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Supplementary Figure 1: Coverage metrics of germline heterozygous SNPs. a, Density of genotyped
heterozygous SNPs for each sample. b, Total SNP coverage per cell for each sample. Each dot represents a
distinct cell. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. c,
Distribution of detected SNPs among genomic features. d, Coverage of SNPs by genomic features. Center
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range.
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Supplementary Figure 2: Allele-specific expression in non-aberrant cells from TNBC4. a, Haplotype
imbalance averaged across an increasing number of genes. Allele counts were created by aggregating 400
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randomly sampled cells. Each dot represents one contiguous gene set. Center line, median; box limits,

upper and lower quartiles; whiskers, 1.5x interquartile range. b, Estimated standard deviation in allele-spe-

cific expression (modeled by a Beta distribution) when allele counts are aggregated across increasing
number of genes. For all panels, ten replicates were performed for each condition with different random

seeds.



CNV state [l Lor

1 2 3 4 5 6 7 8 9 10 11 15 16 17 18 19 20 21 22

7 @M1 W1 I EEEnE 0

Genomic position

13 14 15 1617 18 19 20 21 22
'ﬁ'z'p T

. qﬁi «h :
s:'ﬁ

78l
zygs:‘.

3 s |2 3 o o 1| [0

os b | a2 20| TG Vo [ ARV | | Rt i3 e | |t L =
o s | e i i, | 5T | Db~ TSR Y .
S e s z [ 5| e | 13 YT
A | -‘}m-‘.‘- 73 | o o [PERDS | [Ty H o Fopipage?

” » o of sy " > = | o |
3 SR |2 5| | 3 oJ
T R R R e Bk o g :
< aipore | | % :
- el | | suienbes:
|| e || A || aidee ]| iy, et | askee | ek eislae eebie, i
4 2 pe | L enasiety | - itahaé . | | TeguleNy: | va’ : L ¥ ! 24|
R =TI T o] [ RSP Pes | [ T e = vl [ T [t T 1 I ¥
3 d - S ess . | oo 5 e | o, 7| (i i
v Fu Lo 1| e o || e %t s -8 Y -
P a = o o . - : o
el g " ¥ | [0 e |
4 o5 | [P | i
S ori ) Yo, ik Y ;._"‘; .
7. v, e £ - Dok o [pcig L.
< e Y ¢ K ¢k i [ e el | 7 o

It i...E'. 2y M (et e .:
sdne -:, s'—io ‘-_;J '.-u..' v: anhin,
A LA el $ii2 DGR A o ! ﬁéﬁ A ," o
gl *?ﬁ’ﬂf, ,é‘ﬂm # 41‘31*9,

