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A Appendix Results

A.1 Heterogeneous Treatment E�ects

In this appendix we consider what a linear SSIV identi�es when the structural relationship between y`

and x` is nonlinear. We show that under a �rst-stage monotonicity condition the large-sample SSIV

coe�cient estimates a convexly weighted average of heterogeneous treatment e�ects. This holds even

when the instrument has di�erent e�ects on the outcome depending on the underlying realization

of shocks, for example when y` =
∑
n s`nβ̃`nx`n + ε` with β̃`n capturing the e�ects of (possibly

unobserved) observation- and shock-speci�c treatments x`n making up the observed x` =
∑
n s`nx`n.

Consider a general structural outcome model of

y` = y(x`1, . . . , x`R, ε`), (A1)

where the R treatments are given by x`r = xr(g, η`r) with g collecting the vector of shocks gn and with

η` = (η`1, . . . , η`R) capturing �rst-stage heterogeneity. We consider an IV regression of y` on some

aggregated treatment x` =
∑
r α`rx`r with α`r ≥ 0. Note that this nests the case of a single aggregate

treatment (R = 1 and α`1 = 1) with arbitrary e�ect heterogeneity, as well as the special case above

(R = N and α`r = s`n). We abstract away from controls w` and assume each shock is as-good-as-

randomly assigned (mean-zero and mutually independent) conditional on the vector of second-stage

unobservables ε` and the matrices of �rst-stage unobservables η`r, exposure shares s`n, importance

weights e`, and aggregation weights α`r, collected in I = {ε`, e`, {η`r, α`r}r , {s`n}n}`. This assump-

tion is stronger than Assumption 3 but generally necessary in a non-linear setting while still allowing for

the endogeneity of exposure shares. For further notational simplicity we assume that y(·, ε`) and each

xr(·, η`r) are almost surely continuously di�erentiable, such that β`r(·) = ∂
∂xr

y(·, ε`) captures the ef-

fect, for observation `, of marginally increasing treatment r on the outcome and π`nr(·) = ∂
∂gn

xr(·, η`r)

captures the e�ect of marginally increasing the nth shock on the rth treatment at `.

Under an appropriate law of large numbers, the shift-share IV estimator approximates the IV

estimand:

β̂ =
E [
∑
` e`z`y`]

E [
∑
` e`z`x`]

+ op(1) =

∑
`

∑
n E [s`ne`gny`]∑

`

∑
n

∑
r E [s`ne`gnα`rx`r]

+ op(1). (A2)

Given this, we have the following result:

Proposition A1 When π`nr([ğ; g−n]) ≥ 0 almost surely for all ğ ∈ R, equation (A2) can be written

β̂ =

∑
`

∑
n

∑
r E
[∫∞
−∞ β̃`nr(ğ)ω`nr(ğ)

]
dγ∑

`

∑
n

∑
r E
[∫∞
−∞ω`nr(ğ)

]
dγ

+ op(1), (A3)

2



where ω`nr(ğ) ≥ 0 almost surely and

β̃`nr(ğ) =
β`r(x1([ğ; g−n], η`1), . . . xR([ğ; g−n], η`R))

α`r
(A4)

is a rescaled treatment e�ect, evaluated at (x1([ğ; g−n], η`1), . . . xR([ğ; g−n], η`R) for [ğ; g−n] =

(g1, . . . , gn−1, ğ, gn+1, . . . gN )′.

Proof See Appendix B.3.

This shows that in large samples β̂ estimates a convex average of rescaled treatment e�ects, β̃`nr(ğ),

when the �rst stage is monotone in each shock. Appendix B.3 shows that the weights ω`nr(ğ) are pro-

portional to the �rst-stage e�ects π`nr([ğ; g−n]), exposure shares s`n, regression weights e`, treatment

aggregation weights α`r, and a function of the shock distribution. In the case without aggregation, i.e.

R = α`r = 1, there is no rescaling in the β̃`nr(ğ). Equation (A3) then can be seen as generalizing the

result of Angrist et al. (2000), on the identi�cation of heterogeneous e�ects of continuous treatments,

to the continuous shift-share instrument case. Intuition for the ω`nr(ğ) weights follows similarly from

this connection. With aggregation�that is, when the realization of shocks may have heterogeneous

e�ects on y` holding the aggregated x` �xed�equation (A3) shows that SSIV captures a convex aver-

age of treatment e�ects per aggregated unit. Thus in the leading example of y` =
∑
n s`nβ̃`nx`n + ε`

and x` =
∑
n s`nx`n, this result establishes identi�cation of a convex average of the β̃`n. In this way

the result generalizes Adão et al. (2019), who establish the identi�cation of convex averages of rescaled

treatment e�ects in reduced form shift-share regressions.

A.2 Unobserved n-level Shocks Violate Share Exogeneity

In this appendix, we show that the assumption of SSIV share exogeneity from Goldsmith-Pinkham

et al. (2020) is violated when there are unobserved shocks νn that a�ect outcomes via the exposure

shares s`n, i.e. when the residual has the structure

ε` =
∑
n

s`nνn + ε̌`. (A5)

We consider large-sample violations share exogeneity in terms of the asymptotic non-ignorability of the

ε̄n terms in the equivalent moment condition (5). It is intuitive that the cross-sectional dependence

between s`n and ε` will not asymptotically vanish when N is �xed (as in Goldsmith-Pinkham et

al. (2020)) and each νn shock contributes signi�cantly to the residual, causing ε̄n 6
p−→ 0 for some or

all n. We next prove this result and show that it generalizes to the case of increasing N , where

the contribution of each νn to the variation in ε` becomes small. The intuition here is that the SSIV

relevance condition generally requires individual observations to be su�ciently concentrated in a small
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number of shocks (see Section 3.1), and under this condition the share exogeneity violations remain

asymptotically non-ignorable even as N →∞.

We de�ne share endogeneity as non-vanishing Var [ε̄n] at least for some n. This will tend to make

the SSIV estimator inconsistent, unless shocks are as-good-as-randomly assigned (Assumption 1), even

if the importance weights of individual shocks, sn, converge to zero (Assumption 2). Here we treat e`

and s`n as non-stochastic to show this result with simple notation.

Proposition A2 Suppose condition (A5) holds with the νn mean-zero and uncorrelated with the

ε̌` and with each other, and with Var [νn] = σ2
n ≥ σ2

ν for a �xed σ2
ν > 0. Also assume

HL =
∑
` e`
∑
n s

2
`n → H̄ > 0 such that �rst-stage relevance can be satis�ed. Then there

exists a constant δ > 0 such that maxn Var [ε̄n] > δ for su�ciently large L.

Proof See Appendix B.4.

A.3 Comparing SSIV and Native Shock-Level Regression Estimands

In this appendix we illustrate economic di�erences between the estimands of two regressions that

researchers may consider: SSIV using outcome and treatment observations y` and x` (which we show

in Proposition 1 are equivalent to certain shock-level IV regressions), and more conventional shock-level

IV regressions using �native� yn and xn. These outcomes and treatments capture the same economic

concepts as the original y` and x`, in contrast to the constructed ȳn and x̄n discussed in Section 2.3.

In line with the labor supply and other key SSIV examples, we will for concreteness refer to the ` and

n as indexing regions and industries, respectively. We consider the case where both the outcome and

treatment can be naturally de�ned at the level of region-by-industry cells (henceforth, cells)�y`n and

x`n, respectively�and thus suitable for aggregation across either dimension with some weights E`n

(e.g., cell employment growth rates aggregated with lagged cell employment weights): y` =
∑
n s`ny`n

for s`n = E`n∑
n′ E`n′

and yn =
∑
` ω`ny`n for ω`n = E`n∑

`′ E`′n
, with analogous expressions for x` and xn.

We further de�ne E` =
∑
nE`n and En =

∑
`E`n.

1

We consider the estimands of two regression speci�cations: β from the regional level model (2),

instrumented by z` and weighted by e` = E`/E for E =
∑
`E`, and βind from a simpler industry-level

IV regression of

yn = βindxn + εn, (A6)

instrumented by the industry shock gn and weighted by sn = En/E. For simplicity we do not include

any controls in either speci�cation and implicitly condition on {E`n}`,n (and some other variables as

1This formulation nests reduced-form shift-share regressions when x`n = gn for each `. The labor supply example
of Section 2.1 �ts only partially in this formal setup because the industry or regional wage growth yn is not equal to a
weighted average of wage growth across cells: reallocation of employment a�ects the average wage growth even in the
absence of wage changes in any given cell.
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described below), viewing them as non-stochastic.2

We show that β and βind generally di�er when there are within-region spillover e�ects or when

treatment e�ects are heterogeneous. We study these cases in turn, maintaining several assumptions:

(i) a �rst stage relationship analogous to the one considered in Section 3.1:

x`n = π`ngn + η`n, (A7)

for non-stochastic π`n ≥ π̄ > 0, (ii) a stronger version of our Assumption 1 that imposes E [gn] =

E [gnε`n′ ] = E [gnη`n′ ] = 0 for all `, n, and n′, with ε`n′ denoting the unobserved cell-level residual of

each model, (iii) the assumption that gn is uncorrelated with gn′ for all n and n′, and (iv) that all

appropriate laws of large numbers hold.

Within-Region Spillover E�ects Suppose the structural model at the cell level is given by

y`n = β0x`n − β1

∑
n′

s`n′x`n′ + ε`n. (A8)

Here β0 captures the direct e�ect of the shock on the cell outcome, and β1 captures a within-region

spillover e�ect. The local employment e�ects of industry demand shocks from the model in Appendix

A.7 �t in this framework, see equation (A31).3 The following proposition shows that the SSIV estimand

β captures the e�ect of treatment net of spillovers (i.e. β0 − β1), whereas βind subtracts the spillover

only partially; this is intuitive since the spillover e�ect is fully contained within regions but not within

industries.

Proposition A3 Suppose equation (A8) holds and the average local concentration index HL =∑
`,n e`s

2
`n is bounded from below by a constant H̄L > 0. Further assume π`n = π̄ and

Var [gn] = σ2
g for all ` and n. Then the SSIV estimator satis�es

β̂ = β0 − β1 + op(1) (A9)

while the native industry-level IV estimator satis�es

β̂ind = β0 − β1HL + op(1), (A10)

If β1 6= 0 (i.e. in presence of within-region spillovers), β̂ and β̂ind asymptotically coin-

cide if and only if HL
p→ 1, which corresponds to the case where the average region is

asymptotically concentrated in one industry.

2Note that we thereby condition on the shares s`n and importance weights e`. Yet we still allow for share endogeneity
by not restricting E [ε`n] to be zero.

3In the labor supply example from the main text y`n is the cell wage, which is equalized within the region, and x`n
is cell employment. Equation (A8) therefore holds for β0 = 0 and −β1 being the inverse labor supply elasticity.
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Proof See Appendix B.5.

Treatment E�ect Heterogeneity Now consider a di�erent structural model which allows for

heterogeneity in treatment e�ects:

y`n = β`nx`n + ε`n. (A11)

We also allow the �rst-stage coe�cients π`n and shock variance σ2
n to vary. The following proposition

shows that β and βind di�er in how they average e�ect β`n (here treated as non-stochastic) across

the (`, n) cells. The weights corresponding to the SSIV estimand β are relatively higher for cells that

represent a larger fraction of the regional economy. This follows because in the regional regression

s`n determines the cell's weight in both the outcome and the shift-share instrument, while in the

industry regression only the former argument applies. Heterogeneity in the π`n and σ2
n, in contrast,

has equivalent e�ects on the weighting scheme of both estimands.

Proposition A4 In the casual model (A11),

β̂ =

∑
`,nE`ns`nπ`nσ

2
n · β`n∑

`,nE`ns`nπ`nσ
2
n

+ op(1) (A12)

and

β̂ind =

∑
`,nE`nπ`nσ

2
n · β`n∑

`,nE`nπ`nσ
2
n

+ op(1), (A13)

Proof See Appendix B.6.

A.4 Connection to Rotemberg Weights

In this appendix we rewrite the decomposition of the SSIV coe�cient β̂ from Goldsmith-Pinkham

et al. (2020) that gives rise to their �Rotemberg weight� interpretation, and show that these weights

measure the leverage of shocks in our equivalent shock-level IV regression. We then show that, in

our framework, skewed Rotemberg weights do not measure sensitivity to misspeci�cation (of share

exogeneity) and do not pose a problem for SSIV consistency. We �nally discuss the implications of

high-leverage observations for SSIV inference.

Proposition 1 implies the following decomposition:

β̂ =

∑
n sngnȳ

⊥
n∑

n sngnx̄
⊥
n

=
∑
n

αnβ̂n, (A14)

where

β̂n =
ȳ⊥n
x̄⊥n

=

∑
` e`s`ny

⊥
`∑

` e`s`nx
⊥
`

(A15)
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and

αn =
sngnx̄

⊥
n∑

n′ sn′gn′ x̄⊥n′
. (A16)

This is a shock-level version of the decomposition discussed in Goldsmith-Pinkham et al. (2020): β̂n is

the IV estimate of β that uses share s`n as the instrument, and αn is the so-called Rotemberg weight.

To see the connection with leverage (de�ned, typically in the context of OLS, as the derivative of

each observation's �tted value with respect to its outcome) in our equivalent IV regression, note that

∂
(
x̄⊥n β̂

)
∂ȳ⊥n

= x̄⊥n
sngn∑

n′ sn′gn′ x̄⊥n′
= αn. (A17)

In this way, αn measures the sensitivity of β̂ to β̂n.

