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Supplementary Figure 1: Coverage metrics of germline heterozygous SNPs. a, Density of genotyped 
heterozygous SNPs for each sample. b, Total SNP coverage per cell for each sample. Each dot represents a 
distinct cell. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. c, 
Distribution of detected SNPs among genomic features. d, Coverage of SNPs by genomic features. Center 
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. 
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Supplementary Figure 2: Allele-specific expression in non-aberrant cells from TNBC4. a, Haplotype 
imbalance averaged across an increasing number of genes. Allele counts were created by aggregating 400 
randomly sampled cells. Each dot represents one contiguous gene set. Center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5x interquartile range. b, Estimated standard deviation in allele-spe-
cific expression (modeled by a Beta distribution) when allele counts are aggregated across increasing 
number of genes. For all panels, ten replicates were performed for each condition with different random 
seeds. 
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Supplementary Figure 3: In silico serial dilution experiment of TNBC4 tumor and normal cells. Top, chro-
mosome arms with complete LoH (MAF > 0.95). Bottom, pseudobulk allele profiles of tumor-normal cell 
mixtures at various proportions. Heterozygous SNPs with complete LoH in the tumor are colored by their true 
haplotypes (major and minor; determined using observed allele counts in the tumor). The rest of the SNPs are 
colored in gray (undetermined). Gray vertical bars represent centromeres and gap regions.
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Supplementary Figure 4: In silico serial dilution experiment of multiple myeloma (47491-Primary) tumor 
and normal cells. Top, CNV events detected by WGS. Bottom, pseudobulk allele profiles of tumor-normal cell 
mixtures at various proportions. Heterozygous SNPs affected by allelic imbalances in the tumor are colored by 
their true haplotypes (major and minor; determined using observed allele counts in the tumor). The rest of the 
SNPs are colored in gray (undetermined). Gray vertical bars represent centromeres and gap regions.
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Supplementary Figure 5: Effect of population-based phasing on the detection of LoH and amplifica-
tion events at different coverages. Performance of subclonal CNV detection from allele data in 
tumor-normal mixtures with and without haplotype phasing (“phasing” and “naive”). AUC, area under the 
ROC curve. a, Performance comparison for subclonal LoH detection in the TNBC4 dataset. b, Perfor-
mance comparison for subclonal LoH detection in the multiple myeloma dataset. c, Performance compari-
son for subclonal amplification detection in the multiple myeloma dataset. Numbers in brackets denote 
mean SNP coverage per cell. 
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Supplementary Figure 6: Expected expression fold-change and allele fraction for different genotype 
configurations, cellular fraction, and haplotype state. Hidden states in the Numbat joint HMM and their 
respective parameter configurations are marked in black solid dots. Each dashed line represents the 
possible expression change and allele fraction for a given genotype depending on the cell fraction and 
haplotype state (major or minor). The genotype configuration corresponding to each line is marked in gray 
in the notation “paternal copies:maternal copies”. The homologous chromosome that has the higher 
number of copies is designated as the paternal chromosome.

Minor haplotype Major haplotype

lo
g(

ϕ)