Genomlc posmon

True haplotype ® Major © Minor © Undetermined

Supplementary Figure 3: In silico serial dilution experiment of TNBC4 tumor and normal cells. Top, chro-
mosome arms with complete LoH (MAF > 0.95). Bottom, pseudobulk allele profiles of tumor-normal cell
mixtures at various proportions. Heterozygous SNPs with complete LoH in the tumor are colored by their true
haplotypes (major and minor; determined using observed allele counts in the tumor). The rest of the SNPs are
colored in gray (undetermined). Gray vertical bars represent centromeres and gap regions.
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Supplementary Figure 4: In silico serial dilution experiment of multiple myeloma (47491-Primary) tumor
and normal cells. Top, CNV events detected by WGS. Bottom, pseudobulk allele profiles of tumor-normal cell
mixtures at various proportions. Heterozygous SNPs affected by allelic imbalances in the tumor are colored by
their true haplotypes (major and minor; determined using observed allele counts in the tumor). The rest of the
SNPs are colored in gray (undetermined). Gray vertical bars represent centromeres and gap regions.
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Supplementary Figure 5: Effect of population-based phasing on the detection of LoH and amplifica-
tion events at different coverages. Performance of subclonal CNV detection from allele data in
tumor-normal mixtures with and without haplotype phasing (“phasing” and “naive”). AUC, area under the
ROC curve. a, Performance comparison for subclonal LoH detection in the TNBC4 dataset. b, Perfor-
mance comparison for subclonal LoH detection in the multiple myeloma dataset. ¢, Performance compari-
son for subclonal amplification detection in the multiple myeloma dataset. Numbers in brackets denote
mean SNP coverage per cell.
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Supplementary Figure 6: Expected expression fold-change and allele fraction for different genotype
configurations, cellular fraction, and haplotype state. Hidden states in the Numbat joint HMM and their
respective parameter configurations are marked in black solid dots. Each dashed line represents the
possible expression change and allele fraction for a given genotype depending on the cell fraction and
haplotype state (major or minor). The genotype configuration corresponding to each line is marked in gray
in the notation “paternal copies:maternal copies”. The homologous chromosome that has the higher
number of copies is designated as the paternal chromosome.
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Supplementary Figure 7: Number of expressed SNPs per event and stability of joint HMM CNV calls with
different parameter values in the multiple myeloma dataset. a, Number of expressed heterozygous SNPs
per CNV region in the MM dataset. For each sample, CNV events were defined from matched WGS. Each dot
represents a distinct CNV event. b, The effect of HMM-specific parameters. The joint HMM was run on
pseduobulk profiles aggregating all tumor cells. ¢, The effect of parameters specific to iterative clonal decompo-
sition. The full Numbat iterative algorithm was run on all cells (including tumor and normal cells). Jaccard simi-
larity of CNV profiles was computed with respect to those of the default setting (marked by red triangles).
Precision and recall were computed with respect to the ground-truth CNV profiles defined by WGS. Circles
denote scores from initialization with a random tree.
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Supplementary Figure 8: Number of false-positive CNV calls in non-aberrant cell populations in the
multiple myeloma dataset. Each dot represents a distinct sample (n=5). Center line, median; box limits,
upper and lower quartiles; whiskers, 1.5x interquartile range.
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Supplementary Figure 9: Numbat and CopyKAT analysis of DCIS1 tumor cells. a, CNV profile inferred
by CopyKAT. b, CNV profile inferred by Numbat joint HMM. BAMP, balanced amplification. Red asterisks
mark diploid chromosomes that appear to have undergone a loss due to hyperdiploidy. Gray vertical bars

represent centromeres and gap regions.
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Supplementary Figure 10: Obtaining consensus CNV events from multiple cell populations. Step 1,
HMMs are run independently on pseudobulk profiles formed from all possible subtrees in the phylogeny.
Step 2, each detected CNV is represented as a node in a graph, and an edge is added between pairs of
nodes if the two CNV segments significantly overlap. The nodes are then grouped by connected compo-
nents of the resulting graph. Step 3, CNVs within the same component are ranked by likelihood evidence
(combined LLR of expression and allele deviation). Step 4, all CNVs (within the same component) from
the pseudobulk profile that harbors the top event are kept as part of the consensus segments.
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Supplementary Figure 11: Stability of the number of detected subclones with different initializations and
run parameters. a, Effect of the number of iterations. b, Effect of the initial number of subclones (k). ¢, Effect of
random initializations. Different random seeds were used to generate initial trees created from a random distance
matrix. d, Effect of the minimum overlap threshold. e, Effect of the maximum cost parameter. For ATC2, the subsa-
mpled dataset was used in all experiments.
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Supplementary Figure 12: Stability of subclone assignment with different initializations and run parameters.
a, Effect of the number of iterations. Similarity of clone assignments was computed with respect to those of the last
iteration. b, Effect of the initial number of subclones (k). Similarity of clone assignments was computed with respect
to those of k = 3. ¢, Effect of random initializations. Different random seeds were used to generate initial trees creat-
ed from a random distance matrix. Similarity of clone assignments was computed with respect to those obtained
using the default initialization strategy (hierarchical clustering based on window-smoothed expression signals). d,
Effect of the minimum overlap threshold. Similarity of clone assignments was computed with respect to those of
minimum overlap = 0.45. e, Effect of the maximum cost parameter. Similarity of clone assignments was computed
with respect to those of 1 = 0.3. For ATC2, the subsampled dataset was used in all experiments.
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Supplementary Figure 13: Stability of subclone-specific CNV profiles with different initializations and run
parameters. Weighted similarity was derived from pairwise comparisons between subclone CNV profiles from two
different runs (Jaccard index), weighted by the proportion of cells assigned to the subclone pair in the respective
runs. a, Effect of the number of iterations. Similarity of CNV calls was computed with respect to those of the last
iteration. b, Effect of the initial number of subclones (k). Similarity of CNV calls was computed with respect to those
of k = 3. ¢, Effect of random initializations. Different random seeds were used to generate initial trees created from a
random distance matrix. Similarity of CNV profiles was computed with respect to those obtained using the default
initialization strategy (hierarchical clustering based on window-smoothed expression signals). d, Effect of the mini-
mum overlap threshold. Similarity of CNV calls was computed with respect to those of minimum overlap = 0.45. e,
Effect of the maximum cost parameter. Similarity of CNV calls was computed with respect to those of 1= 0.3. For
ATC2, the subsampled dataset was used in all experiments.
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Supplementary Figure 14: Window-smoothed expression profile and hierarchical clustering of
TNBC1 and ATCH1 cells. a, Expression-based CNV profile of TNBC1. b, Expression-based CNV profile