In the preferred interpretation of Goldsmith-Pinkham et al. (2020), exposure to each shock is a

valid instrument such that β̂n
p→ β for each n. However, in our framework deviations of β̂n from

β re�ect nonzero ε̄n in large samples, and such share endogeneity is not ruled out; thus αn does

not have the same sensitivity-to-misspeci�cation interpretation. Moreover, a high leverage of certain

shocks (�skewed Rotemberg weights,� in the language of Goldsmith-Pinkham et al. (2020)) is not a

problem for consistency in our framework, provided it results from a heavy-tailed and high-variance

distribution of shocks (that still satis�es our regularity conditions, such as �nite shock variance), and

each sn is small as required by Assumption 2.

Nevertheless, skewed αn may cause issues with SSIV inference, as would high leverage observations

in any regression. In general, the estimated residuals ˆ̄ε⊥n of high-leverage observations will tend to be

biased toward zero, which may lead to underestimation of the residual variance and too small standard

errors (e.g., Cameron and Miller 2015). This issue can be addressed, for instance, by computing

con�dence intervals with the null imposed, as Adão et al. (2019) recommend and as we discuss in

Section 5.1. In practice our Monte-Carlo simulations in Appendix A.11 �nd that the coverage of

conventional exposure-robust con�dence intervals to be satisfactory even with Rotemberg weights as

skewed as those reported in the applications of Goldsmith-Pinkham et al. (2020) analysis.

A.5 Consistency of Control Coe�cients

This appendix shows how the control coe�cient γ, de�ned in main text footnote 5, can be consis-

tently estimated as required in Proposition 3 (Assumption B2). We discuss conditions for
∑
` e`w`ε`

p−→

E [
∑
` e`w`ε`], where by de�nition E [

∑
` e`w`ε`] = 0. Consistency of the estimator γ̂ = γ+(

∑
` e`w`w

′
`)
−1
∑
` e`w`ε`

follows, provided the elements of (
∑
` e`w`w

′
`)
−1

are stochastically bounded (i.e., Op(1)). For simplic-

ity we consider control vectors w` of �xed length.

The argument for convergence of
∑
` e`w`ε` depends on the source of randomness in w` and ε`.

We consider two characteristic cases. In the �rst case, (e`, w
′
`, ε`)

′ can be viewed as iid or clustered
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in a conventional way. For example, w` and ε` may contain observed and unobserved local labor

supply shocks which are uncorrelated across markets, clusters of markets (e.g. states), or beyond a

given distance threshold. In this case conventional laws of large numbers can be used to establish∑
` e`w`ε`

p−→ 0. For instance if (e`, w
′
`, ε`)

′ is iid then
∑
` e`w`ε` gives a vector of sample averages

of mutually uncorrelated mean-zero random variables, which weakly converge to zero when the e`

weights are asymptotically dispersed (E
[∑

` e
2
`

]
→ 0) and when E

[
w2
` ε

2
` | e

]
is uniformly bounded.

In the second case, either w` or ε` has a shift-share structure like z`: i.e. w` =
∑
n s`nqn for an

observed qn (in line with our Proposition 3) or ε` =
∑
n s`nνn for an unobserved νn (capturing, for

example, a set of unobserved industry-level factors averaged with the employment weights s`n). In

this case convergence of
∑
` e`w`ε` can be shown to follow similarly to the convergence of the sample

analog of the instrument moment condition (3). If, for instance, ε` =
∑
n s`nνn with E [νn | s, w] = 0

and Cov [νn, νm | s, w] = 0 for w = {wn}n, then for each control
∑
` e`w`mε` =

∑
n snνnw̄nm weakly

converges when the sn weights are dispersed (E
[∑

n s
2
n

]
→ 0) and both Var [νn | s, w] and E

[
w̄2
nm | s

]
are uniformly bounded. This argument can be extended to the case where either w` or ε` is formed from

di�erent exposure shares s̃`k, perhaps de�ned over a di�erent range of K observed qk or unobserved

νk, and when the qk or νk are clustered or otherwise weakly mutually correlated.

More generally, the two cases can be combined to settings where w` =
∑
k s̃`kqk + w̌` and ε` =∑

k′ s̃`k′νk′ + ε̌` where (e`, w̌
′
`, ε̌`)

′ is iid or conventionally clustered and where qk and νk′ are many

weakly correlated random shocks or, even more generally, allowing for multiple shift-share terms with

di�erent exposure shares.

A.6 Estimated Shocks

This appendix establishes the formal conditions for the SSIV estimator, with or without a leave-

one-out correction, to be consistent when shocks gn are noisy estimates of some latent g∗n satisfying

Assumptions 1 and 2. We also propose a heuristic measure that indicates whether the leave-one-out

correction is likely to be important and compute it for the Bartik (1991) setting. Straightforward

extensions to other split-sample estimators follow.

Suppose a researcher estimates shocks via a weighted average of variables g`n. That is, given

weights ω`n ≥ 0 such that
∑
` ω`n = 1 for all n, she computes

gn =
∑
`

ω`ng`n. (A18)

A leave-one-out (LOO) version of the shock estimator is instead

gn,−` =

∑
`′ 6=` ω`′ng`′n∑
`′ 6=` ω`′n

. (A19)
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We assume that each g`n is a noisy version of the same latent shock g∗n:

g`n = g∗n + ψ`n, (A20)

where g∗n satis�es Assumptions 1 and 2 and ψ`n is estimation error (in Section 4.1 we considered

the special case of ψ`n ∝ ε`). This implies a feasible shift-share instrument of z` = z∗` + ψ`

and its LOO version zLOO` = z∗` + ψLOO` , where z∗` =
∑
n s`ng

∗
n, ψ` =

∑
n s`n

∑
`′ ω`′nψ`′n, and

ψLOO` =
∑
n s`n

∑
`′ 6=` ω`′nψ`′n∑
`′ 6=` ω`′n

. Consistency with these instruments, given a �rst stage, requires that∑
` e`ε`ψ`

p→ 0 and
∑
` e`ε`ψ

LOO
`

p→ 0 respectively.

We now present three sets of results. First, we establish a simple su�cient condition under which

the LOO instrument satis�es
∑
` e`ε`ψ

LOO
`

p→ 0. We also propose stronger conditions that guarantee

consistency of LOO-SSIV. Second, we explore the conditions under which the covariance between ε`

and ψ`n is ignorable, i.e. asymptotically does not lead to a �mechanical� bias of the conventional

non-leave-one-out estimator. We propose a heuristic measure that is large when the bias is likely to

be small. Lastly, we apply these ideas to the setting of Bartik (1991) using the data from Goldsmith-

Pinkham et al. (2020). In line with previous appendices, we condition on s`n, ω`n, and e` and treat

them as non-stochastic for notational convenience. We also assume the SSIV regressions are estimated

without controls w`.

LOO Identi�cation and Consistency The following proposition establishes three results. The

�rst is the most important one, providing the condition for orthogonality to hold . The second

strengthens this condition so that the estimator converges, which naturally requires that most shocks

are estimated with su�cient amount of data. A tractable case of complete specialization is considered

in last part, where there should be many more observations than shocks.

Proposition A5

1. If E [ε`ψ`′n] = 0 for all ` 6= `′ and n, then E [
∑
` e`ε`ψ`,LOO] = 0.

2. If E
[
(ε`, ψ`n) | {(ε`′ , ψ`′n′)}`′ 6=`,n′

]
= 0 for all ` and n, then the LOO estimator is consistent,

provided it has a �rst stage and two regularity conditions hold: E
[∣∣ε`1ε`2ψ`′1n1

ψ`′2n2

∣∣] ≤ B for

a constant B and all (`1, `2, `
′
1, `
′
2, n1, n2) and

∑
(`1,`2,`′1,`

′
2)∈J ,

n1,n2

e`1e`2s`1n1
s`2n2

ω`′1n1∑
` 6=`1 ω`n1

ω`′2n2∑
` 6=`2 ω`n2

→ 0, (A21)

with J denoting the set of tuples (`1, `2, `
′
1, `
′
2) for which one of the two conditions hold: (i)

`1 = `2 and `′1 = `′2 6= `1, (ii) `1 = `′2 and `2 = `′1 6= `1.

3. Condition (A21) is satis�ed if N
L → 0 in the special case where each region is specialized in
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one industry, i.e. s`n = 1 [n = n(`)] for some n(·), there are no importance weights (e` = 1
L ),

and shocks estimated by simple LOO averaging among observations exposed to a given shock

(ω`n = 1
Ln

for Ln =
∑
` 1 [n(`) = n]), assuming further that Ln ≥ 2 for each n so that the LOO

estimator is well-de�ned.

Proof See Appendix B.7.

The condition in the �rst part of Proposition A5 would be quite innocuous in random samples of ` �

the environment in which leave-one-out adjustments are often considered (e.g. Angrist et al. (1999))

� but is strong without random sampling. It requires ε` and ψ`′n to be uncorrelated for `′ 6= `,

which may easily be violated when both ` and `′ are exposed to the same shocks�a situation in which

excluding own observation is not su�cient. Moreover, since we have conditioned on the exposure shares

throughout, E [ε`ψ`′n] = 0 generally requires either ε` or ψ`′n to have a zero conditional mean�the

share exogeneity assumption applied to either the residuals or the estimation error. At the same time,

this condition does not require E [ε`ψ`′n] = 0 for ` = `′, which re�ects the bene�t of LOO: eliminating

the mechanical bias from the residual directly entering shock estimates.

Heuristic for Importance of LOO Correction We now return to the non-LOO SSIV estimator.

As in Proposition A5, we assume that E [ε`ψ`′n] = 0 for `′ 6= ` and all n, so the LOO estimator is

consistent under the additional regularity conditions. We also assume, without loss of generality, that

z` is mean-zero. Then the �mechanical bias� mentioned in Section 4.1 is the only potential problem:

under appropriate regularity conditions (similar to those in part 2 of Proposition A5),

β̂ − β =
E [
∑
` e`ε`ψ`]

E [
∑
` e`z`x`]

+ op(1)

=

∑
`,n e`s`nω`nE [ε`ψ`n]

E [
∑
` e`z`x`]

+ op(1). (A22)

With |E [ε`ψ`n]| bounded by some B1 > 0 for all ` and n, the numerator of (A22) is bounded by

HNB1, for an observable composite of the relevant shares HN =
∑
`,n e`s`nω`n. The structure of the

shares also in�uences the strength of the �rst stage in the denominator. Imposing our standard model

of the �rst stage from Section 3.1 (but speci�ed based on the latent shock g∗n), i.e. x` =
∑
n s`nx`n

for x`n = π`ng
∗
n + η`n, η`n mean-zero and uncorrelated with g∗n′ for all `, n, n′, Var [g∗n] ≥ σ̄2

g > 0 and

π`n ≥ π̄ > 0, yields:

E

[∑
`

e`z`x`

]
=
∑
`

e`E

[(∑
n

s`n (g∗n + ψ`n)

)(∑
n′

s`n′ (π`ng
∗
n′ + η`n′)

)]

=
∑
`,n

e`s
2
`n · π`nVar [g∗n] +

∑
`

e`
∑
n,n′

s`ns`n′E [ψ`n (π`ng
∗
n′ + η`n′)] . (A23)

10



Excepting knife-edge cases where the two terms in (A23) cancel out, E
[∑

` e`z
⊥
` x`

]
6→ 0 provided

HL =
∑
`,n e`s

2
`n ≥ H̄ for some �xed H̄ > 0.

We thus de�ne the following heuristic:

H =
HL

HN
=

∑
`,n e`s

2
`n∑

`,n e`s`nω`n
. (A24)

When H is large, we expect the non-LOO SSIV estimator to be relatively insensitive to the mechanical

bias generated by the average covariance between ψ`n and ε`, and thus similar to the LOO estimator.

We note an important special case. Suppose all weights are derived from variable E`n (e.g. lagged

employment level in region ` and industry n) as s`n = E`n
E`

, ω`n = E`n
En

, and e` = E`
E , for E` =

∑
nE`n,

En =
∑
`E`n, and E =

∑
`E`. Then

HN =
∑
`,n

E`
E

E`n
E`

E`n
En

=
∑
`,n

En
E

(
E`n
En

)2

=
∑
n

sn
∑
`

ω2
`n, (A25)

where sn = En
E is the weight in our equivalent shock-level regression. Therefore, HN is the weighted

average across n of n-speci�c Her�ndahl concentration indices, while HL is the weighted average

across ` of `-speci�c Her�ndahl indices. With E`n denoting lagged employment, H is high (and thus

we expect the LOO correction to be unnecessary) when employment is much more concentrated across

industries in a typical region than it is concentrated across regions for a typical industry.

The formula simpli�es further with E`n = 1 [n = n(`)] for all `, n, corresponding to the case of

complete specialization of observations in shocks with no regression or shock estimation weights, as

in part 3 of Proposition A5. In that case,

H =
1∑

`
1
L

1
Ln(`)

=
1

1
L

∑
n

∑
` : n(`)=n

1
Ln

=
L

N
. (A26)

Our heuristic is therefore large when there are many observations per estimated shock.4

Application to Bartik (1991) We �nally apply our insights to the Bartik (1991) setting, using the

Goldsmith-Pinkham et al. (2020) replication code and data. Table C6 reports the results. Column

1 shows the estimates of the inverse local labor supply elasticity using SSIV estimators with and

without the LOO correction and using population weights, replicating Table 3, column 2, of Goldsmith-

Pinkham et al. (2020) except with employment on the left-hand side and wages on the right-hand

side.5 Column 2 repeats the analysis without the population weights.6 We �nd all estimates to range

4Here 1/H = N/L is proportional to the �bias� of the non-LOO estimator, which is similar to how the �nite-sample
bias of conventional 2SLS is proportional to the number of instruments over the sample size (Nagar 1959).