θ

6



Supplementary Figure 7: Number of expressed SNPs per event and stability of joint HMM CNV calls with 
different parameter values in the multiple myeloma dataset. a, Number of expressed heterozygous SNPs 
per CNV region in the MM dataset. For each sample, CNV events were defined from matched WGS. Each dot 
represents a distinct CNV event. b, The effect of HMM-specific parameters. The joint HMM was run on 
pseduobulk profiles aggregating all tumor cells. c, The effect of parameters specific to iterative clonal decompo-
sition. The full Numbat iterative algorithm was run on all cells (including tumor and normal cells). Jaccard simi-
larity of CNV profiles was computed with respect to those of the default setting (marked by red triangles). 
Precision and recall were computed with respect to the ground-truth CNV profiles defined by WGS. Circles 
denote scores from initialization with a random tree.
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Supplementary Figure 8: Number of false-positive CNV calls in non-aberrant cell populations in the 
multiple myeloma dataset. Each dot represents a distinct sample (n=5). Center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5x interquartile range.
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Supplementary Figure 9: Numbat and CopyKAT analysis of DCIS1 tumor cells. a, CNV profile inferred 
by CopyKAT. b, CNV profile inferred by Numbat joint HMM. BAMP, balanced amplification. Red asterisks 
mark diploid chromosomes that appear to have undergone a loss due to hyperdiploidy. Gray vertical bars 
represent centromeres and gap regions.
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Supplementary Figure 10: Obtaining consensus CNV events from multiple cell populations. Step 1, 
HMMs are run independently on pseudobulk profiles formed from all possible subtrees in the phylogeny. 
Step 2, each detected CNV is represented as a node in a graph, and an edge is added between pairs of 
nodes if the two CNV segments significantly overlap. The nodes are then grouped by connected compo-
nents of the resulting graph. Step 3, CNVs within the same component are ranked by likelihood evidence 
(combined LLR of expression and allele deviation). Step 4, all CNVs (within the same component) from 
the pseudobulk profile that harbors the top event are kept as part of the consensus segments.
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Supplementary Figure 11: Stability of the number of detected subclones with different initializations and 
run parameters. a, Effect of the number of iterations. b, Effect of the initial number of subclones (k). c, Effect of 
random initializations. Different random seeds were used to generate initial trees created from a random distance 
matrix. d, Effect of the minimum overlap threshold. e, Effect of the maximum cost parameter. For ATC2, the subsa-
mpled dataset was used in all experiments.
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Supplementary Figure 12: Stability of subclone assignment with different initializations and run parameters.  
a, Effect of the number of iterations. Similarity of clone assignments was computed with respect to those of the last 
iteration. b, Effect of the initial number of subclones (k). Similarity of clone assignments was computed with respect 
to those of k = 3. c, Effect of random initializations. Different random seeds were used to generate initial trees creat-
ed from a random distance matrix. Similarity of clone assignments was computed with respect to those obtained 
using the default initialization strategy (hierarchical clustering based on window-smoothed expression signals). d, 
Effect of the minimum overlap threshold. Similarity of clone assignments was computed with respect to those of 
minimum overlap = 0.45. e, Effect of the maximum cost parameter. Similarity of clone assignments was computed 
with respect to those of τ = 0.3. For ATC2, the subsampled dataset was used in all experiments.
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Supplementary Figure 13: Stability of subclone-specific CNV profiles with different initializations and run 
parameters. Weighted similarity was derived from pairwise comparisons between subclone CNV profiles from two 
different runs (Jaccard index), weighted by the proportion of cells assigned to the subclone pair in the respective 
runs. a, Effect of the number of iterations. Similarity of CNV calls was computed with respect to those of the last 
iteration. b, Effect of the initial number of subclones (k). Similarity of CNV calls was computed with respect to those 
of k = 3. c, Effect of random initializations. Different random seeds were used to generate initial trees created from a 
random distance matrix. Similarity of CNV profiles was computed with respect to those obtained using the default 
initialization strategy (hierarchical clustering based on window-smoothed expression signals). d, Effect of the mini-
mum overlap threshold. Similarity of CNV calls was computed with respect to those of minimum overlap = 0.45. e, 
Effect of the maximum cost parameter. Similarity of CNV calls was computed with respect to those of τ = 0.3. For 
ATC2, the subsampled dataset was used in all experiments.
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Supplementary Figure 14: Window-smoothed expression profile and hierarchical clustering of 
TNBC1 and ATC1 cells. a, Expression-based CNV profile of TNBC1. b, Expression-based CNV profile 
of ATC1. Cell clusters are marked by gray borders.
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Supplementary Figure 15: VAF distribution of mtRNA mutations by CNV subclones. Each dot 
represents a distinct cell. Only cells where the variant is covered by at least 10 reads are shown. For 
ATC2, results from the subsampled dataset are shown. 
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Supplementary Figure 16: Validated subclonal CNVs in two samples. Subclone-specific copy number 
profiles reconstructed by Numbat from scRNA data are juxtaposed with the DNA profiles. logFC, log 
expression fold-change. pHF, paternal haplotype frequency. logR, log coverage ratio. BAF, B-allele 
frequency. Blue bars mark regions with clonal deletions in the tumor. Asterisks denote regions with 
subclonal CNV, as demonstrated by incomplete loss of heterozygosity in the DNA allele profile. Gray 
vertical bars represent centromeres and gap regions.
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Supplementary Figure 17: DE markers of expression clusters in multiple myeloma patient 
27522. Each dot represents a distinct cell. Center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5x interquartile range.
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!"#$%&'() *"+,&-+'() ."-/&0'+1$& 23#4&0'56'/&%%7 *05+5/5% !50+&8'9:! !+381