of ATC1. Cell clusters are marked by gray borders.
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Supplementary Figure 15: VAF distribution of mtRNA mutations by CNV subclones. Each dot
represents a distinct cell. Only cells where the variant is covered by at least 10 reads are shown. For

ATC2, results from the subsampled dataset are shown.
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Supplementary Figure 16: Validated subclonal CNVs in two samples. Subclone-specific copy number
profiles reconstructed by Numbat from scRNA data are juxtaposed with the DNA profiles. logFC, log
expression fold-change. pHF, paternal haplotype frequency. logR, log coverage ratio. BAF, B-allele
frequency. Blue bars mark regions with clonal deletions in the tumor. Asterisks denote regions with
subclonal CNV, as demonstrated by incomplete loss of heterozygosity in the DNA allele profile. Gray

vertical bars represent centromeres and gap regions.
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Supplementary Figure 17: DE markers of expression clusters in multiple myeloma patient
27522. Each dot represents a distinct cell. Center line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range.
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Sample ID Patient ID |Cancer type |Number of cells |Protocol |Sorted WGS Study
58408-SMM 58408 MM 2374 10X3'v2 |Yes Liu et al. 2021
58408-Primary 58408 MM 3880 10X3v2 |Yes Liu et al. 2021
47491-SMM 47491 MM 1709 10X 3 v2  |Low purity Liu et al. 2021
47491-Primary 47491 MM 1465 10X 3" v2 Yes Liu et al. 2021
37692-Primary 37692 MM 3078 10X 3" v2 Yes Liu et al. 2021
59114-Relapse-1 59114 MM 3413 10X3v2 |Yes Liu et al. 2021
27522-Primary 27522 MM 4220 10X3'v2 |No Liu et al. 2021
27522-Remission 27522 MM 727 10X 3" v2 No Liu et al. 2021
27522-Relapse-1 27522 MM 2275 10X 3’ v2 No Liu et al. 2021
27522-Relapse-2 27522 MM 3499 10X 5 Yes Liu et al. 2021
ATC1 ATC1 ATC 2203 10X3'v3 |No Gao et al. 2021
ATC2 ATC2 ATC 6226 10X 3’ v3 No Gao et al. 2021
ATC3 ATC3 ATC 3264 10X3v3 |No Gao et al. 2021
ATC4 ATC4 ATC 1731 10X3'v3 |No Gao et al. 2021
ATC5 ATC5 ATC 6144 10X 3'v3 No Gao et al. 2021
TNBC1 TNBC1 TNBC 1097 10X 3" v2 No Gao et al. 2021
TNBC2 TNBC2 TNBC 1034 10X3v2 |No Gao et al. 2021
TNBC3 TNBC3 TNBC 532 10X3'v2 |No Gao et al. 2021
TNBC4 TNBC4 TNBC 3056 10X 3'v3 No Gao et al. 2021
TNBC5 TNBC5 TNBC 3225 10X 3’ v3 No Gao et al. 2021
DCIS1 DCIS1 DCIS 1480 10X3v2 |No Gao et al. 2021
NCI-N87 NCI-N87 GC 3246 10X 3'v2 |No Andor et al. 2020