5Goldsmith-Pinkham et al. (2020) estimate the inverse labor supply elasticity. By properties of IV estimation, our
coe�cient is the inverse of theirs.

6Industry growth shocks in this column are the same as in Column 1, again estimated with employment weights.
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between 1.2 and 1.3, showing that in practice for Bartik (1991) the LOO correction does not play a

substantial role.

This is however especially true without weights, where the LOO and conventional SSIV estimators

are 1.30 and 1.29, respectively. Our heuristic provides an explanation: H is almost 8 times bigger

when computed without weights. The intuition is that large commuting zones, such as Los Angeles

and New York, may constitute a substantial fraction of employment in industries of their comparative

advantage. This generates a potential for the mechanical bias: labor supply shocks in those regions

a�ect shock estimates; this bias is avoided by LOO estimators. However, the role of the largest

commuting zones is only signi�cant in weighted regressions (by employment or, as in Goldsmith-

Pinkham et al. (2020), population).

A.7 Equilibrium Industry Growth in a Model of Local Labor Markets

This appendix develops a simple model of regional labor supply and demand, similar to the model in

Adão et al. (2020). Our goal is to show how the national growth rate of industry employment can

be viewed as a noisy version of the national industry-speci�c labor demand shocks, and how regional

labor supply shocks (along with some other terms) generate the �estimation error.�

Consider an economy that consists of a set of L regions. In each region ` there is a prevailing wage

W`, and labor supply has constant elasticity φ:

E` = M`W
φ
` , (A27)

where E` is total regional employment and M` is the supply shifter that depends on the working-age

population, the outside option, and other factors. Labor demand in each industry n is given by a

constant-elasticity function

E`n = Anξ`nW
−σ
` , (A28)

where E`n is employment, An is the national industry demand shifter, ξ`n is its idiosyncratic compo-

nent, and σ is the elasticity of labor demand. The equilibrium is given by

∑
n

E`n = E`. (A29)

Now consider small changes in fundamentals An, ξ`n and M`. We use log-linearization around the

observed equilibrium and employ the Jones (1965) hat algebra notation, with v̂ denoting the relative

change in v between the equilibria. We then establish:

Proposition A6 After a set of small changes to fundamentals, the national industry employment

12



growth is characterized by

gn =
∑
`

ω`ng`n, (A30)

for ω`n = E`n/
∑
`′ E`′n denoting the share of region ` in industry employment, and the

change in region-by-industry employment g`n is characterized by

g`n = g∗n +
σ

σ + φ
ε` + ξ̂`n −

σ

σ + φ

∑
n

s`n

(
g∗n + ξ̂`n

)
, (A31)

where g∗n = Ân is the national industry labor demand shock, ε` = M̂` is the regional labor

supply shock, and s`n = E`n/
∑
n′ E`n′ .

Proof See Appendix B.8.

The �rst term in (A31) justi�es our interpretation of the observed industry employment growth as

a noisy estimate of the latent labor demand shock g∗n. The other terms constitute the �estimation

error.� The �rst of them is proportional to the residual of the labor supply equation, ε`; we have

previously established the conditions under which it may or may not confound SSIV estimation. The

other terms, that we abstracted away from in Section 4.1, include the idiosyncratic demand shock ξ̂`n

and shift-share averages of both national and idiosyncratic demand shocks. If the model is correct,

all of these are uncorrelated with ε`, thus not a�ecting Assumption 1.

A.8 SSIV Consistency in Short Panels

This appendix shows how alternative shock exogeneity assumptions imply the consistency of panel

SSIV regressions with many �xed e�ect coe�cients. We consider the incidental parameters problem

in �short� panels, with �xed T and L → ∞ and with unit �xed e�ects, in which case the control

coe�cient γ cannot be consistently estimated with the �xed e�ects included in w`. We show how an

analog of Assumption 3 can be instead applied to a demeaned shock-level unobservable that partials

out the �xed e�ect nuisance coe�cients. A similar argument applies to period �xed e�ects in the �xed

L and T →∞ asymptotic.

Suppose for the linear causal model y`t = βx`t + ε`t and control vector w`t (which includes unit

FEs), we de�ne γ = E
[∑

` e`tw
∆
`tw

∆′
`t

]−1 E
[∑

` e`tw
∆
`tε

∆
`t

]
where v∆

`t is a subvector of the (weighted)

unit-demeaned observation of variable v`t, v`t −
∑
τ e`τv`τ∑
τ e`τ

, that drops any elements that are iden-

tically zero (e.g. those corresponding to the unit FEs in w`t). Note we have assumed no perfect

multicollinearity in the remaining elements such that E
[∑

` e`tw
∆
`tw

∆′
`t

]
is invertible. We can then

write y∆
`t = βx∆

`t + w∆′
`t γ + ε∆

`t. Suppose also that
∑
` e`tz`tx

⊥
`t

p−→ π for some π 6= 0 and the analog

of Assumption B2 for unit-demeaned controls holds. Then, following the proof to Proposition 3, β̂ is
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consistent if and only if

∑
n,t

sntgntε̄
∆
nt

p−→ 0, (A32)

where snt =
∑
` e`ts`nt and ε̄

∆
nt =

∑
` e`ts`ntε

∆
`t∑

` e`ts`nt
. This condition is satis�ed when analogs of Assumptions

1,2, and B1 hold, or under the various extensions discussed in Section 3. In particular when w`t con-

tains t-speci�c FE the key assumption of quasi-experimental shock assignment is E
[
gnt | ε̄∆, s

]
= µt,

for all n and t, allowing endogenous period-speci�c shock means µt via Proposition 4. This assumption

avoids the incidental parameters problem by considering shocks as-good-as-randomly assigned given

the set of unobserved ε̄∆
nt, each of which is a function of the time-varying ε`p across all periods p.

An intuitive special case is when the exposure shares and importance weights are time-invariant:

s`nt = s`n0 and e`t = e`0. Then the weights in (A32) are also time-invariant, snt = sn0, and

ε̄∆
nt =

∑
` e`0s`n0ε

∆
`t∑

` e`s`n0

=

∑
` e`0s`n0

(
ε`t − 1

T

∑
τ ε`τ

)∑
` e`0s`n0

= ε̄nt −
1

T

∑
τ

ε̄nτ , (A33)

where ε̄nt =
∑
` e`0s`n0ε`t∑
` e`0s`n0

is an aggregate of period-speci�c unobservables ε`t. It is then straightfor-

ward to extend Propositions 3 and 4 under a shock-level assumption of strong exogeneity, i.e. that

E [gnt | ε̄, s] = µn + ζt for all n and t. Here endogenous n-speci�c shock means are permitted by the

observation in Section 4.3, that share-weighted n-speci�c FEs at the shock level are subsumed by

`-speci�c FEs in the SSIV regression when shares and weights are time-invariant.

A.9 SSIV Relevance with Panel Data

This appendix shows that holding the exposure shares �xed in a pre-period is likely to weaken the

SSIV �rst-stage in panel regressions. Consider a panel extension of the �rst stage model used in

Section 3.1, where x`t =
∑
n s`ntx`nt with x`nt = π`ntgnt+η`nt, π`n ≥ π̄ for some �xed π̄ > 0, and the

gnt are mutually independent and mean-zero with variance σ2
nt ≥ σ̄2

g for �xed σ2
g > 0, independently

of {η`nt}`,n,t. As in other appendices, we here treat s`nt, e`t, and π`nt as non-stochastic. Then an

SSIV regression with z`t =
∑
n s
∗
`ntgnt as an instrument, where s∗`nt is either s`nt (updated shares) or

s`n0 (�xed shares), yields a �rst-stage of

E

[∑
`

∑
t

e`tz`tx`t

]
≥ σ̄2

g π̄
∑
`

∑
t

e`t
∑
n

s∗`nts`tn. (A34)
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For panel SSIV relevance we require the e`t-weighted average of
∑
n s
∗
`nts`nt to not vanish asymptoti-

cally. With updated shares this is satis�ed when the Her�ndahl index of an average observation-period

(across shocks) is non-vanishing, while in the �xed shares case the overlap of shares in periods 0 and

t,
∑
n s`n0s`nt, may become weak or even vanish as T →∞, on average across observations.

A.10 SSIV with Multiple Endogenous Variables or Instruments

This appendix �rst generalizes our equivalence result to SSIV regressions with multiple endogenous

variables and instruments, and discusses corresponding extensions of our quasi-experimental frame-

work via the setting of Jaeger et al. (2018). We also describe how to construct the e�ective �rst-stage

F -statistic of Montiel Olea and P�ueger (2013) for SSIV with one endogenous variable but multiple

instruments. We then consider new shock-level IV procedures in this framework, which can be used

for e�cient estimation and speci�cation testing. Finally, we illustrate these new procedures in the

Autor et al. (2013) setting.

Generalized Equivalence and SSIV Consistency We consider a class of SSIV estimators of an

outcome model with multiple treatment channels,

y` = β′x` + γ′w` + ε`, (A35)

where x` = (x1`, . . . , xK`)
′ is instrumented by z` = (z1`, . . . , zJ`)

′, for zj` =
∑
n s`ngjn and J ≥ K, and

observations are weighted by e`. Members of this class are parameterized by a (possibly stochastic)

full-rank K×J matrix c, which is used to combine the instruments into a vector of length J , cz`. For

example the two-stage least squares (2SLS) estimator sets c = x⊥′ez(z⊥′ez⊥)−1, where z⊥ stacks

observations of the residualized z⊥′` . IV estimates using a given combination are written as

β̂ = (cz′ex⊥)−1cz′ey⊥, (A36)

where y⊥ and x⊥ stack observations of the residualized y⊥` and x⊥′` , z stacks observations of z′`, and e

is an L×L diagonal matrix of e` weights. In just-identi�ed IV models (i.e. J = K) the two c's cancel

in this expression and all IV estimators are equivalent. Note that while the shocks gjn are di�erent

across the multiple instruments, we assume here that the exposure shares s`n are all the same.

As in Proposition 1, β̂ can be equivalently obtained by a particular shock-level IV regression.

Intuitively, when the shares are the same, cz` also has a shift-share structure based on a linear

combination of shocks cgn, and thus Proposition 1 extends. Formally, write z = sg where s is an
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L×N matrix of exposure shares and g stacks observations of the shock vector g′n; then,

β̂ = (cg′s′ex⊥)−1cg′s′ey⊥

= (cg′Sx̄⊥)−1(cg′Sȳ⊥), (A37)

where S is an N ×N diagonal matrix with elements sn, x̄
⊥ is an N ×K matrix with elements x̄⊥kn,

and ȳ⊥ is an N × 1 vector of ȳ⊥n . This is the formula for an sn-weighted IV regression of ȳ⊥n on

x̄⊥1n, . . . , x̄
⊥
Kn with shocks as instruments, no constant, and the same c matrix. Furthermore, as in

Proposition 1,

ι′Sȳ⊥ =
∑
n

snȳ
⊥
n =

∑
`

e`

(∑
n

s`n

)
y⊥` =

∑
`

e`y
⊥
` = 0, (A38)

and similarly for ι′Sx̄′, where ι is a N ×1 vector of ones. Therefore, the same estimate is obtained by

including a constant in this IV procedure (and the same result holds including a shock-level control

vector qn provided
∑
n s`n has been included in w`, as in Proposition 5). The c matrix is again

redundant in the just-identi�ed case.

A natural generalization of the quasi-experimental framework of Section 3 follows. Rather than

rederiving all of these results, we discuss them intuitively in the setting of Jaeger et al. (2018). Here

y` denotes the growth rate of wages in region ` in a given period (residualized on Mincerian con-

trols), x1` is the immigrant in�ow rate in that period, and x2` is the previous period's immigration

rate. The residual ε` captures changes to local productivity and other regional unobservables. Jaeger

et al. (2018, Table 5) estimate this model with two �past settlement� instruments z1` =
∑
n s`ng1n

and z2` =
∑
n s`ng2n, where s`n is the share of immigrants from country of origin n in location `

at a previous reference date and gn = (g1n, g2n)′ gives the current and previous period's national

immigration rate from n. When this path of immigration shocks is as-good-as-randomly assigned

with respect to the aggregated productivity shocks ε̄n (satisfying a generalized Assumption 1), the

gn are uncorrelated across countries and E
[∑

n s
2
n

]
→ 0 (satisfying a generalized Assumption 2), and

appropriately generalized regularity conditions hold, the multiple-treatment shock orthogonality con-

dition is satis�ed:
∑
n sngknε̄n

p−→ 0 for each k. Then under the relevance condition from Proposition

2, again appropriately generalized, the SSIV estimates are consistent: β̂
p−→ β.