!"#$"%&'' !"#$" '' ()*# +$,-).-/( 012 345-16-789-($(+
!"#$"%:;4<7;= !"#$" '' )""$ +$,-).-/( 012 345-16-789-($(+
#*#>+%&'' #*#>+ '' +*$> +$,-).-/( 3?@-A5;46= 345-16-789-($(+
#*#>+%:;4<7;= #*#>+ '' +#B! +$,-).-/( 012 345-16-789-($(+
)*B>(%:;4<7;= )*B>( '' )$*" +$,-).-/( 012 345-16-789-($(+
!>++#%C187A21%+ !>++# '' )#+) +$,-).-/( 012 345-16-789-($(+
(*!((%:;4<7;= (*!(( '' #(($ +$,-).-/( D? 345-16-789-($(+
(*!((%C1<4224?E (*!(( '' *(* +$,-).-/( D? 345-16-789-($(+
(*!((%C187A21%+ (*!(( '' ((*! +$,-).-/( D? 345-16-789-($(+
(*!((%C187A21%( (*!(( '' )#>> +$,-!. 012 345-16-789-($(+
FGH+ FGH+ FGH (($) +$,-).-/) D? I7?-16-789-($(+
FGH( FGH( FGH B((B +$,-).-/) D? I7?-16-789-($(+
FGH) FGH) FGH )(B# +$,-).-/) D? I7?-16-789-($(+
FGH# FGH# FGH +*)+ +$,-).-/) D? I7?-16-789-($(+
FGH!- FGH! FGH B+## +$,-).-/) D? I7?-16-789-($(+
GDJH+ GDJH+ GDJH +$>* +$,-).-/( D? I7?-16-789-($(+
GDJH( GDJH( GDJH +$)# +$,-).-/( D? I7?-16-789-($(+
GDJH) GDJH) GDJH !)( +$,-).-/( D? I7?-16-789-($(+
GDJH# GDJH# GDJH )$!B +$,-).-/) D? I7?-16-789-($(+
GDJH! GDJH! GDJH )((! +$,-).-/) D? I7?-16-789-($(+
KHL&+ KHL&+ KHL& +#"$ +$,-).-/( D? I7?-16-789-($(+
DHL%D"* DHL%D"* IH )(#B +$,-)M-/( D? FEN?;-16-789-($($

Supplementary Table 1: Sample information and sequencing characteristics of analyzed 
scRNA-seq datasets.
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NEU CNLOH1(major) CNLOH1(minor) CNLOH2(major) CNLOH2(minor) AMP1(major) AMP1(minor) AMP2(major) AMP2(minor) DEL1(major) DEL1(minor) DEL2(major) DEL2(minor) BAMP BDEL

NEU 1-t t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

CNLOH1(major) t*0.33 (1-t)*(1-p_s) (1-t)*p_s t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

