fin and 
blue whales with an estimated weight of 45t and 100t perform maximum mechanical work of 
around 7.5 J/kg, which is slightly smaller, but comparable to the maximum value we estimate for 
the tagged humpback whales of 8.3J/kg. 

 

 
 

 

 



 
 

 
 
Fig S1. Lunge detection from multi-sensor tag data.  
A) dive profile of a humpback whale (mn08_146a) with detected lunges (red circles), B) 
spectrogram of the sound recording for the same time segment (FFT length: 4096 samples at 96 
kHz sampling rate, overlap: 80%, Hann window), C) jerk signal of lunges calculated from 
accelerometer data, and D) roll and pitch angles during lunge events calculated from accelerometer 
data.  
 
 
 
 
 
 

 



 
 

 

Fig. S2 Breaths sounds of tagged whale. Section of dive profile for mn10_146a showing breath 
sounds with associated jerk peaks (blue triangles). This figure has an accompanying sound clip 
(Audio S1). A) dive depth in meters showing a surfacing interval followed by a dive descent, B) 
the jerk values over the same interval, and C) the corresponding spectrogram for the recorded 
sound (FFT length: 2048 samples at 96 kHz sampling rate, overlap: 50%, Hann window).  
 



 
 

 

Fig. S3 Breath sounds of tagged whale and conspecifics. Section of audio data for mn10_132a 
showing breath sounds recorded from both the tagged whale and other nearby animals. Only the 
breaths of the tagged whale are apparent in the jerk (marked by blue triangles). This figure has an 
accompanying sound clip (Audio S2). A) shows the dive depth of the tagged whale confirming 
that it is at the surface, B) jerk values for the same time interval C) spectrogram for the recorded 
sound (FFT length: 2048 samples at 64 kHz sampling rate, overlap: 50%, Hann window). 

 
 



 
 

 

Fig. S4 Breaths of a tagged swimming whale. Section of dive profile of mn10_155a showing an 
interval of near-surface travel with breaths at each surfacing (Audio S3). A)  dive depth, B) 
corresponding jerk (breaths marked with blue triangles) and C) spectrogram of the recorded sound 
(FFT length: 2048 samples at 96 kHz sampling rate, overlap: 50%, Hann window).  
 



 
 

 
Fig. S5. Autocorrelation function of model residuals showing the temporal correlation. (A) 
Before and (B) after the inclusion of an auto-regressive structure of lag 1 (AR1) in the GLMM.  
 
 
 
 
 



 
 

 
Fig. S6. Histogram of model residuals from the GLMM. Residuals for hourly segments with 
no lunges are shown in red and segments with lunges are shown in white. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Fig. S7. PaCO2 distribution in relation to body weight. Data and plot from (67) (red dots), with 
a histogram of our modelled EO2 (the fractional oxygen uptake), using eq. 6, superimposed. 
Weddell seal (Leptonychotes weddellii) (91), bottlenose dolphins (Tursiops truncatus) (42, 53, 92), 
California sea lion (Zalophus californianus) (93), Patagonia sea lion (Otaria flavescens) (94), Grey 
seal (Halichoerus grypus) (95) and harbor porpoise (Phocoena phocoena) (54) (blue dots). 
 



 
 

 

 

 
Fig. S8 Yearly life cycle of a humpback whale. The circle represents a year of a humpback 
whale’s life. Each plot depicts estimated probable distributions of breathing rate (96). The grey  
dots in feeding and breeding ground plots represent measured breathing rates in this study and in 
a previous study (15). Respiration data have not been measured during migration. 

 

 



 
 

 

Fig. S9 Calculated FMR on feeding grounds versus lunge rate extrapolated to 24hr. Each 
point represents the calculated field metabolic rate (FMR) for each tagged whale in Table S1, and 
the number of lunges detected in the accelerometer and depth data. 
 
 
 
 

 
 
 
 

 



 
 

 
Fig. S10 The relationship between hourly lunge and breath rates for tagged humpback, fin 
and blue whales. Data come from 23 humpback whales (grey), a single fin whale (tagged for 
28.7 hours off Tasiilaq, Greenland, green), and two blue whales (89) (blue). 
 
 
 
 
 
 
 
 

 
 
 



 
 

 
 
Fig. S11. Estimated FMR of free-swimming humpback whales compared to scaling 
equations proposed for marine mammals. Violin plot of daily average field metabolic rate of 
30t humpback whales is based on our estimated annual energy expenditure (Fig. 3). Blue dot 
shows estimated daily FMR of humpback whales targeting krill in the eastern North Pacific and 
the red dot shows estimated daily FMR of  humpback whales off the West Antarctic Peninsula 
targeting krill (11). These two data points arise from yearly prey ingestion and are corrected for 
somatic growth and reproduction costs and scaled to a 30t whale. Each line represents proposed 
scaling equations for the FMR of marine mammals (25, 97, 98). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fig. S12. Dive profiles of all tagged humpback whales included in our analysis. The title of 
each sub-plot corresponds to whale ID in Table S1. The top panel in each figure displays lunge 
and breath counts in 1 hour time blocks. The lower panel shows the dive profile with detected 
lunges (red circles).  