E�ective First-Stage F -statistics With one endogenous variable and multiple instruments, the

Montiel Olea and P�ueger (2013) e�ective �rst-stage F -statistic provides a state-of-art heuristic for

detecting a weak �rst-stage. Here we describe a correction to it for SSIV that generalizes the F -

statistic in the single instrument case discussed in Section 5.2. The Stata command weakssivtest,

provided with our replication archive, implements this correction.7

7Our package extends the weakivtest command developed by P�ueger and Wang (2015).
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Consider a structural �rst stage with multiple instruments and one endogenous variable:

x` = π′z` + ρw` + η`. (A39)

Suppose each of the shocks satis�es Assumption 3, i.e. E [gjn | ε̄, q, s] = µ′jqn, where
∑
n s`nqn is

included in w`, and the residual shocks g∗jn = gjn − µ′jqn are independent from {η`}`. The Montiel

Olea and P�ueger (2013) e�ective F -statistic for the 2SLS regression of y` on x`, instrumenting with

z1`, . . . , zJ`, controlling for w`, and weighting by e`, is given by

Fe� =

(∑
` e`x

⊥
` z
⊥
`

)′ (∑
` e`x

⊥
` z
⊥
`

)
tr
(
V̂
) , (A40)

where V̂ estimates V = Var
[∑

` e`z
⊥
` η`

]
. Note that, as before, the �rst-stage covariance of the original

SSIV regression equals that of the equivalent shock-level one from Proposition 5:

∑
`

e`x
⊥
` z
⊥
` =

∑
`

e`x
⊥
` z` =

∑
n

sngnx̄
⊥
n =

∑
n

sngn⊥x̄
⊥
n , (A41)

where gn⊥ is the residuals from an sn-weighted projection of gn on qn, which consistently estimates

g∗n. A natural extension of Proposition 5 to many mutually-uncorrelated shocks further implies that

V is well-approximated by

V̂ =
∑
n

s2
ngn⊥g

′
n⊥

¯̂η2
n, (A42)

where, per the discussion in Section 5.2, ¯̂ηn denotes the residuals from an IV regression of x̄⊥n on

z̄⊥1n, . . . , z̄
⊥
Jn, instrumented with g1n, . . . , gJn, weighted by sn and controlling for qn. Plugging this V̂

into (A40) yields the corrected e�ective �rst-stage F -statistic.

E�cient Shift-Share GMM In overidenti�ed settings (J > K), it is natural to consider which

estimators are most e�cient; for quasi-experimental SSIV, this can be answered by combining the

asymptotic results of Adão et al. (2019) with the classic generalized methods of moments (GMM)

theory of Hansen (1982). Here we show how standard shock-level IV procedures (such as 2SLS) may

yield e�cient coe�cient estimates β̂∗, depending on the variance structure of multiple quasi-randomly

assigned shocks.

We �rst note that the equivalence result (A37) applies to SSIV-GMM estimators as well:

β̂ = arg min
b

(
y⊥ − x⊥b

)′
ezWz′e

(
y⊥ − x⊥b

)
= arg min

b

(
ȳ⊥ − x̄⊥b

)′
SgWg′S

(
ȳ⊥ − x̄⊥b

)
, (A43)

where W is an J × J moment-weighting matrix. This leads to an IV estimator with c = x̄⊥′SgW .
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For 2SLS estimation, for example, W = (z⊥′ez⊥)−1. Under appropriate regularity conditions, the

e�cient choice of W ∗ consistently estimates the inverse asymptotic variance of z′e
(
y⊥ − x⊥β

)
=

g′Sε̄ + op(1). Generalizations of results in Adão et al. (2019) can then be used to characterize this

W ∗ when shocks are as-good-as-randomly assigned with respect to ε̄. Given an estimate Ŵ ∗, an

e�cient coe�cient estimate β̂∗ is given by shock-level IV regressions (A37) that set c∗ = x̄⊥′SgŴ
∗
.

A χ2
J−K test statistic based on the minimized objective in (A43) can be used for speci�cation testing.

As an example, suppose shocks are conditionally homoskedastic with the same variance-covariance

matrix across n, Var [gn | ε̄, s] = G for a constant J × J matrix G. Then the optimal β̂∗ is obtained

by a shock-level 2SLS regression of ȳ⊥n on all x̄⊥kn (instrumented by gjn and weighted by sn). We show

this in the case of no controls (and mean-zero shocks) for notational simplicity. Then,

Var
[
g′S

(
ȳ⊥ − x̄⊥β

)]
= E [ε̄′Sgg′Sε̄]

= tr (E [ε̄′SGSε̄])

= kG (A44)

for k = tr (E [Sε̄ε̄′S]). The optimal weighting matrix thus should consistently estimate G, which is

satis�ed by Ĝ = g′Sg. Under appropriate regularity conditions, a feasible optimal GMM estimate is

thus given by

β̂∗ = (x̄⊥′SgĜ
−1

g′Sx̄⊥)−1(x̄⊥′SgĜ
−1

g′Sȳ⊥)

=
((
Pgx̄

⊥)′ Sx̄⊥)−1 (
Pgx̄

⊥)′ Sȳ⊥, (A45)

where Pg = g(g′Sg)−1g′S is an sn-weighted shock projection matrix. This is the formula for an

sn-weighted IV regression of ȳ⊥n on the �tted values from projecting the x̄⊥kn on the shocks, cor-

responding to the 2SLS regression above. Straightforward extensions of this equivalence between

optimally-weighted estimates of β and shock-level overidenti�ed IV procedures follow in the case of

heteroskedastic or clustered shocks, in which case the 2SLS estimator (A45) is replaced by the estima-

tor of White (1982). We emphasize that these shock-level estimators are generally di�erent than 2SLS

or White (1982) estimators at the level of original observations, which are optimal under conditional

homoskedasticity and independence assumptions placed on the residual ε` (assumptions which are

generally violated in our quasi-experimental framework).

Many Shocks in Autor et al. (2013) Appendix Table C5 illustrates di�erent shock-level overiden-

ti�ed IV estimators in the setting of Autor et al. (2013), introduced in Section 6.2.1. ADH construct

their shift-share instrument based on the growth of Chinese imports in eight economies comparable to

the U.S., together. We separate them to produce eight sets of industry shocks gjn, j = 1, . . . , 8, each
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re�ecting the growth of Chinese imports in one of those countries. As in Section 6.2, the outcome of

interest is a commuting zone's growth in total manufacturing employment with the single treatment

variable measuring a commuting zone's local exposure to the growth of imports from China (see foot-

note 39 in the main text for precise variable de�nitions). The vector of controls coincides with that

of column 3 of Table 4, isolating within-period variation in manufacturing shocks. Per Section 5.1,

exposure-robust standard errors are obtained by controlling for period main e�ects in the shock-level

IV procedures, and we report corrected �rst stage F -statistics constructed as detailed above.

Column 1 reports estimates of the ADH coe�cient β using the industry-level two-stage least

squares procedure (A45). At -0.238, this estimate it is very similar to the just-identi�ed estimate in

column 3 of Table 4. Column 2 shows that we also obtain a very similar coe�cient of -0.247 with

an industry-level limited information maximum likelihood (LIML) estimator. Finally, in column 3

we report a two-step optimal IV estimate of β using an industry-level implementation of the White

(1982) estimator. Both the coe�cient and standard error fall somewhat, with the latter consistent

with the theoretical improvement in e�ciency relative to columns 1 and 2. From this e�cient estimate

we obtain an omnibus overidenti�cation test statistic of 10.92, distributed as chi-squared with seven

degrees of freedom under the null of correct speci�cation. This yields a p-value for the test of joint

orthogonality of all eight ADH shocks of 0.142. Table C5 also reports the corrected e�ective �rst-

stage F -statistic which measures the strength of the relationship between the endogenous variable

and the eight shift-share instruments across regions. At 15.10 it is substantially lower than with one

instrument in column 3 of Table 4 but still above the conventional heuristic threshold of 10.

A.11 Finite-Sample Performance of SSIV: Monte-Carlo Evidence

In this appendix we study the �nite-sample performance of the SSIV estimator via Monte-Carlo

simulation. We base this simulation on the data of Autor et al. (2013), as described in Section 6.2.

For comparison, we also simulate more conventional shock-level IV estimators, similar to those used

in Acemoglu et al. (2016), which also estimate the e�ects of import competition with China on U.S.

employment. We begin by describing the design of these simulations and the benchmark Monte-

Carlo results. We then explore how the simulation results change with various deviations from the

benchmark: with di�erent levels of industry concentration, di�erent numbers of industries and regions,

and with many shock instruments. Besides showing the general robustness of our framework, these

extensions allow us to see how informative some conventional rules of thumb are on the �nite-sample

performance of shift-share estimators.8

8Naturally, these simulation results may be speci�c to the data-generating process we consider here, modeled after
the �China shock� setting of Autor et al. (2013). In practice, we recommend that researchers perform similar simulations
based on their data if they are concerned with the quality of asymptotic approximation�a suggestion that of course
applies to conventional shock-level IV analyses as well.
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Simulation design We base our benchmark data-generating process for SSIV on the speci�cation

in column 3 of Table 4. The outcome variable y`t corresponds to the change in manufacturing em-

ployment as a fraction of working-age population of region ` in period t, treatment x`t is a measure of

regional import competition with China, and the shift-share instrument is constructed by combining

the industry-level growth of China imports in eight developed economies, gnt, with lagged regional

employment weights of di�erent industries s`nt. We also include pre-treatment controls w`t as in

column 3 of Table 4 and and estimate regressions with regional employment weights e`t; see Section

6.2.1 for more detail on the Autor et al. (2013) setting.

In a �rst step we obtain an estimated SSIV second and �rst stage of

y`t = β̂x`t + γ̂′w`t + ε̂`t, (A46)

x`t = π̂z`t + ρ̂′w`t + û`t. (A47)

We then generate 10,000 simulated samples by drawing shocks g∗nt, as detailed below, and constructing

the simulated shift-share instrument z∗`t =
∑
n s`ntg

∗
nt and treatment x∗`t = π̂z∗`t + û`t. Imposing a

true causal e�ect of β∗ = 0, we use the same y∗`t ≡ ε̂`t as the outcome in each simulation (note that

it is immaterial whether we include π̂′w`t and ρ̂
′w`t, since all our speci�cations control for w`t). By

keeping ε̂`t and û`t �xed, we study the �nite sample properties of the estimator that arises from the

randomness of shocks, which is the basis of the inferential framework of Adão et al. (2019); we also

avoid having to take a stand on the joint data generating process of (ε`t, u`t), which this inference

framework does not restrict.

We estimate SSIV speci�cations that parallel (A46)-(A47) from the simulated data

y∗`t = β∗x∗`t + γ∗′w`t + ε∗`t, (A48)

x∗`t = π∗z∗`t + ρ∗′w`t + u∗`t. (A49)

using the original weights e`t and controls w`t. We then test the (true) hypothesis β∗ = 0 using either

the heteroskedasticity-robust standard errors from the equivalent industry-level regression or their

version with the null imposed, as in Section 5.1.9 As in column 3 of Table 4, we control for period

indicators as qnt in the industry-level regression.

Our comparison estimator is a conventional industry-level IV inspired by Acemoglu et al. (2016).

However, we try to keep the IV regression as similar to the SSIV as possible, thus diverging from

Acemoglu et al. (2016) in some details. Speci�cally, the outcome ynt is the industry employment

growth as measured by these authors. It is de�ned for 392 out of the 397 industries in Autor et

9Note that there is no need for clustering since we generate the shocks independently across industries in all simu-
lations. We have veri�ed, however, that allowing for correlation in shocks within industry groups and using clustered
standard errors yields similar results.
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al. (2013), so we drop the remaining �ve industries in each period. The endogenous regressor xnt ≡ gUSnt
(growth of U.S. imports from China per worker) and the instrument gnt (growth of China imports

into eight developed economies) are those from which we built the shift-share endogenous regressor

and treatment, respectively (see main text footnote 39). Construction of those variables di�er from

Acemoglu et al. (2016) who measure imports relative to domestic absorption rather than employment.

We also follow our SSIV analysis in using period indicators as the only industry-level control variables

qnt and taking identical regression importance weights snt.

The Monte-Carlo strategy for the conventional shock-level IV parallels the one for SSIV; we obtain

an estimated industry-level second and �rst stage of

ynt = β̂indxnt + γ̂′qnt + ε̂nt, (A50)

xnt = π̂indgnt + ρ̂′qnt + ûnt. (A51)

using the snt importance weights. We then perform 10,000 simulations where we regenerate shocks

g∗nt and regress y∗nt = ε̂nt (consistent with a true causal e�ect of βind = 0, given that we control for

qnt) on x
∗
nt = π̂indg

∗
nt + ûnt, instrumenting by g∗nt, controlling for qnt, and weighting by snt. We test

βind = 0 by using robust standard errors in this IV regression or the version with the null imposed,

which corresponds to a standard Lagrange Multiplier test for this true null hypothesis.

In both simulations we report the rejection rate of nominal 5% level tests for β = 0 and βind = 0

to gauge the quality of each asymptotic approximation. We do not report the bias of the estimators

because they are all approximately unbiased (more precisely, the simulated median bias is at most 1%

of the estimator's standard deviation). However we return to the question of bias at the end of the

section, where we extend the analysis to having many instruments with a weak �rst stage.

Main results Table C7 reports the rejection rates for shift-share IV (columns 1 and 2) and conven-

tional industry-level IV (columns 3 and 4) in various simulations. Speci�cally, column 1 corresponds

to using exposure-robust standard errors from the equivalent industry-level IV, and column 2 imple-

ments the version with the null hypothesis imposed. Columns 3 and 4 parallel columns 1 and 2 when

applied to conventional IV: the former uses heteroskedasticity-robust standard errors and the latter

tests βind = 0 with the null imposed, which amounts to using the Lagrange multiplier test.