CNLOH1(minor) t*0.33 (1-t)*p_s (1-t)*(1-p_s) t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

CNLOH2(major) t*0.25 t*0.25/2 t*0.25/2 (1-t)*(1-p_s) (1-t)*p_s t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11

CNLOH2(minor) t*0.25 t*0.25/2 t*0.25/2 (1-t)*p_s (1-t)*(1-p_s) t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11

AMP1(major) t*0.33 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-t)*(1-p_s) (1-t)*p_s t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

AMP1(minor) t*0.33 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-t)*p_s (1-t)*(1-p_s) t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

AMP2(major) t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 (1-t)*(1-p_s) (1-t)*p_s t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11

AMP2(minor) t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 (1-t)*p_s (1-t)*(1-p_s) t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11

DEL1(major) t*0.33 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-t)*(1-p_s) (1-t)*p_s t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

DEL1(minor) t*0.33 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-t)*p_s (1-t)*(1-p_s) t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

DEL2(major) t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 (1-t)*(1-p_s) (1-t)*p_s t*2.5e-05 t*2.5e-11

DEL2(minor) t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 (1-t)*p_s (1-t)*(1-p_s) t*2.5e-05 t*2.5e-11

BAMP t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 1-t t*2.5e-11

BDEL t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 1-t

!"#$%&'(") *+)+,(+- .,/%01+ 2,/%01+ 3)&'45#+)-,(4"&+ 367+,/%01+
!"#$%&'%!$#$ ()*+%,-.)+/-).%0-+%)*12 $3445647 4344478889 $39"":;<:<" 43;=7$779<
!"#$%&'%!$#$ >?@/5,(5A@/%?@B5@,(+,-, 4344$$88;; 43447";9";: $3"7:897$=; 43;=7$779<
!"#$%&'%!$#$ -/"%,(+(9%,-.)+/-). 434$$<8;;" 434":;$99 438;;8:8$7: $3<$;::<=9"
!$#"%&'%!$#$ 5"*%(+A.5(, $3445647 4344478889 =3=;"$<79:8 43":$74$==
!$#"%&'%!$#$ ."B%>?5>1C@-)( $3445647 4344478889 =3$:;$99:49 43<7<88"48
!$#"%&'%!$#$ B-(@(->%,C-)D/5 $3445647 4344478889 "3$$9$"7<4: 43:;"877<8=
!$#"%&'%!$#$ ,C5AB+(@.5)5,-, $3445647 4344478889 $379$$"<8;; $3798$=$:8<
!$#"%&'%!$#$ 5,(A@.5)%A5,C@),5%/+(5 4344$488;8 434479;";<9 $3"4"7;;<8 439"9"4$;78
!$#"%&'%!$#$ 5C-(?5/-+/%B5,5)>?EB+/%(A+),-(-@) 434$==8;:: 434==78::9 438:""4;$= 43"9;=97;98
!$#=%&'%!$#$ -)(5A*5A@)%.+BB+%A5,C@),5 434448888 434$$88;; 6$3"74<=<7<9 643"87$<:8$:

Supplementary Table 2: List of significantly enriched pathways in multiple myeloma patient 27522. P 
value, unadjusted P values from gene set enrichment analysis (two-sided). Q value, adjusted P values 
using the Benjamini-Hochberg method.
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NEU CNLOH1(major) CNLOH1(minor) CNLOH2(major) CNLOH2(minor) AMP1(major) AMP1(minor) AMP2(major) AMP2(minor) DEL1(major) DEL1(minor) DEL2(major) DEL2(minor) BAMP BDEL

NEU 1-t t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

CNLOH1(major) t*0.33 (1-t)*(1-p_s) (1-t)*p_s t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

CNLOH1(minor) t*0.33 (1-t)*p_s (1-t)*(1-p_s) t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

CNLOH2(major) t*0.25 t*0.25/2 t*0.25/2 (1-t)*(1-p_s) (1-t)*p_s t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11