Supplementary Table 1: Sample information and sequencing characteristics of analyzed
scRNA-seq datasets.
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Comparison |Gene set P value Q value Enrichment score |Edge value
e2g1vs e1gl |TNFA SIGNALING VIA NFKB 1.00E-04 0.00049995 1.522687672 0.83414457
e2g1vs elgl |CHOLESTEROL HOMEOSTASIS 0.00119988 0.004285286 1.246954138 0.83414457
e2g1vs e1gl |IL2 STAT5 SIGNALING 0.01179882 0.0268155 0.988969146 1.718667352
e1g2 vs e1lg1 |E2F TARGETS 1.00E-04 0.00049995 3.382174569 0.26140133
e1g2vs e1lgl [G2M CHECKPOINT 1.00E-04 0.00049995 3.168155605 0.74799209
e1g2 vs e1g1 |MITOTIC SPINDLE 1.00E-04 0.00049995 2.115124706 0.682944793
e1g2 vs e1g1 |SPERMATOGENESIS 1.00E-04 0.00049995 1.451127988 1.459131697
e1g2 vs e1g1 [ESTROGEN RESPONSE LATE 0.00109989 0.004582875 1.20248879 0.525201849
e1g2 vs e1g1 [EPITHELIAL MESENCHYMAL TRANSITION [0.01339866 0.03349665 0.96220813 0.258354859
e1g3vs e1lgl [INTERFERON GAMMA RESPONSE 0.0009999 0.0119988 -1.240737475 -0.294176916

Supplementary Table 2: List of significantly enriched pathways in multiple myeloma patient 27522. P
value, unadjusted P values from gene set enrichment analysis (two-sided). Q value, adjusted P values
using the Benjamini-Hochberg method.
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NEU CNLOH1(major) CNLOH1(minor) CNLOH2(major) CNLOH2(minor) AMP1(major) AMP1(minor) AMP2(major) AMP2(minor) DEL1(major) DEL1(minor) DEL2(major) DEL2(minor) BAMP BDEL