The simulations in Panel A vary the data-generating process of the shocks. Following Adão et

al. (2019) in row (a) we draw the shocks iid from a normal distribution with the variance matched

to the sample variance of the shocks in the data after de-meaning by year. The rejection rate is close

to the nominal rate of 5% for both SSIV and conventional IV (7.6% and 6.8%, respectively), and in

both cases it becomes even closer when the null is imposed (5.2% and 5.0%).

This simulation may not approximate the data-generating process well because of heteroskedastic-
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ity: smaller industries have more volatile shocks.10 To match unrestricted heteroskedasticity, in row

(b) we use wild bootstrap, generating g∗nt = gntν
∗
nt by multiplying the year-demeaned observed shocks

gnt by ν
∗
nt

iid∼ N (0, 1) (Liu 1988). This approach also provides a better approximation for the marginal

distribution of shocks than the normality assumption. Here the relative performance of SSIV is even

better: the rejection rate is 8.0% vs. 14.2% for conventional IV.

We now depart from the row (b) simulation in several directions, as a case study for the sensitivity

of the asymptotic approximation to di�erent features of the SSIV setup. Speci�cally, we study the

role of the Her�ndahl concentration index across industries, the number of regions and industries,

and the many weak instrument bias. We uniformly �nd that the performance of the SSIV estimator

is similar to that of industry-level IV. Our results also suggest that the Her�ndahl index is a useful

statistic for measuring the e�ective number of industries in SSIV, and the �rst-stage F -statistic is

informative about the weak instrument bias, as usual.

The Role of Industry Concentration Since Assumption 2 requires small concentration of in-

dustry importance weights, measured using the Her�ndahl index
∑
n,t s

2
nt/
(∑

n,t snt

)2

, Panel B of

Table C7 studies how increasing the skewness of snt towards the bigger industries a�ects coverage of

the tests.11 For conventional IV this simply amounts to reweighting the regression. Speci�cally, for a

parameter α > 1, we use weights

s̃nt = sαnt ·
∑
n′,t′ sn′t′∑
n′,t′ s

α
n′t′

.

We choose the unique α to match the target level of H̃HI by solving, numerically,

∑
n,t (s̃nt)

2(∑
n,t s̃nt

)2 = H̃HI. (A52)

Matching the Her�ndahl index in SSIV is more complicated since we need to choose how exactly

to amend shares s̃`nt and regional weights ẽ`t that would yield s̃nt from (A52). We proceed as follows:

we consider the lagged level of manufacturing employment by industry E`nt = e`ts`nt and the total

regional non-manufacturing employment E`0t = e`t (1−
∑
n s`nt).

12 We then de�ne Ẽ`nt = E`nt · s̃ntsnt

for manufacturing industries (and leave non-manufacturing employment unchanged, Ẽ`0t = E`0t).

This increases employment in large manufacturing industries proportionately in all regions, while

10This is established by unreported regressions of |gnt| on snt, for year-demeaned gnt from ADH, with or without
weights. The negative relationship is signi�cant at conventional levels.

11Note that in ADH
∑

n s`nt equals the lagged share of regional manufacturing employment, which is below one. We
thus renormalize the shares when computing the Her�ndahl.

12The interpretation of E`nt as the lagged level is approximate since e`t is measured at the beginning of period in
ADH, while s`nt is lagged.
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reducing it in smaller ones. We then recompute shares s̃`nt and weights ẽ`t accordingly:

ẽ`t =

N∑
n=0

∑
t

Ẽ`nt,

s̃`nt =
Ẽ`nt
ẽ`t

.

Rows (c)�(e) of Table C7 Panel B implement this procedure for target Her�ndahl levels of 1/50,

1/20, and 1/10, respectively. For comparison, the Her�ndahl in the actual ADH data is 1/191.6

(Table 1, column 2). The table �nds that even with the Her�ndahl index of 1/20 (corresponding to

the �e�ective� number of shocks of 20 in both periods total) the rejection rate is still around 7%, a level

that may be considered satisfactory. It also shows that the rejection rate grows when the Her�ndahl is

even higher, at 1/10, suggesting that the Her�ndahl can be used as an indicative rule of thumb. More

importantly, the rejection rates are similar for SSIV and conventional industry-level IV, as before.

Varying the Number of Industries and Regions The asymptotic sequence we consider in

Section 3.1 relies on both N and L growing. Here we study how the quality of the asymptotic

approximation depends on these parameters.

First, to consider the case of small N , we aggregate industries in a natural way: from 397 four-

digit manufacturing SIC industries into 136 three-digit ones and further into 20 two-digit ones and

reconstruct the endogenous right-hand side variable and the instrument using aggregated data.13 Rows

(f) and (g) of Table C7 Panel C report simulation results based on the aggregated data. They show that

rejection rates are similar to the case of detailed industries, and between SSIV and conventional IV.

This does not mean that disaggregated data are not useful: the dispersion of the simulated distribution

(not reported) increases with industry aggregation, reducing test power. However, standard errors

correctly re�ect this variability, resulting in largely unchanged test coverage rates.

Second, to study the implications of having fewer regions L, we select a random subset of them

in each simulation. The results are presented in Rows (h) and (i) of Panel C for L = 100 and 25,

compared to the original L = 722, respectively.14 They show once again that rejection rates are not

signi�cantly a�ected (even though unreported standard errors expectedly increase).

Many Weak Instruments In this �nal simulation we return to the question of SSIV bias. Since

our previous simulations con�rm that just-identi�ed SSIV is median-unbiased, we turn to the case of

13Speci�cally, we aggregate imports from China to the U.S. and either developed economies as well as the number
of U.S. workers by manufacturing industry to construct the new gnt and gUSnt . We then aggregate the shares s`nt and
scurrent`nt to construct x`t and z`t (see main text footnote 39 for formulas). We do not change the regional outcome,
controls, or importance weights. For conventional IV, we additionally reconstruct the outcome (industry employment
growth) by aggregating employment levels by year in the Acemoglu et al. (2016) data and measuring growth according
to their formulas.

14When we select regions, we always keep observations from both periods for each selected region. We keep the
second- and �rst-stage coe�cients from the full sample to focus on the noise that arises from shock randomness.
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multiple instruments. We show that the problem of many weak instruments is similar between SSIV

and conventional IV, and that �rst-stage F -statistics, when properly constructed, can serve as useful

heuristics.

For clarity, we begin by describing the procedure for the conventional shock-level IV that is a small

departure from Column 3 of Table C7. For a given number of instruments J ≥ 1, in each simulation

we generate g∗jnt, j = 1, . . . , J , independently across j using wild bootstrap (as in Table C7 Row

(b)).15 We make only the �rst instrument relevant by setting x∗nt = π̂indg
∗
1nt +

∑J
j=2 0 · g∗jnt + ûnt.

We then estimate the IV regression of y∗nt ≡ ε̂nt on x∗nt, instrumenting with g∗1nt, . . . , g
∗
Jnt, controlling

for qnt, and weighting by snt. We use robust standard errors and compute the e�ective �rst-stage

F -statistic using the Montiel Olea and P�ueger (2013) method.

The procedure for SSIV is more complex but as usual parallels the one for the conventional shock-

level IV as much as possible. Given simulated shocks g∗jnt, we construct shift-share instruments

z∗j`t =
∑
` s`ntg

∗
jnt and make only the �rst of them relevant, x∗`t = π̂z∗1`t +

∑J
j=2 0 · z∗jnt + û`t. Since

the equivalence result from Section 2.3 need not hold for overidenti�ed SSIV, we rely on the results

in Appendix A.10: we estimate β∗ from the industry-level regression of ȳ∗⊥nt (based on y∗`t = ε̂`t as

before) on x̄∗⊥nt by 2SLS, instrumenting by g∗1nt, . . . , g
∗
Jnt, controlling for qnt and weighting by snt.

We compute robust standard errors from this regression to test β∗ = 0. For e�ective �rst-stage F -

statistics, we follow the procedure described in Appendix A.10 and implemented via our weakssivtest

command in Stata.

Table C8 reports the result for J = 1, 5, 10, 25, and 50, presenting the rejection rate corresponding

to the 5% nominal, the median bias as a percentage of the simulated standard deviation, and the

median �rst-stage F -statistic. Panel A corresponds to SSIV and Panel B to the conventional shock-

level IV. For higher comparability, we adjust the �rst-stage coe�cient π̂ind in the latter in order to

make the F -statistics approximately match between the two panels. We �nd that the median bias is

now non-trivial and grows with J , at the same time as the F -statistic declines. However, the level of

bias is similar for the two estimators. The rejection rates tend to be higher for conventional IV than

SSIV, although they converge as J grows.

15For computational reasons we perform only 15, 000/J simulations when J > 1 (but 10,000 for J = 1 as before).
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B Appendix Proofs

B.1 Proposition 4 and Extensions

This section proves Proposition 4 and extensions that allow for certain forms of mutual shock depen-

dence (Assumptions 5 and 6). Proposition 3 is obtained as a special case, where qn = 1. In addition

to Assumptions 3 and 4 and the relevance condition of
∑
` e`z`x

⊥
`

p−→ π with π 6= 0, the proof of

Proposition 4 uses two regularity conditions:

Assumption B1: E
[
g̃2
n | ε̄, q, s

]
and E

[
ε̄2
n | s

]
are uniformly bounded by some �xed Bg and Bε.

Assumption B2: ‖
∑
` e`w`ε`‖1 = op(1), max

∣∣(∑` e`w`w
′
`)
−1
∣∣ = Op(1), and max |

∑
` e`w`z`| =

Op(1).

The �rst of these is a weak condition on the second moments of shocks and shock-level unobserv-

ables which we show below permits a shock-level law of large numbers. The second condition en-

sures the consistency of the IV estimate of the control coe�cient, γ̂ = (
∑
` e`w`w

′
`)
−1
∑
` e`w`ε` =

γ + (
∑
` e`w`w

′
`)
−1
∑
` e`w`ε` (see footnote 5 in the main text), and stochastic boundedness of the

weighted average
∑
` e`w`mz`, while generally allowing the length of the control vector to increase

with L. We discuss low-level conditions for the consistency of γ̂ in Appendix A.5.

To prove Proposition 4, we �rst note that under Assumption B2,

∑
n

sngnε̄n −
∑
n

sngnε̄
⊥
n =

∑
`

e`z`
(
ε` − ε⊥`

)
=

(∑
`

e`z`w
′
`

)
(γ̂ − γ)

=

(∑
`

e`z`w
′
`

)(∑
`

e`w`w
′
`

)
−1
∑
`

e`w`ε`
p−→ 0, (B1)

so that, when the relevance condition holds,

β̂ − β =

∑
n sngnε̄

⊥
n∑

n sngnx̄
⊥
n

= π−1
∑
n

sngnε̄n (1 + op(1)) . (B2)

Furthermore, since
∑
n s`n = 1, we also have under Assumption B2 that

∑
n

snq
′
nµε̄n =

(∑
`

e`w̃`ε`

)′
µ

p−→ 0. (B3)
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Thus

∑
n

sngnε̄n =
∑
n

sng̃nε̄n + op(1), (B4)

with

E

[∑
n

sng̃nε̄n

]
= 0 (B5)

under Assumption 3.

To prove consistency of β̂, it remains to show that Var [
∑
n sng̃nε̄n]→ 0. Since

E [g̃ng̃n′ | ε̄, q, s] = Cov [g̃n, g̃n′ | ε̄, q, s] = 0 (B6)

under Assumptions 3 and 4,

Var

[∑
n

sng̃nε̄n

]
= E

(∑
n

sng̃nε̄n

)2


=
∑
n

∑
n′

E [snsn′ g̃ng̃n′ ε̄nε̄n′ ]

=
∑
n

E
[
s2
nE
[
E
[
g̃2
n | ε̄, q, s

]
ε̄2
n | s

]]
. (B7)

Then, by Assumption B1 and the Cauchy-Schwartz inequality:

Var

[∑
n

sng̃nε̄n

]
≤ BgBεE

[∑
n

s2
n

]
→ 0. (B8)

Extensions Similar steps establish equation (B8) when Assumption 4 is replaced by either Assump-

tion 5 or 6. Under Assumption 5 we have, for N (c) = {n : c(n) = c},

Var

[∑
n

sng̃nε̄n

]
= E


∑

c

∑
n∈N(c)

sng̃nε̄n

2


= E

∑
c

s2
cE


 ∑
n∈N(c)

sn
sc
g̃nε̄n

2

| s




= E

∑
c

s2
c

∑
n,n′∈N(c)

sn
sc

sn′

sc
E [g̃ng̃n′ ε̄nε̄n′ | s]


≤ BgBεE

[∑
c

s2
c

]
→ 0. (B9)
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Here the last line used Assumption B1 and the Cauchy-Schwartz inequality twice: to establish, for

n, n′ ∈ N(c),

E [g̃ng̃n′ | ε̄, q, s] ≤
√
E [g̃n | ε̄, q, s]E [g̃n′ | ε̄, q, s]

≤ Bg (B10)

and

E [|ε̄n| |ε̄n′ | | sc] ≤
√
E [ε̄2

n | s]E [ε̄2
n′ | s]

≤ Bε. (B11)

If we instead replace Assumption 4 with Assumption 6, we have

Var

[∑
n

sng̃nε̄n

]
= E

(∑
n

sng̃nε̄n

)2


=
∑
n

∑
n′

E [snsn′E [g̃ng̃n′ | ε̄, q, s] ε̄nε̄n′ ]

≤ BL
∑
n

∑
n′

f (|n′ − n|)E [|snε̄nsn′ ε̄n′ |]

= BL

(∑
n

E
[
(snε̄n)2

]
f(0) + 2

N−1∑
r=1

N−r∑
n=1

E [|sn+r ε̄n+r| · |snε̄n|] f(r)

)

≤

(
BL
∑
n

E
[
s2
nE
[
ε̄2
n | s

]])(
f(0) + 2

N−1∑
r=1

f(r)

)

≤ Bε

(
f(0) + 2

N−1∑
r=1

f(r)

)(
BLE

[∑
n

s2
n

])
→ 0, (B12)

using E
[
ε̄2
n | sn

]
< Bε in the last line. Here the second-to-last line follows because for any sequence

of numbers a1, . . . , aN and any r > 0,

∑
n

a2
n ≥

1

2

(
N−r∑
n=1

a2
n +

N−r∑
n=1

a2
n+r

)

=
1

2

N−r∑
n=1

(an − an+r)
2

+

N−r∑
n=1

anan+r

≥
N−r∑
n=1

anan+r, (B13)

and the same is true in expectation if an = |snε̄n| are random variables. We note that allowing BL

to grow in the asymptotic sequence imposes much weaker conditions on the correlation structure of

shocks. For example, with shock importance weights sn approximately equal, i.e.
∑
n s

2
n = Op (1/N),
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it is enough to have |Cov [g̃n, g̃n′ | ε̄, q, s]| ≤ B1/N
α for any α > 0: in this case one can satisfy

Assumption 6 by setting BL = B1N
1−α/2 and f(r) = r−1−α/2.