CNLOH2(minor) t*0.25 t*0.25/2 t*0.25/2 (1-t)*p_s (1-t)*(1-p_s) t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11

AMP1(major) t*0.33 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-t)*(1-p_s) (1-t)*p_s t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

AMP1(minor) t*0.33 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-t)*p_s (1-t)*(1-p_s) t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

AMP2(major) t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 (1-t)*(1-p_s) (1-t)*p_s t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11

AMP2(minor) t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 (1-t)*p_s (1-t)*(1-p_s) t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 t*2.5e-11

DEL1(major) t*0.33 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-t)*(1-p_s) (1-t)*p_s t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

DEL1(minor) t*0.33 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 t*0.33/2 t*0.33/2 t*3.3e-11/2 t*3.3e-11/2 (1-t)*p_s (1-t)*(1-p_s) t*3.3e-11/2 t*3.3e-11/2 t*3.3e-05 t*3.3e-11

DEL2(major) t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 (1-t)*(1-p_s) (1-t)*p_s t*2.5e-05 t*2.5e-11

DEL2(minor) t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 (1-t)*p_s (1-t)*(1-p_s) t*2.5e-05 t*2.5e-11

BAMP t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 1-t t*2.5e-11

BDEL t*0.25 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*0.25/2 t*0.25/2 t*2.5e-11/2 t*2.5e-11/2 t*2.5e-05 1-t

!"#$%&'(") *+)+,(+- .,/%01+ 2,/%01+ 3)&'45#+)-,(4"&+ 367+,/%01+
!"#$%&'%!$#$ ()*+%,-.)+/-).%0-+%)*12 $3445647 4344478889 $39"":;<:<" 43;=7$779<
!"#$%&'%!$#$ >?@/5,(5A@/%?@B5@,(+,-, 4344$$88;; 43447";9";: $3"7:897$=; 43;=7$779<
!"#$%&'%!$#$ -/"%,(+(9%,-.)+/-). 434$$<8;;" 434":;$99 438;;8:8$7: $3<$;::<=9"
!$#"%&'%!$#$ 5"*%(+A.5(, $3445647 4344478889 =3=;"$<79:8 43":$74$==
!$#"%&'%!$#$ ."B%>?5>1C@-)( $3445647 4344478889 =3$:;$99:49 43<7<88"48
!$#"%&'%!$#$ B-(@(->%,C-)D/5 $3445647 4344478889 "3$$9$"7<4: 43:;"877<8=
!$#"%&'%!$#$ ,C5AB+(@.5)5,-, $3445647 4344478889 $379$$"<8;; $3798$=$:8<
!$#"%&'%!$#$ 5,(A@.5)%A5,C@),5%/+(5 4344$488;8 434479;";<9 $3"4"7;;<8 439"9"4$;78
!$#"%&'%!$#$ 5C-(?5/-+/%B5,5)>?EB+/%(A+),-(-@) 434$==8;:: 434==78::9 438:""4;$= 43"9;=97;98
!$#=%&'%!$#$ -)(5A*5A@)%.+BB+%A5,C@),5 434448888 434$$88;; 6$3"74<=<7<9 643"87$<:8$:

Supplementary Table 3: Transition probability matrix in the joint Numbat HMM. t, copy number transition 
probability. p_s, phase switch probability. BAMP, balanced amplification. BDEL, balanced deletion.
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Supplementary Methods 
 