NEU 1 t0.33/2 t0.33/2 t*3.3e-11/2 t*3.3e-11/2 t0.33/2 t0.33/2 t*3.3e-11/2 t*3.3e-11/2 0.33/2 0.33/2 *3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11
CNLOH1(major) t*0.33  (1-t)*(1-p_s) (1-t)*p_s *3.3e-11/2 t*3.3e-11/2 t0.33/2 t0.33/2 t*3.3e-11/2 t*3.3e-11/2 0.33/2 0.33/2 *3.3e-11/2 *3.3e-11/2 t*3.3e-05 t*3.3e-11
CNLOH1(minor) t*0.33 (1-t)*p_s (1-4)*(1-p_s) t*3.3e-11/2 *3.3e-11/2 t0.33/2 0.33/2 t*3.3e-11/2 t*3.3e-11/2 0.33/2 0.33/2 *3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11
CNLOH2(major) t*0.25 t*0.25/2 t0.25/2 (1-t)*(1-p_s) (1-t)*p_s t0.25/2 t0.25/2 t*2.5e-11/2 t*2.5e-11/2 *0.25/2 t°0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11
CNLOH2(minor) t*0.25 t*0.25/2 t0.25/2 (1-t)'p_s (1-t)*(1-p_s) t*0.25/2 t0.25/2 t*2.5e-11/2 t*2.5e-11/2 %0.25/2 0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11
AMP1(major) t0.33  t*0.33/2 140.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-)*(1-p_s)  (1-t)*p_s t*3.3e-11/2 t*3.3e-11/2 %0.33/2 %0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11
AMP1(minor) t*0.33  t*0.33/2 t0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-t)*p_s (1-t)*(1-p_s)  t*3.3e-11/2 t*3.3e-11/2 %0.33/2 %0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11
AMP2(major) t*0.25 t*0.25/2 t40.25/2 t*2.5e-11/2 t*2.5e-11/2 %0.25/2 %0.25/2 (1-*(1-p_s)  (1-t)*p_s %0.25/2 t%0.25/2 t*2.5e-11/2 t*2.5e-11/2 t2.5e-05 t*2.5e-11
AMP2(minor) t0.25 t*0.25/2 t%0.25/2 t*2.5e-11/2 t*2.5e-11/2 %0.25/2 %0.25/2 (1-t)*p_s (1-t)*(1-p_s)  t*0.25/2 t%0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11
DEL1(major) t0.33  t*0.33/2 40.33/2 t*3.3e-11/2 t*3.3e-11/2 %0.33/2 %0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-)*(1-p_s)  (1-t)*p_s t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11
DEL1(minor) t0.33  t*0.33/2 %0.33/2 t*3.3e-11/2 t*3.3e-11/2 %0.33/2 %0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-t)*p_s (1-t)*(1-p_s)  t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11
DEL2(major) t0.25 t*0.25/2 %0.25/2 t*2.5e-11/2 t*2.5e-11/2 %0.25/2 %0.25/2 t*2.5e-11/2 t*2.5e-11/2 t%0.25/2 t%0.25/2 (1-)*(1-p_s)  (1-t)*p_s t2.5e-05 t*2.5e-11
DEL2(minor) t0.25 t*0.25/2 %0.25/2 t*2.5e-11/2 t*2.5e-11/2 %0.25/2 t%0.25/2 t*2.5e-11/2 t*2.5e-11/2 t%0.25/2 t+0.25/2 (1-t)*p_s (1-t)*(1-p_s) t*2.5e-05 t*2.5e-11
BAMP t0.25 t0.25/2 %0.25/2 t*2.5e-11/2 t*2.5e-11/2 t%0.25/2 t%0.25/2 t*2.5e-11/2 t*2.5e-11/2 t40.25/2 t0.25/2 t*2.5e-11/2 t*2.5e-11/2 1t t*2.5e-11
BDEL t0.25 t*0.25/2 t%0.25/2 t*2.5e-11/2 t*2.5e-11/2 t%0.25/2 t%0.25/2 t2.5e-11/2 t*2.5e-11/2 t0.25/2 t0.25/2 t*2.5e-11/2 t*2.5e-11/2 t2.5e-05 1-t

Supplementary Table 3: Transition probability matrix in the joint Numbat HMM. t, copy number transition
probability. p_s, phase switch probability. BAMP, balanced amplification. BDEL, balanced deletion.
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Supplementary Methods

Derivation of the gene expression count model. Given a reference expression profile 7=
(A1, 43, ..., Ay), we can model the expression magnitudes of the observed cell or pseudobulk using the
following additive equation:

logA; = u+logl; +loggp +¢;, € ~N(0,02)

where the factors that influence expression magnitudes include fixed components g, 1}, ¢ and the
random noise component ¢;. Here A; represents the baseline expression magnitude. u captures the
systematic bias in expression magnitudes between the reference and observation (e.g., global up or
down transcriptional regulation), and ¢ captures the effect of chromosomal dosage. o2 captures the
expression variation in the comparison, which intuitively reflects the magnitude of differences between
the reference and observation expression profiles (e.g., inter-individual differences if the reference is
from the same cell type but a different subject, or cell type differences if the reference belongs to a
difference cell type). Note that A; and ¢; are gene-specific, since each gene in the observation has its
own baseline expression level and transcriptional noise in the measurement. ¢ is shared between
genes in the same copy number segment. 1 and o2 are shared across all genes and capture the global
bias and variance between the reference and observation expression magnitudes. The model can be
extended to incorporate gene-specific bias and variance when technical replicates of the reference and
observation are available. Since we typically do not have access to technical replicates, we assume
homoskedasticity and use the same set of u and 2 for all genes.