B.2 Proposition 5 and Related Results

This section proves Proposition 5 and then establishes several additional results mentioned in Section

5.1. First, we show the heteroskedasticity-robust standard error from estimating equation (10) is

numerically equivalent to the baseline IV standard error of Adão et al. (2019) when w` contains only

a constant. Second, we show that when Assumption B4 on the structure of controls is relaxed, the

standard errors from Proposition 5 are conservative. We also discuss the likely di�erence between

our standard error estimates and those of Adão et al. (2019) when Assumption B4 holds. Finally, we

show how the alternative null-imposed inference procedure of Adão et al. (2019) is also conveniently

obtained from our equivalent shock-level regression.

We prove Proposition 5 under additional assumptions that largely follow Adão et al. (2019):

Assumption B3: The �rst stage satis�es x` =
∑
n s`nπ`ngn + η`, for all `.

Assumption B4: The control vector can be partitioned as w` = [w̃′`, u
′
`]
′, for w̃` =

∑
n s`nqn.

The vector qn captures all sources of shock confounding: E [gn | IL] = q′nµ, for all n and

IL =
{
{qn}n , {u`, ε`, η`, {s`n, π`n}n , e`}`

}
.

Assumption B5: The gn are mutually independent given IL, maxn sn → 0, and maxn
s2n∑
n′ s2n′

→ 0.

Assumption B6: E
[
|gn|4+v | IL

]
is uniformly bounded for some v > 0 and

∑
` e`
∑
n s

2
`nVar [gn | IL]π`n 6=

0 almost surely. The support of π`n is bounded, the fourth moments of ε`, η`, u`, qn, and g̃n exist

and are uniformly bounded,
∑
` e`w`w

′
`

p−→ Ωww for positive de�nite Ωww, and
∑
snqnq

′
n

p−→ Ωqq for

positive de�nite Ωqq. The control vector γ is consistently estimated by γ̂ = (
∑
` e`w`w

′
`)
−1∑

` e`w`ε`.

We note that Assumption B5 both strengthens our baseline Her�ndahl index condition in As-

sumption 4 and implicitly treats the set of sn as non-stochastic, following Assumption 2 of Adão

et al. (2019). The regularity condition B6 includes the relevant conditions from Assumptions 4 and

A.3 of Adão et al. (2019). These assumptions strengthen those of Proposition 4: Assumptions B3�B6

imply our Assumptions 3, 4, B1, and B2. Relative to Adão et al. (2019), we do not impose that L > N

or that the shares are non-collinear.

To establish the equivalence of IV coe�cients in Proposition 5, note that when
∑
n s`nqn is included

in w`

∑
n

snqnȳ
⊥
n =

∑
`

e`y
⊥
`

(∑
n

s`nqn

)
= 0 (B14)

and similarly for
∑
n snqnx̄

⊥
n . The sn-weighted regression of ȳ⊥n and x̄⊥n on qn thus produces a

coe�cient vector that is numerically zero, implying the sn-weighted and gn-instrumented regression
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of ȳ⊥n on x̄⊥n is unchanged with the addition of qn controls. Proposition 1 shows that the IV coe�cient

from this regression is equivalent to the SSIV estimate β̂.

To establish validity of the standard errors, note that the conventional heteroskedasticity-robust

standard error from for the sn-weighted shock-level IV regression of ȳ⊥n on x̄⊥n and qn, instrumented

by gn, is given by

ŝeequiv =

√∑
n s

2
nε̂

2
nĝ

2
n

|
∑
n snx̄

⊥
n gn|

, (B15)

where ε̂n = ȳ⊥n − β̂x̄⊥n is the estimated shock-level regression residual (where we used the fact that

the estimated coe�cients on qn in that regression are numerically zero) and ĝn = gn − µ̂qn, where

µ̂ = (
∑
n snqnq

′
n)
−1∑

n snqngn, is the residual from a projection of the instrument in equation (10)

on the control vector qn. By Proposition 1, ε̂n coincides with the share-weighted aggregate of the

SSIV estimated residuals ε̂` = y⊥` − β̂x⊥` :

ε̂n =

∑
` e`s`ny

⊥
`∑

` e`s`n
− β̂ ·

∑
` e`s`nx

⊥
`∑

` e`s`n
=

∑
` e`s`nε̂`∑
` e`s`n

. (B16)

The squared numerator of (B15) can thus be rewritten

∑
n

s2
nε̂

2
nĝ

2
n =

∑
n

(∑
`

e`s`nε̂`

)2

ĝ2
n. (B17)

The expression in the denominator of (B15) estimates the magnitude of the shock-level �rst-stage

covariance, which matches the e`-weighted sample covariance of x` and z`:

∑
n

snx̄
⊥
n gn =

∑
n

(∑
`

e`s`nx
⊥
`

)
gn =

∑
`

e`x
⊥
` z`. (B18)

Thus

ŝeequiv =

√∑
n (
∑
` e`s`nε̂`)

2
ĝ2
n∣∣∑

` e`x
⊥
` z`
∣∣ . (B19)

We now compare this expression to the standard error formula from Adão et al. (2019), incorporating

the e` importance weights. Equation (39) in their paper yields

ŝeAKM =

√∑
n (
∑
` e`s`nε̂`)

2
g̈2
n∣∣∑

` e`x
⊥
` z`
∣∣ , (B20)

where g̈n denotes the coe�cients from regressing the residualized instrument z⊥` on all shares s`n,

without a constant; note that to compute this requires L > N and that the matrix of exposure shares

s`n is full rank. The formulas for ŝeequiv and ŝeAKM therefore di�er only in the construction of shock

residuals, ĝn versus g̈n.
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We establish the general asymptotic equivalence of ŝe2
equiv and ŝe2

AKM, and thus the asymptotic

validity of ŝeequiv, by showing that both capture the conditional asymptotic variance of β̂ given IL
under Assumptions B3-B6. Both of the resulting con�dence intervals are then asymptotically valid

unconditionally, since if Pr(β ∈ ĈI | IL) = α then Pr(β ∈ ĈI) = E
[
E
[
1[β ∈ ĈI | IL

]]
= α by the

law of iterated expectations. Under Assumptions B3-B6, Proposition A.1 of Adão et al. (2019) applies

and shows that

√
rL(β̂ − β)

d→ N
(

0,
V
π2

)
(B21)

for V = plimL→∞ rLVL, where rL = 1/
(∑

n s
2
n

)
and VL =

∑
n (
∑
` e`s`nε`)

2
Var [gn | IL], provided

such a limit exists. To establish the asymptotic validity of ŝeAKM, i.e. that rL

(∑
n (
∑
` e`s`nε̂`)

2
g̈2
n − VL

)
p−→

0, Adão et al. (2019) further assume that L ≥ N , the matrix of s`n is always full rank, and additional

regularity conditions (see their Proposition 5). We establish rL

(∑
n (
∑
` e`s`nε̂`)

2
ĝ2
n − VL

)
p−→ 0, and

thus rL
∑
n (
∑
` e`s`nε̂`)

2
ĝ2
n

p−→ V, without imposing those assumptions.

To start, we write g̃n = gn − q′nµ and decompose

rL

∑
n

(∑
`

e`s`nε̂`

)2

ĝ2
n − VL

 =rL

∑
n

(∑
`

e`s`nε`

)2

g̃2
n − VL


+ rL

∑
n

(∑
`

e`s`nε̂`

)2

−

(∑
`

e`s`nε`

)2
 g̃2

n

+ rL
∑
n

(∑
`

e`s`nε̂`

)2 (
ĝ2
n − g̃2

n

)
. (B22)

Adão et al. (2019) show that the second term of this expression is op(1) under our assumptions, using

the fact (their Lemma A.3, again generalized to include importance weights) that for a triangular array

{AL1, . . . , ALL, BL1, . . . , BLL, CL1, . . . , CLNL}
∞
L=1 with E

[
A4
L` | {{s`′n}n , e`′}`′

]
, E
[
B4
L` | {{s`′n}n , e`′}`′

]
,

and E
[
C2
Ln | {{s`n′}n′ , e`}`

]
uniformly bounded,

rL
∑
`

∑
`′

∑
n

e`e`′s`ns`′nAL`BL`′CLn = Op(1). (B23)

Here with D` = (z`, w
′
`)
′, θ = (β, γ′)′, and θ̂ = (β̂, γ̂′)′ we can write

(∑
`

e`s`nε̂`

)2

=

(∑
`

e`s`nε`

)2

+ 2
∑
`

∑
`′

e`e`′s`ns`′nD
′
`

(
θ − θ̂

)
ε`′

+
∑
`

∑
`′

e`e`′D
′
`

(
θ − θ̂

)
D′`′

(
θ − θ̂

)
, (B24)

and both D` and ε` have bounded fourth moments by the assumption of bounded fourth moments of
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ε`, η`, u`, and qn, and gn in Assumption B6. Thus by the lemma

rL
∑
n

(∑
`

e`s`nε̂`

)2

−

(∑
`

e`s`nε`

)2
 g̃2

n =2
(
θ − θ̂

)
′

(
rL
∑
`

∑
`′

∑
n

e`e`′s`ns`′ng̃
2
nD`ε`′

)

+
(
θ − θ̂

)
′

(
rL
∑
`

∑
`′

∑
n

e`e`′s`ns`′ng̃
2
nD`D

′
`′

)(
θ − θ̂

)
=
(
θ − θ̂

)
′Op(1) +

(
θ − θ̂

)
′Op(1)

(
θ − θ̂

)
, (B25)

which is op(1) by the consistency of θ̂ (implied by Assumptions B3-B6). Adão et al. (2019) further

show the �rst term of equation (B22) is op(1), without using the additional regularity conditions of

their Proposition 5.

It thus remains for us to show the third term of (B22) is also op(1). Note that

ĝ2
n = (gn − q′nµ̂)

2
= g̃2

n + (q′n (µ̂− µ))
2 − 2g̃nq

′
n (µ̂− µ) , (B26)

so that

rL
∑
n

(∑
`

e`s`nε̂`

)2 (
ĝ2
n − g̃2

n

)
=rL

∑
n

(∑
`

e`s`nε̂`

)2

(q′n (µ̂− µ)− 2g̃n) q′n (µ̂− µ)

=rL
∑
n

(∑
`

e`s`nε`

)2

(q′n (µ̂− µ)− 2g̃n) q′n (µ̂− µ)

+ rL
∑
n

(∑
`

e`s`nε̂`

)2

−

(∑
`

e`s`nε`

)2
 (q′n (µ̂− µ)− 2g̃n) q′n (µ̂− µ) . (B27)

Using the previous lemma, the �rst term of this expression is Op(1) (µ̂− µ) since ε`, qn, and g̃n have

bounded fourth moments under Assumption B6. The second term is similarly Op(1) (µ̂− µ) by the

lemma and the decomposition used in equation (B25). Noting that µ̂−µ = (
∑
n snqnq

′
n)
−1∑

n snqng̃n
p−→

0 under the assumptions completes the proof.

The Case of No Controls We show that when there are no controls besides a constant, i.e.

w` = gn = 1, the standard errors are numerically the same. To prove this, it su�ces to show that

ĝn = g̈n. Absent controls, ĝn = gn−
∑
n sngn is the sn-weighted demeaned shock. The g̈n are obtained

as the projection coe�cient of z⊥` = z` −
∑
` e`z` on the N shares. Note that

∑
`

e`z` =
∑
`

e`
∑
n

s`ngn =
∑
n

sngn, (B28)
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so that, with
∑
n s`n = 1,

z` −
∑
`

e`z` =
∑
n

s`ngn −
∑
n

sngn =
∑
`

s`nĝn. (B29)

This means that the projection in Adão et al. (2019) has exact �t and produces g̈n = ĝn.