Derivation of the gene expression count model. Given a reference expression profile 𝜆∗"""⃗ =
 (𝜆"∗ , 𝜆#∗ , … , 𝜆$∗ ), we can model the expression magnitudes of the observed cell or pseudobulk using the 
following additive equation: 
 

log 𝜆% = 𝜇 + log 𝜆%∗ + log𝜙 + 𝜖% ,    𝜖% ∼ 𝒩(0, 𝜎#) 
 
where the factors that influence expression magnitudes include fixed components 𝜇, 𝜆%∗, 𝜙 and the 
random noise component 𝜖%. Here 𝜆%∗ represents the baseline expression magnitude. 𝜇 captures the 
systematic bias in expression magnitudes between the reference and observation (e.g., global up or 
down transcriptional regulation), and 𝜙 captures the effect of chromosomal dosage.	𝜎# captures the 
expression variation in the comparison, which intuitively reflects the magnitude of differences between 
the reference and observation expression profiles (e.g., inter-individual differences if the reference is 
from the same cell type but a different subject, or cell type differences if the reference belongs to a 
difference cell type). Note that 𝜆%∗ and 𝜖% are gene-specific, since each gene in the observation has its 
own baseline expression level and transcriptional noise in the measurement. 𝜙 is shared between 
genes in the same copy number segment. 𝜇 and 𝜎# are shared across all genes and capture the global 
bias and variance between the reference and observation expression magnitudes. The model can be 
extended to incorporate gene-specific bias and variance when technical replicates of the reference and 
observation are available. Since we typically do not have access to technical replicates, we assume 
homoskedasticity and use the same set of 𝜇 and 𝜎# for all genes. 
 
We note that the expression magnitudes 𝜆% are not directly observed. Instead, we observe discrete 
counts 𝑋%, which can be assumed to follow a Poisson distribution with rate 𝜆%: 
 

𝑋% ∼ Pois(𝑙𝜆%) 
 
Here 𝑙 is the total library size. This gives rise to the following Poisson-Lognormal (PLN) mixture model 
as stated in Equation (1): 
 

𝑋% ∼ PoisLogNorm(𝜇 + log(𝑙𝜆%∗) + log𝜙 , 𝜎#) 
 
Reference gene expression profile. Since gene expression varies substantially across tissue and cell 
types, comparing the observed expression profile with the expected expression profile of the same 
tissue or cell type (without aneuploidy) can help reveal CNV signal. We denote the reference profile as 
𝜆∗"""⃗ =  (𝜆"∗ , 𝜆#∗ , … , 𝜆$∗ ) which pre-specifies the background expression magnitudes in the model described 
above. 𝜆∗"""⃗  can be obtained from the expression magnitudes estimated from a single reference cell type 
or a collection of reference cell types, which we can represent as matrix Λ∗ of dimension 𝑁 × 𝐶 where 𝐶 
is the number of reference cell types. While analyzing an observed pseudobulk expression profile, we 
can model the pseudobulk as a mixture of the reference cell types where the cell type proportions 
(denoted as 𝑤""⃗ ) are unknown. We therefore create 𝜆∗"""⃗  from a convex combination of Λ∗ that minimizes 
the least squared error between the two expression profiles in log scale: 
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𝑤""⃗ & = argminw(((⃗ || log(Λ∗𝑤""⃗ ) − logH�⃗�/𝑙J ||## 
Subject to: |𝑤""⃗ | = 1;𝑤* ≥ 0,  ∀𝑘 ∈ {1…𝐶} 

𝜆∗ = Λ∗𝑤""⃗ & 
 
where only genes with non-zero expression in the pseudobulk and reference profiles are considered in 
the optimization. For CNV evaluation in single cells, we choose a single best reference cell type that 
maximizes the correlation with the observed expression magnitudes after log(x + 1) transformation. By 
default, the Numbat package uses a collection of reference profiles from the Human Cell Atlas lung 
study1. In practice, the user may wish to provide custom reference profiles created from data generated 
from the same sequencing platform or within the same processing batch in order to minimize noise due 
to technical factors.  
 