We note that the expression magnitudes 4; are not directly observed. Instead, we observe discrete
counts X;, which can be assumed to follow a Poisson distribution with rate 4;:

Xi ~ POlS(l/ll)

Here [ is the total library size. This gives rise to the following Poisson-Lognormal (PLN) mixture model
as stated in Equation (1):

X; ~ PoisLogNorm(u + log(I4}) + log ¢, %)

Reference gene expression profile. Since gene expression varies substantially across tissue and cell
types, comparing the observed expression profile with the expected expression profile of the same
tissue or cell type (without aneuploidy) can help reveal CNV signal. We denote the reference profile as
= (A, 5, -, Ay) Which pre-specifies the background expression magnitudes in the model described
above. 2* can be obtained from the expression magnitudes estimated from a single reference cell type
or a collection of reference cell types, which we can represent as matrix A* of dimension N x C where C
is the number of reference cell types. While analyzing an observed pseudobulk expression profile, we
can model the pseudobulk as a mixture of the reference cell types where the cell type proportions
(denoted as w) are unknown. We therefore create 2* from a convex combination of A* that minimizes
the least squared error between the two expression profiles in log scale:
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wT = argming|| log(A*W) — log(X/1) |13
Subject to: |[W| = 1;w, =0, Vk € {1...C}
I =nawt

where only genes with non-zero expression in the pseudobulk and reference profiles are considered in
the optimization. For CNV evaluation in single cells, we choose a single best reference cell type that
maximizes the correlation with the observed expression magnitudes after log(x + 1) transformation. By
default, the Numbat package uses a collection of reference profiles from the Human Cell Atlas lung
study’. In practice, the user may wish to provide custom reference profiles created from data generated
from the same sequencing platform or within the same processing batch in order to minimize noise due
to technical factors.

Overdispersion parameter in the allele count model. We note that although the degree of
overdispersion in allele counts can vary between genes, we do not have technical replicates of the
same cell or cell populations to estimate gene-specific overdispersion. Therefore, the y parameter in
Equation (3) is shared across all genes:

Y, ~ BetaBinom(m]-, ey, (1 - 9))/)

If diploid regions are known, y can be estimated using maximum likelihood for specific pseudobulk
profiles. However, inference of diploid regions relies on detection of allelic imbalance. We therefore fix
y = 20 which is suitable for most pseudobulk sizes, as estimated from the normal cells in the TNBC4
dataset.

Configuration of the Hidden Markov model. The 15 states in the haplotype-aware HMM and their
respective parameter configurations are listed in the table below.

State ID Copy number state Cell fraction Haplotype state log(¢) 0
1 Neutral - - 0 0.5
2 CNLoH Low Major 0 0.5 + Bpin
3 CNLoH Low Minor 0 0.5 — Bin
4 CNLoH High Maijor 0 0.9
5 CNLoH High Minor 0 0.1
6 Amplification Low Major 10g ®min 0.5 + Bpin
7 Amplification Low Minor 10g G min 0.5 — Bin
8 Amplification High Maijor log(2.5) 0.9
9 Amplification High Minor log(2.5) 0.1
10 Deletion Low Major -log pmin | 0.5+ Onin
11 Deletion Low Minor -log min | 0.5 — Opin
12 Deletion High Maijor -1 0.9
13 Deletion High Minor -1 0.1
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14 Balanced amplification - - 10g G min 0.5
15 Homozygous deletion - - -10g P min 0.5