Relaxing Assumption B4 We now show that the standard errors from our equivalent regression in

Proposition 5 are asymptotically conservative under a weaker assumption on the structure of controls

than Assumption B4:

Assumption B4′: There exists aK-dimensional vector pn, with uniformly bounded fourth moments,

such that w` =
∑
n s`npn +u` for some K-dimensional vector u` and E [gn | IL] = p′nµ for

all n and for IL =
{
{pn}n , {u`, ε`, η`, {s`n, π`n}n , e`}`

}
.

This assumption requires that the controls w` can be represented as noisy versions of some latent

shift-share confounding variables
∑
n s`npn. Since the variance of u` is unrestricted, this assumption

relaxes not only our Assumption B4 but also the assumption of approximate shift-share controls in

Adão et al. (2019).

Speci�cally, we show that under Assumptions B3, B4′, B5, and B6 the shock-level regression from

Proposition 5 that controls for a subvector of confounders qn ⊆ pn yields asymptotically conservative

standard errors. Consider

∆̂L = rL
∑
n

(∑
`

e`s`nε̂`

)2

ĝ2
n − rLVL (B30)

with ĝn still denoting the sn-weighted projection of gn on qn (only), and VL =
∑
n (
∑
` e`s`nε`)

2
Var [gn | IL]

where IL is the expanded set from Assumption B4′. Write

ĝn = gn − p′nµ̂

= g̃n + p′n (µ− µ̂) , (B31)

where the non-zero elements of µ̂ correspond to the qn subvector. We show that

∆̂L −∆L
p−→ 0 (B32)

for the non-negative

∆L = rL
∑
n

(∑
`

e`s`nε̂`

)2

(p′n (µ− µ̂))
2
, (B33)

when µ̂ = Op(1).16

16We note this is a weaker condition than convergence of the incorrect shock-level projection (i.e. that µ̂ = µ+ op(1)
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First note by equation (B31) that, for g̃n = gn − p′nµ,

ĝ2
n = g̃2

n + 2g̃np
′
n (µ− µ̂) + (p′n (µ− µ̂))

2
.

Thus

∆̂L −∆L =rL
∑
n

(∑
`

e`s`nε̂`

)2

g̃2
n − rLVL

+ 2rL
∑
n

(∑
`

e`s`nε̂`

)2

g̃np
′
n (µ− µ̂) . (B34)

We showed that the �rst term is op(1) in the proof of Proposition 5. It remains to show the second

term is also op(1). To see this, write

rL
∑
n

(∑
`

e`s`nε̂`

)2

g̃npn =rL
∑
n

(∑
`

e`s`nε`

)2

g̃npn (B35)

+ rL
∑
n

(∑
`

e`s`nε̂`

)2

−

(∑
`

e`s`nε`

)2
 g̃npn. (B36)

We have

E

rL∑
n

(∑
`

e`s`nε`

)2

g̃npn

 = E

rL∑
n

(∑
`

e`s`nε`

)2

E [g̃n | IL] pn

 = 0 (B37)

since E [g̃n | IL]. Furthermore,

Var

rL∑
n

(∑
`

e`s`nε`

)2

g̃npn

 = r2
L

∑
n

E

(∑
`

e`s`nε`

)4

Var [g̃n | IL] pnp
′
n

→ 0, (B38)

implying the �rst term of (B35) is op(1). The second term of this expression can also be shown to be

op(1) by applying the lemma from Adão et al. (2019) and the representation used in equation (B25).

Thus

2rL
∑
n

(∑
`

e`s`nε̂`

)2

g̃np
′
n (µ− µ̂) = op(1)′Op(1), (B39)

completing the proof.

Comparison of Standard Errors under Assumption B4 The characterization of the standard

errors in equations (B19)�(B20) also o�ers insights into how these standard errors may di�er in

for some µ).
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presence of controls, when both standard error calculations are asymptotically valid. We argue that

under the conditions of Proposition 5, our standard errors are likely smaller in �nite samples. More

precisely, we show that the homoskedastic version of (B19) is smaller than the homoskedastic version

of (B20). This is suggestive of the comparison under heteroskedasticity, but is not a proof.

To see this, consider versions of the two standard error formulas obtained under shock homoskedas-

ticity (i.e. Var [gn | IL] = σ2
g):

ŝehomoequiv =

√
(
∑
n s

2
nε̂

2
n) (
∑
n snĝ

2
n)

|
∑
n snx̄

⊥
n gn|

(B40)

ŝehomoAKM =

√
(
∑
n s

2
nε̂

2
n) (
∑
n sng̈

2
n)∣∣∑

` e`x
⊥
` z`
∣∣ , (B41)

which di�er by a factor of
√∑

n snĝ
2
n/
∑
n sng̈

2
n.

When the SSIV controls have an exact shift-share structure, w` =
∑
n s`nqn, the share projection

producing g̈n has exact �t such that one can represent g̈n = gn − q′nµ̂AKM for some µ̂AKM . In

this case the sn-weighted sum of squares of shock residuals is lower in our equivalent regression by

construction of µ̂:
∑
n snĝ

2
n ≤

∑
n sng̈

2
n (with strict inequality when µ̂AKM 6= µ̂). Similarly, when

w` instead contains controls that are included for e�ciency only and are independent of the shocks,

projection of z` on the shares produces a noisy estimate of gn −
∑
n sngn, which again has a higher

weighted sum of squares.

Null-Imposed Inference Procedure Finally, our shock-level equivalence provides a convenient

implementation for the alternative inference procedure that may have superior �nite-sample perfor-

mance. Adão et al. (2019) show how standard errors that impose a given null hypothesis β = β0 in

estimating the residual ε` can generate con�dence intervals with better coverage in situations with

few shocks (and a similar argument can be made in the case of shocks with a heavy-tailed distribu-

tion).17 Building on Proposition 5, such con�dence intervals can be constructed in the same way as

in any regular shock-level IV regression. To test β = β0, one regresses ȳ
⊥
n − β0x̄

⊥
n on the shocks gn

(weighting by sn and including any relevant shock-level controls qn) and uses a null-imposed residual

variance estimate. This procedure corresponds to the standard shock-level Lagrange multiplier test

for β = β0 that can be implemented by standard statistical software.18 The con�dence interval for β

is constructed by collecting all candidate β0 that are not rejected.

17As explained by Adão et al. (2019), the problem that this �AKM0� con�dence interval addresses generalizes the
standard �nite-sample bias of cluster-robust standard errors with few clusters (Cameron and Miller 2015). With few or
heavy-tailed shocks, estimates of the residual variance will tend to be biased downwards, leading to undercoverage of
con�dence intervals based on standard errors that do not impose the null.

18For example in Stata one can use the ivreg2 overidenti�cation test statistic from regressing ȳ⊥n − β0x̄⊥n on qn with
no endogenous variables and with gn speci�ed as the instrument (again with sn weights).
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B.3 Proposition A1

We consider each expectation in equation (A2) in turn. For each n, write

κn(g−n, ε`, η`) = lim
gn→−∞

y(x1([gn; g−n], η`1), . . . , xR([gn; g−n], η`R), ε`) (B42)

such that

s`ne`gny` =s`ne`gnκn(g−n, ε`, η`) (B43)

+ s`ne`gn

∫ gn

−∞

∂

∂gn
y(x1([γ; g−n], η`1), . . . xR([γ; g−n], η`R), ε`)dγ.

By as-good-as-random shock assignment, the expectation of the �rst term is

E [s`ne`gnκn(g−n, ε`, η`)] = E [s`ne`E [gn | s, e, g−n, ε, η`]κn(g−n, ε`, η`)] = 0, (B44)

while the expectation of the second is

E
[
s`ne`gn

∫ gn

−∞

∂

∂gn
y(x1([γ; g−n], η`1), . . . xR([γ; g−n], η`R), ε`)dγ

]
= E

[
s`ne`

∫ ∞
−∞

∫ gn

−∞
gn

∂

∂gn
y(x1([γ; g−n], η`1), . . . xR([γ; g−n], η`R), ε`)dγdFn(gn | I)

]
= E

[
s`ne`

∫ ∞
−∞

∂

∂gn
y(x1([γ; g−n], η`1), . . . xR([γ; g−n], η`R), ε`)

∫ ∞
γ

gndFn(gn | I)dγ

]
(B45)

where Fn(· | I) denotes the conditional distribution of gn. Thus

E [s`ne`gny`] = E
[
s`ne`

∫ ∞
−∞

∂

∂gn
y(x1([γ; g−n], η`), . . . xR([γ; g−n], η`), ε`)µn(γ | I)dγ

]
=
∑
r

E
[∫ ∞
−∞

s`ne`α`rπ`rn([γ; g−n])µn(γ | I)β̃`rn(γ)dγ

]
(B46)

where

µn(γ | I) ≡
∫ ∞
γ

gndFn(gn | I).

= (E [gn | gn ≥ γ, I]− E [gn | gn < γ, I])Pr (gn ≥ γ | I) (1− Pr (gn ≥ γ | I)) ≥ 0 a.s.

(B47)

Similarly

E [s`ne`gnx`] =
∑
r

E
[∫ ∞
−∞

s`ne`α`rπ`rn([γ; g−n])µn(γ | I)dγ

]
. (B48)
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Combining equations (B46) and (B48) completes the proof, with

ω`rn(γ) = s`ne`α`rµn(γ | I)π`rn([γ; g−n]) ≥ 0 a.s. (B49)

B.4 Proposition A2

By de�nition of ε̄n,

ε̄n =

∑
` e`s`n (

∑
n′ s`n′νn′ + ε̌`)∑
` e`s`n

≡
∑
n′

αnn′νn′ + ¯̌εn, (B50)

for αnn′ =
∑
` e`s`ns`n′∑
` e`s`n

and ¯̌εn =
∑
` e`s`nε̌`∑
` e`s`n

. Therefore,

Var [ε̄n] =
∑
n′

σ2
n′α2

nn′ + Var [¯̌εn]

≥ σ2
να

2
nn, (B51)

and

max
n

Var [ε̄n] ≥ σ2
ν max

n
α2
nn. (B52)

To establish a lower bound on this quantity, observe that the sn-weighted average of αnn satis�es:

∑
n

snαnn =
∑
n

sn

∑
` e`s

2
`n

sn

= HL. (B53)

Since
∑
n sn = 1, it follows that maxn αnn ≥ HL and therefore maxn Var [ε̄n] ≥ σ2

νH
2
L. Since HL →

H̄ > 0, we conclude that, for su�ciently large L, maxn Var [ε̄n] is bounded from below by any positive

δ < σ2
νH̄

2.

B.5 Proposition A3

To prove (A9), we aggregate (A8) across industries within a region using E`n weights:

y` = (β0 − β1)x` + ε`, (B54)
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where ε` =
∑
n s`nε`n. The shift-share instrument z` is relevant because

E

[∑
`

e`x`z`

]
=
∑
`

e`E

[∑
n

s`n (π̄gn + η`n) ·
∑
n′

s`n′gn′

]

=
∑
`,n

e`s
2
`nπ̄σ

2
g

≥ H̄Lπ̄σ
2
g , (B55)

while exclusion holds because

E

[∑
`

e`z`ε`

]
=
∑
`

e`E

[∑
n

s`nε`n ·
∑
n′

s`n′gn′

]

= 0. (B56)

Thus by an appropriate law of large numbers, β̂ = β0 − β1 + op(1).

To study β̂ind, we aggregate (A8) across regions (again with E`n weights):

yn = β0xn − β1

∑
`

ω`n
∑
n′

s`n′x`n′ + εn, (B57)

for εn =
∑
` ω`nε`n. The resulting IV estimate yields

β̂ind − β0 =

∑
n snyngn∑
n snxngn

− β0

=

∑
n sn (−β1

∑
` ω`n

∑
n′ s`n′x`n′ + εn) gn∑

n snxngn
. (B58)

The expected denominator of β̂ind is non-zero:

E

[∑
n

snxngn

]
=
∑
n

snE

[∑
`

ω`n (π̄gn + η`n) gn

]

=
∑
n

snω`nπ̄σ
2

=
∑
n

En
E
· E`n
E

π̄σ2

= π̄σ2, (B59)

while the expected numerator is

E

[∑
n

sn

(
−β1

∑
`

ω`n
∑
n′

s`n′x`n′ + εn

)
gn

]
= −β1

∑
n,`

snω`ns`nπ̄σ
2

= −β1HLπ̄σ
2, (B60)
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where the last equality follows because

∑
n,`

snω`ns`n =
∑
n,`

En
E

E`n
En

E`n
E`

=
∑
n,`

E`
E

(
E`n
E`

)2

=
∑
n,`

e`s
2
`n

= HL. (B61)

Thus by an appropriate law of large numbers,

β̂ind = β0 − β1HL + op(1). (B62)

B.6 Proposition A4

By appropriate laws of large numbers,

β̂ =
E [
∑
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∑
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while

β̂ind =

∑
nEnyngn∑
nEnxngn

=
E [
∑
nEn (

∑
` ω`ny`n) gn]

E [
∑
nEn (

∑
` ω`nx`n) gn]

+ op(1)
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∑
`,nEnω`nπ`nσ

2
nβ`n∑

`,nEnω`nπ`nσ
2
n

+ op(1)

=

∑
`,nE`nπ`nσ

2
nβ`n∑

`,nE`nπ`nσ
2
n

+ op(1). (B64)

B.7 Proposition A5

We prove each part of this proposition in turn.
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1. Expanding the moment condition yields:

E

[∑
`

e`ε`ψ`,LOO

]
=
∑
`

E

[
e`ε`

∑
n

s`n

∑
`′ 6=` ω`′nψ`′n∑
`′ 6=` ω`′n
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=
∑
`

e`
∑
n

s`n

∑
`′ 6=` ω`′nE [ε`ψ`′n]∑

`′ 6=` ω`′n

= 0. (B65)

2. The assumption of part (1) is satis�ed here, so E [
∑
` e`ε`ψ`,LOO] = 0. We now establish that

E
[
(
∑
` e`ε`ψ`,LOO)

2
]
→ 0, which implies

∑
` e`ε`ψ`,LOO

p→ 0 and thus consistency of the LOO

SSIV estimator provided it has a �rst stage:
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(B66)

Here the second line used the �rst regularity condition, which implies that E
[
ε`1ε`2ψ`′1n1

ψ`′2n2

]
=

0 whenever there is at least one index among {`1, `2, `′1, `′2} which is not equal to any of the others,

i.e. for all (`1, `2, `
′
1, `
′
2) 6∈ J .