Overdispersion parameter in the allele count model. We note that although the degree of 
overdispersion in allele counts can vary between genes, we do not have technical replicates of the 
same cell or cell populations to estimate gene-specific overdispersion. Therefore, the 𝛾 parameter in 
Equation (3) is shared across all genes: 
 

𝑌+ ∼ BetaBinomH𝑚+ , 𝜃𝛾, (1 − 𝜃)𝛾J 
 
If diploid regions are known, 𝛾 can be estimated using maximum likelihood for specific pseudobulk 
profiles. However, inference of diploid regions relies on detection of allelic imbalance. We therefore fix 
𝛾 = 20 which is suitable for most pseudobulk sizes, as estimated from the normal cells in the TNBC4 
dataset. 
 
Configuration of the Hidden Markov model. The 15 states in the haplotype-aware HMM and their 
respective parameter configurations are listed in the table below.  
 

State ID Copy number state Cell fraction Haplotype state log(𝜙) 𝜃 

1 Neutral - - 0	 0.5	
2 CNLoH  Low Major 0	 0.5 + 𝜃min	
3 CNLoH Low Minor 0	 0.5 − 𝜃min	
4 CNLoH High Major 0	 0.9	
5 CNLoH High Minor 0	 0.1	
6 Amplification Low Major log𝜙min	 0.5 + 𝜃min	
7 Amplification Low Minor log𝜙min	 0.5 − 𝜃min	
8 Amplification High Major log(2.5)	 0.9	
9 Amplification High Minor log(2.5)	 0.1	
10 Deletion Low Major - log𝜙min	 0.5 + 𝜃min	
11 Deletion Low Minor - log𝜙min	 0.5 − 𝜃min	
12 Deletion High Major -1	 0.9	
13 Deletion High Minor -1	 0.1	
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14 Balanced amplification - - log𝜙min	 0.5	
15 Homozygous deletion - - - log𝜙min	 0.5	

 
The set of parameters for each state is chosen to capture one or multiple copy number configurations 
that exhibit similar changes in expression magnitude and allele frequency at a given cell fraction and 
haplotype state. States with haplotype imbalance appear in pairs (e.g., states 2 and 3) that have 
opposite deviations of haplotype fractions, which correspond to major and minor haplotype states. For 
example, state pairs (2,3) and (4,5) respectively correspond to CNLoH at low and high cell fractions, 
whereas state pair (8,9) is aimed to capture multiple amplified states with high allelic imbalance (e.g., 
3:1, 4:1, 3:0, 4:0). In addition, we introduce fixed prior abundances to each of the states: π(𝑧) = {1 =
0.25, 2 = 0.125, 3 = 0.125, 4 = 0.125 ⋅ 10/"0, 5 = 0.125 ⋅ 10/"0, 6 = 0.125, 7 = 0.125, 8 = 0.125 ⋅ 10/"0,
9 = 0.125 ⋅ 10/"0, 10 = 0.125, 11 = 0.125, 12 = 0.125 ⋅ 10/"0, 13 = 0.125 ⋅ 10/"0, 14 = 0.25 ⋅ 10/1,
15 = 0.25 ⋅ 10/"0}.  
 
The allele-only HMM and the expression-only HMM are special cases of the joint HMM defined above. 
The allele-only HMM includes a subset of the states (1-5) and only uses the allele counts, whereas the 
expression-only HMM only uses the gene expression counts and does not allow transition between 
haplotype states. 
 
Detecting regions with clonal deletion. In samples with high tumor purity (e.g., tumor cell lines) 
without matched normal cells, heterozygous SNPs are challenging to identify in regions of LoH, leading 
to decreased power of detection. We therefore provide a separate HMM module to identify clonal 
deletions based on heterozygous SNP density when normal diploid cells are not available. The HMM 
allows two hidden states (neutral and clonal deletion), where each gene emits an expression read 
count 𝑋% and heterozygous SNP count 𝑉%. The emission probabilities of the expression read counts (𝑋%) 
follow the same definition in the joint HMM described before. We model the heterozygous SNP count 
per gene (𝑉%) using a Negative Binomial distribution: 
 

𝑉%|𝑍% = 𝑧 ∼ NBinom(𝑢2 ⋅ ℎ% , σ#) 
 
where ℎ% is the gene length in Mb, 𝑢 is the heterozygous SNP density per Mb, and 𝜎# is the variance in 
heterozygous SNP density along the transcriptome. We first fit a null model using the observed 
heterozygous SNP counts in all genes using maximum likelihood to obtain estimates 𝑢s  and 𝜎s#. We then 
let 𝑢neu = 𝑢s  and 𝑢del = 5. The transition probabilities are determined by a single parameter 𝑡. 
 