The set of parameters for each state is chosen to capture one or multiple copy number configurations
that exhibit similar changes in expression magnitude and allele frequency at a given cell fraction and
haplotype state. States with haplotype imbalance appear in pairs (e.g., states 2 and 3) that have
opposite deviations of haplotype fractions, which correspond to major and minor haplotype states. For
example, state pairs (2,3) and (4,5) respectively correspond to CNLoH at low and high cell fractions,
whereas state pair (8,9) is aimed to capture multiple amplified states with high allelic imbalance (e.qg.,
3:1, 4:1, 3:0, 4:0). In addition, we introduce fixed prior abundances to each of the states: n(z) = {1 =
0.25,2 = 0.125,3 = 0.125,4 = 0.125-107%° 5=10.125-10"1°, 6 = 0.125, 7 = 0.125, 8 = 0.125- 10719,
9=0.125-10"1° 10 = 0.125,11 = 0.125,12 = 0.125- 1071, 13 =0.125-10710, 14 =0.25-107%,

15 = 0.25 - 10710},

The allele-only HMM and the expression-only HMM are special cases of the joint HMM defined above.
The allele-only HMM includes a subset of the states (1-5) and only uses the allele counts, whereas the
expression-only HMM only uses the gene expression counts and does not allow transition between
haplotype states.

Detecting regions with clonal deletion. In samples with high tumor purity (e.g., tumor cell lines)
without matched normal cells, heterozygous SNPs are challenging to identify in regions of LoH, leading
to decreased power of detection. We therefore provide a separate HMM module to identify clonal
deletions based on heterozygous SNP density when normal diploid cells are not available. The HMM
allows two hidden states (neutral and clonal deletion), where each gene emits an expression read
count X; and heterozygous SNP count V;. The emission probabilities of the expression read counts (X;)
follow the same definition in the joint HMM described before. We model the heterozygous SNP count
per gene (V;) using a Negative Binomial distribution:

Vi|Z; = z ~ NBinom(u, - h;, 62)

where h; is the gene length in Mb, u is the heterozygous SNP density per Mb, and 42 is the variance in
heterozygous SNP density along the transcriptome. We first fit a null model using the observed
heterozygous SNP counts in all genes using maximum likelihood to obtain estimates i and 2. We then
let u,ey = 2 and uqe = 5. The transition probabilities are determined by a single parameter t.

Identifying diploid regions. We use a graph-based clustering approach to identify genomic regions in
the diploid (neutral) state from a given pseudobulk profile. First, regions of allelic imbalance are
identified by the allele-only HMM and excluded. The remaining allelically balanced segments are
assumed to be in even-valued copy number states®. We then perform a pairwise comparison of the log
expression fold-change (logFC) of the balanced segments using Student’s t-test. We construct a graph
where the nodes represent the balanced segments and the edges are determined by the adjusted P
values (alpha level of 10*) from the previous step. An edge connecting two segments means that their
expression magnitudes are not significantly different, and that they likely occupy the same total copy
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number state. We note that a clique in such a graph would be a collection of segments that are most
coherent in total copy number. Consequently, the diploid segments can be inferred as the maximum
clique with the lowest average logFC?>. An extension of this procedure can be used to identify shared
diploid regions in multiple pseudobulk profiles (e.g., representing different subclonal populations),
where balanced segments are compared within each pseudobulk profile and a Simes’ test is used to
determine edges in the graph.

Initial approximation of single-cell phylogeny and subclonal structure. By default, Numbat builds
an initial phylogeny using window-smoothed expression signals. First, normalized gene expression
levels in transcript per million are log(x + 1) transformed. The expression signals are then smoothed by
a running mean procedure using a window size of 101 genes®. Hierarchical clustering (Ward’s minimum
variance method) is then applied on the smoothed single-cell expression profiles to obtain a
hierarchical cluster tree. Initial subtrees and subclones are determined by cutting the tree (cutree
function in R) into k groups (default: k = 3). The initial number of subclones k can be set based on prior
knowledge of the number of subclones, which can be used to obtain more accurate approximations in
the initial iteration.