 
 



 
 

 



 
 

 



 
 

 



 
 

 



 
 



 
 

 



 
 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

Fig. S13. Dive profile of a tagged fin whale. Title of plot corresponds to whale ID. First panel 
displays lunge and breath counts in 1 hour time blocks. Second panel shows the dive profile with 
lunges (red circles). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

 
 

Fig. S14. Dive profile of tagged blue whales (89). Title of plot corresponds to whale ID. 
First panel displays lunge and breath counts in 1 hour time blocks. Second panel shows the dive 
profile with lunges (red circles). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table S1. 
Tag deployment details and data overview 
Whale ID Tagging 

location 
Tag 
deployment 
duration (h) 

Analyzed 
data interval 
(start-end, s) 

Breathing 
rate (min-1) 

Lunge rate 
(h-1) 

Mn07_192a Nuuk fjord, 
Greenland 

4.9 
 

3600-17550 1.21 20.9 

Mn07_203a Nuuk fjord, 
Greenland 

24.3 3600-87399 0.77 13.5 

Mn08_146a Nuuk fjord, 
Greenland 

5.8 3600-20984 1.27 29.4 

Mn08_152a Nuuk fjord, 
Greenland 

4.9 3600-17525 1.90 55.8 

Mn08_153a Nuuk fjord, 
Greenland 

5.9 3600-21071 1.68 46.8 

Mn08_155a Nuuk fjord, 
Greenland 

4.8 3600-17126 1.53 38.1 

Mn08_156a Nuuk fjord, 
Greenland 

5.8 3600-21038 1.27 28.5 

Mn08_158a Nuuk fjord, 
Greenland 

3.6 3600-12857 1.68 44.3 

Mn08_160a Nuuk fjord, 
Greenland 

5.3 3600-18923 1.71 37.6 

Mn10_133a Wilhelmina 
Bay, Antarctica 

22.7 13900-81859 1.01 
 

19.1 

Mn10_139a Wilhelmina 
Bay, Antarctica 

20.7 3600-74564 1.24 38.7 

Mn10_144a Wilhelmina 
Bay, Antarctica 

17.9 3600-64560 1.57 60.7 

Mn10_146a Wilhelmina 
Bay, Antarctica 

20 31132-71912 0.94 15.4 

Mn10_151a Wilhelmina 
Bay, Antarctica 

20.3 19000-73190 1.19 26.2 

Mn10_155a Wilhelmina 
Bay, Antarctica 

24.1 3600-86827 0.89 14.5 

Mn10_155b Wilhelmina 
Bay, Antarctica 

21.9 3600-78730 1.12 3.3 

Mn12_179a Disko bay, 
Greenland 

6.4 3600-22952 1.49 2.4 

Mn12_180a Disko bay, 
Greenland 

6.4 3600-23213 0.77 2.2 

Mn12_184a Disko bay, 
Greenland 

7.2 3600-26032 1.27 6.9 

Mn12_185a Disko bay, 
Greenland 

11.1 3600-40056 1.01 43.9 



 
 

Mn17_251a 
44 

Tasiilaq, 
Greenland 

34.9 3600-116457 1.04 9.8 

Mn17_255a 
42 

Tasiilaq, 
Greenland 

32.3 3600-97060 1.05 13 

Mn17_255b 
43 

Tasiilaq, 
Greenland 

26.9 3600-125889 1.18 14.7 

 
 

Movie S1. 
Onboard video of a bottom lunge. All video samples were recorded with a CATS tag on 
humpback whales. 

Movie S2. 
Onboard video of a bubble-net lunge. 

Movie S3. 
Onboard video of a lunge feeding on fish. 

Movie S4. 
Onboard video of a lunge with dense prey. 

Movie S5. 
Onboard video of a whale swimming and breathing. 

Movie S6. 
Onboard video of a logging whale breathing. 
 
 

Audio S1.  
Breath sounds recorded by a Dtag attached to a logging humpback whale. 

Audio S2.  
Breath sounds from the tagged whale and nearby conspecifics recorded by a Dtag. 

Audio S3.  
Breath sounds recorded by a Dtag attached to a travelling humpback whale. 
 
Data S1 
Hourly counts of lunges and breaths for each individual whale 
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