3. We show that under the given assumptions on s`n, e`, and ω`n, the expression in (A21) is

bounded by 4N/L:

∑
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Here the second line plugs in the expressions for s`n and e`, and the third line plugs in ω`n. The

last line uses the fact that any tuple (`1, `2, `
′
1, `
′
2) ∈ J such that n(`′1) = n(`1) and n(`′2) = n(`2)

has all four elements exposed to the same shock n. Moreover, it is easily veri�ed that all of these

39



tuples have a structure (`A, `B , `A, `B) or (`A, `B , `B , `A) for any `A 6= `B exposed to the same

shock. Therefore, there are 2Ln (Ln − 1) of them for each n. Finally, Ln
Ln−1 ≤ 2 as Ln ≥ 2.

B.8 Proposition A6

National industry employment satis�es En =
∑
`E`n; log-linearizing this immediately implies (A30).

To solve for g`n, log-linearize (A27), (A28), and (A29):

Ê` = φŴ` + ε`, (B68)

g`n = g∗n + ξ̂`n − σŴ`, (B69)

Ê` =
∑
n

s`ng`n. (B70)

Solving this system of equations yields

Ŵ` =
1

σ + φ

(∑
n

s`n

(
g∗n + ξ̂`n

)
− ε`

)
(B71)

and expression (A31).
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C Appendix Figures and Tables

Figure C1: Industry-Level Variation in the Autor et al. (2013) Setting
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Notes: This �gure shows binned scatterplots of shock-level outcome and treatment residuals, ȳ⊥nt and x̄
⊥
nt, corresponding

to the SSIV speci�cation in column 3 of Table 4. The manufacturing industry shocks, gnt, are residualized on period
indicators (with the full-sample mean added back) and grouped into �fty weighted bins, with each bin representing
around 2% of total share weight snt. Lines of best �t, indicated in red, are weighted by the same snt. The slope
coe�cients equal 5.71 × 10−3 and −1.52 × 10−3, respectively, with the ratio (-0.267) equaling the SSIV coe�cient in
column 3 of Table 4.
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Table C1: Shift-Share IV Estimates of the E�ect of Chinese Imports on Other Outcomes

(1) (2) (3) (4) (5) (6) (7)

Unemployment growth 0.221 0.217 0.063 -0.014 0.104 0.107 0.235

(0.049) (0.046) (0.060) (0.079) (0.079) (0.083) (0.178)

NILF growth 0.553 0.534 0.098 0.149 0.142 0.117 0.187

(0.185) (0.183) (0.133) (0.083) (0.155) (0.161) (0.297)

Log weekly wage growth -0.759 -0.607 0.227 0.320 0.145 0.063 -0.211

(0.258) (0.226) (0.242) (0.209) (0.264) (0.260) (0.651)

# of industry-periods 796 794 794 794 794 794 794

# of region-periods 1,444 1,444 1,444 1,444 1,444 1,444 1,444

Notes: This table extends the analysis of Table 4 to di�erent regional outcomes in Autor et al. (2013): unemployment

growth, labor force non-participation (NILF) growth, and log average weekly wage growth. The speci�cations are

otherwise the same as in the corresponding columns of Table 4. SIC3-clustered exposure-robust standard errors are

computed using equivalent industry-level IV regressions and reported in parentheses.
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Table C2: Alternative Standard Errors in the Autor et al. (2013) Setting

(1) (2) (3) (4) (5) (6) (7)

Coe�cient -0.596 -0.489 -0.267 -0.314 -0.310 -0.290 -0.432

Table 4 SE (0.114) (0.100) (0.099) (0.107) (0.134) (0.129) (0.205)

State-clustered SE (0.099) (0.086) (0.086) (0.097) (0.104) (0.101) (0.193)

Adão et al. (2019) SE (0.126) (0.116) (0.113) (0.107) (0.143) (0.140) (0.192)

Con�dence interval with [-1.059, [-0.832, [-0.568, [-0.637, [-0.705, [-0.699, [-1.207,

the null imposed -0.396] -0.309] -0.028] -0.018] -0.002] 0.002] 0.122]

Notes: This table extends the analysis of Table 4 by reporting conventional state-clustered standard errors, the Adão
et al. (2019) SIC3-clustered standard errors, and con�dence intervals based on the equivalent industry-level IV regression
with the null imposed, as discussed in Section 5.1. The speci�cations are the same as those in the corresponding columns
of Table 4; for comparison we repeat the coe�cient estimates and exposure-robust standard errors from that table.
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Table C3: Period-Speci�c E�ects in the Autor et al. (2013) Setting

(1) (2) (3) (4)

Mfg. emp. Unemp. NILF Wages

Coe�cient (1990s) -0.491 0.329 1.209 -0.649

(0.266) (0.155) (0.347) (0.571)

Coe�cient (2000s) -0.225 0.014 -0.109 0.391

(0.103) (0.083) (0.123) (0.288)

Notes: This table reports coe�cient estimates for versions of the shift-share IV speci�cation in column 3 of Tables 4 and
C1, allowing the treatment coe�cient to vary by period. This speci�cation uses two endogenous treatment variables
(treatment interacted with period indicators) and two corresponding shift-share instruments. The controls are the same
as in column 3 of Table 4. SIC3-clustered exposure-robust standard errors are obtained by the equivalent shock-level
regressions and reported in parentheses.

44



Table C4: Robustness to Acemoglu et al. (2016) Controls in the Autor et al. (2013) Setting

(1) (2) (3) (4)

Coe�cient -0.200 -0.293 -0.241 -0.232

(0.093) (0.125) (0.115) (0.122)

Regional controls (w`t)

Autor et al. (2013) controls � � � �

Period-speci�c lagged mfg. share � � � �

Lagged 10-sector shares � � �

Local Acemoglu et al. (2016) controls � �

Local Acemoglu et al. (2016) pre-trends � � �

SSIV �rst stage F -stat. 118.9 53.3 65.9 56.6

# of region-periods 1,444

# of industry-periods 794

Notes: This table extends Table 4 by adding exposure-weighted sums of the other industry-level controls in Table 3 of
Acemoglu et al. (2016). Pre-trends controls refer to the changes in industry log average wages and in the industry share
of total U.S. employment over 1976�91; see the notes to Table 4 notes for details on the other controls and calculation
of the SIC3-clustered exposure-robust standard errors (in parentheses) and �rst-stage F-statistics.
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Table C5: Overidenti�ed Shift-Share IV Estimates of the E�ect
of Chinese Imports on Manufacturing Employment

(1) (2) (3)

Coe�cient -0.238 -0.247 -0.158

(0.099) (0.105) (0.078)

Shock-level estimator 2SLS LIML GMM

E�ective �rst stage F -statistic 15.10

χ2(7) overid. test stat. [p-value] 10.92 [0.142]

Notes: Column 1 of this table reports an overidenti�ed estimate of the coe�cient corresponding to column 3 of Table 4,
obtained from a two-stage least squares regression of shock-level average manufacturing employment growth residuals
ȳ⊥nt on shock-level average Chinese import competition growth residuals x̄⊥nt, instrumenting by the growth of imports
(per U.S. worker) in each of the eight non-U.S. countries from ADH, gnk for k = 1, . . . , 8, controlling for period �xed
e�ects qnt, and weighting by average industry exposure snt. Column 2 reports the corresponding limited information
maximum likelihood estimate, while column 3 reports a two-step optimal generalized method of moments estimate.
Standard errors, the optimal weight matrix, and the Hansen (1982) χ2 test of overidentifying restrictions all allow for
clustering of shocks at the SIC3 industry group level. The �rst-stage F -statistic is computed by a shift-share version of
the Montiel Olea and P�ueger (2013) method described in Appendix A.10.
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Table C6: Bartik (1991) Application

(1) (2)

Leave-one-out estimator 1.277 1.300

(0.150) (0.124)

Conventional estimator 1.215 1.286

(0.139) (0.121)

H heuristic 1.32 10.50

Population weights �

# of region-periods 2,166

Notes: Column 1 replicates column 2 of Table 3 from Goldsmith-Pinkham et al. (2020), reporting two SSIV estimators
of the inverse labor supply elasticity, with and without the leave-one-out adjustment. Regions are U.S. commuting
zones; periods are 1980s, 1990s, and 2000s; all speci�cations include controls for 1980 regional characteristics interacted
with period indicators (see Goldsmith-Pinkham et al. (2020) for more details). Standard errors allow for clustering by
commuting zones. Column 1 uses 1980 population weights, while column 2 repeats the same analysis without population
weights. The table also reports theH heuristic for the importance of the leave-one-out adjustment proposed in Appendix
A.6 (equation (A24)).
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Table C7: Simulated 5% Rejection Rates for Shift-Share and Conventional Shock-Level IV

SSIV Shock-level IV

Exposure-Robust SE Robust SE

Null not Null Null not Null

Imposed Imposed Imposed Imposed

(1) (2) (3) (4)

Panel A: Benchmark Monte-Carlo Simulation

(a) Normal shocks 7.6% 5.2% 6.8% 5.0%

(b) Wild bootstrap (benchmark) 8.0% 4.9% 14.2% 4.0%

Panel B: Higher Industry Concentration

(c) 1/HHI = 50 5.6% 4.9% 8.4% 6.1%

(d) 1/HHI = 20 7.3% 5.5% 7.0% 10.7%

(e) 1/HHI = 10 9.0% 8.2% 14.8% 23.8%

Panel C: Smaller Numbers of Industries or Regions

(f) N = 136 (SIC3 industries) 5.4% 4.5% 7.7% 4.3%

(g) N = 20 (SIC2 industries) 7.7% 3.7% 7.9% 3.2%

(h) L = 100 (random regions) 9.7% 4.5% N/A

(i) L = 25 (random regions) 10.4% 4.3% N/A

Notes: This table summarizes the results of the Monte-Carlo analysis described in Appendix A.11, reporting the
rejection rates for a nominal 5% level test of the true null that β∗ = 0. In all panels, columns 1 and 2 are simulated
from the SSIV design based on Autor et al. (2013), as in column 3 of Table 4, while columns 3 and 4 are based on
the conventional industry-level IV in Acemoglu et al. (2016). Column 1 uses exposure-robust standard errors from the
equivalent industry-level IV and column 2 implements the version with the null hypothesis imposed. Columns 3 and 4
parallel columns 1 and 2 when applied to conventional IV. In Panel A, the simulations approximate the data-generating
process using a normal distribution in row (a), with the variance matched to the sample variance of the shocks in the
data after de-meaning by year, while wild bootstrap is used in row (b), following Liu (1988). Panel B documents the
role of the Her�ndahl concentration index across industries, varying 1/HHI from 50 to 10 in rows (c) to (e), compared
with 191.6 for shift-share IV and 189.7 for conventional IV. Panel C documents the role of the number of regions and
industries. We aggregate industries from 397 four-digit manufacturing SIC industries into 136 three-digit industries in
row (f) and further into 20 two-digit industries in row (g). In rows (h) and (i), we select a random subset of region in
each simulation. See Appendix A.11 for a complete discussion.
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Table C8: First Stage F -statistics as a Rule of Thumb: Monte-Carlo Evidence

Number of Instruments

1 5 10 25 50

(1) (2) (3) (4) (5)

Panel A: SSIV

5% rejection rate 8.0% 8.9% 11.5% 15.0% 23.0%

Median bias, % of std. dev. 0.3% 14.6% 28.3% 43.2% 72.1%

Median �rst-stage F 54.3 14.8 9.1 6.4 7.7

Panel B: Conventional Shock-Level IV

5% rejection rate 13.6% 13.9% 14.9% 17.7% 22.0%

Median bias, % of std. dev. -0.3% 10.1% 27.1% 57.0% 80.2%

Median �rst-stage F 59.4 19.4 13.2 10.0 11.2

Number of simulations 10,000 3,000 1,500 500 300

Notes: This table reports the results of the Monte-Carlo analysis with many weak instruments, described in Appendix
A.11. Panel A is simulated from the SSIV design based on Autor et al. (2013), as in column 3 of Table 4, while Panel B
is based on the conventional industry-level IV in Acemoglu et al. (2016). The �ve columns increase the number of shocks
J = 1, 5, 10, 25, and 50, with only one shock relevant to treatment. The table reports the rejection rates corresponding
to a nominal 5% level test of the true null that β∗ = 0, the median bias of the estimator as a percentage of the simulated
standard deviation, and the median �rst-stage F -statistic obtained via the Montiel Olea and P�ueger (2013) method
(extended to shift-share IV in Panel A, following Appendix A.10). See Appendix A.11 for a complete discussion.
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