Obtaining consensus CNV events from cell subpopulations. To obtain consensus CNV segments
from different cell subpopulations while leveraging their phylogenetic relationships, we apply the
following heuristic procedure (Supplementary Fig. 10). First, HMMs are run independently on
pseudobulk profiles formed from all possible subtrees in the phylogeny. Each CNV is represented as a
node in a graph, and an edge is added between pairs of nodes if the two CNV segments significantly
overlap (e.g., length of the overlap is more than 45% in either segment). The nodes are then grouped
by connected components of the resulting graph. Within each component, the CNVs are ranked by
likelihood evidence (combined LLR of expression and allele deviation). All CNVs (within the same
component) from the pseudobulk profile that harbors the top event are kept as part of the consensus
segments. For instance, let there be three cell populations where population 1 is the ancestor of
population 2 and 3 (Supplementary Fig. 10). We aggregate cells by subtrees defined by each node
(i.e., subpopulation) in the lineage hierarchy, so that pseudobulk 1 contains cells from all three
populations, pseudobulk 2 contains cells from only population 2, and pseudobulk 3 contains cells from
only population 3. Thus, HMM on each pseudobulk achieves joint copy number segmentation of cells
under the same lineage, which may harbor common CNV breakpoints. Let A be an event called from
pseudobulk 1 and B, C be events called in pseudobulk 2 and D be an event called in pseudobulk 3.
This situation can arise when higher-resolution segmentations are produced by lower subtrees, which
are purer in terms of clonal composition (e.g., pseudobulk 2). Event D could be an artifact that does not
have strong evidence. The four events form a connected component in the graph due to the overlaps
between (B,D), (A,D), (A,C), and (A,B). Since event B from pseudobulk 2 has the highest likelihood
evidence and C is called from the same pseudobulk, we include both B and C in the consensus CNV
call set. Lastly, we retest the remaining regions (detected as aberrant in any subtree but not covered by
the consensus calls) in each subtree to obtain the final consensus CNV profile.

Mutation placement on the phylogeny. Although the mutation placement on the single-cell phylogeny

by maximum likelihood is optimal in terms of the goodness of fit, it is not necessarily the most
parsimonious (i.e., it tends to produce intermediate genotypes for which there is not enough evidence in

24



order to gain better fit to the observed data). We therefore adopt the following refinement procedure to
enforce evolutionary parsimony. After identifying the optimal mutation placement on the tree by
maximum likelihood, we iteratively simplify the mutational history (i.e., reduce the number of
evolutionary steps) by re-assigning a mutation to the same branch as another mutation that occurred
directly upstream or downstream, effectively collapsing an internal branch. The cost for such re-
assignment is defined by the corresponding decrease in the genotype likelihood. We iteratively perform
the least costly reassignment until a prespecified maximum cost threshold is reached. For example, if
the maximum likelihood mutation assignment infers a mutation history of A — B — C, we simplify the
mutation history as A,B — C or A — B,C (i.e., reassigning mutation B to the same branch as A or C,
effectively collapsing the A — B branch or B — C branch) if there is no sufficient likelihood evidence to
ascertain that mutation B was acquired after A or before C. In practice, we determine the maximum
reassignment cost as a function of the number of cells (n - t), where t reflects the degree of parsimony
in simplifying the phylogeny (default: 7 = 0.3). A higher 7 produces a more simplified mutational history
with fewer evolutionary steps and intermediate genotypes.

The final phylogeny specifies not only the lineage relationship between cells but also the genotypes of
each subclone (defined as a paraphyletic or monophyletic group in the phylogeny sharing the same
mutation profile). The tumor lineage can be identified as the clade in the phylogeny with the highest
mutation burden (total number of mutations across all cells in the clade).
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