Identifying diploid regions. We use a graph-based clustering approach to identify genomic regions in 
the diploid (neutral) state from a given pseudobulk profile. First, regions of allelic imbalance are 
identified by the allele-only HMM and excluded. The remaining allelically balanced segments are 
assumed to be in even-valued copy number states2. We then perform a pairwise comparison of the log 
expression fold-change (logFC) of the balanced segments using Student’s t-test. We construct a graph 
where the nodes represent the balanced segments and the edges are determined by the adjusted P 
values (alpha level of 10-4) from the previous step. An edge connecting two segments means that their 
expression magnitudes are not significantly different, and that they likely occupy the same total copy 
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number state. We note that a clique in such a graph would be a collection of segments that are most 
coherent in total copy number. Consequently, the diploid segments can be inferred as the maximum 
clique with the lowest average logFC3. An extension of this procedure can be used to identify shared 
diploid regions in multiple pseudobulk profiles (e.g., representing different subclonal populations), 
where balanced segments are compared within each pseudobulk profile and a Simes’ test is used to 
determine edges in the graph. 
 
Initial approximation of single-cell phylogeny and subclonal structure. By default, Numbat builds 
an initial phylogeny using window-smoothed expression signals. First, normalized gene expression 
levels in transcript per million are log(x + 1)	transformed. The expression signals are then smoothed by 
a running mean procedure using a window size of 101 genes3. Hierarchical clustering (Ward’s minimum 
variance method) is then applied on the smoothed single-cell expression profiles to obtain a 
hierarchical cluster tree. Initial subtrees and subclones are determined by cutting the tree (cutree 
function in R) into 𝑘 groups (default: 𝑘 = 3). The initial number of subclones 𝑘 can be set based on prior 
knowledge of the number of subclones, which can be used to obtain more accurate approximations in 
the initial iteration. 
 
Obtaining consensus CNV events from cell subpopulations. To obtain consensus CNV segments 
from different cell subpopulations while leveraging their phylogenetic relationships, we apply the 
following heuristic procedure (Supplementary Fig. 10). First, HMMs are run independently on 
pseudobulk profiles formed from all possible subtrees in the phylogeny. Each CNV is represented as a 
node in a graph, and an edge is added between pairs of nodes if the two CNV segments significantly 
overlap (e.g., length of the overlap is more than 45% in either segment). The nodes are then grouped 
by connected components of the resulting graph. Within each component, the CNVs are ranked by 
likelihood evidence (combined LLR of expression and allele deviation). All CNVs (within the same 
component) from the pseudobulk profile that harbors the top event are kept as part of the consensus 
segments. For instance, let there be three cell populations where population 1 is the ancestor of 
population 2 and 3 (Supplementary Fig. 10). We aggregate cells by subtrees defined by each node 
(i.e., subpopulation) in the lineage hierarchy, so that pseudobulk 1 contains cells from all three 
populations, pseudobulk 2 contains cells from only population 2, and pseudobulk 3 contains cells from 
only population 3. Thus, HMM on each pseudobulk achieves joint copy number segmentation of cells 
under the same lineage, which may harbor common CNV breakpoints. Let A be an event called from 
pseudobulk 1 and B, C be events called in pseudobulk 2 and D be an event called in pseudobulk 3. 
This situation can arise when higher-resolution segmentations are produced by lower subtrees, which 
are purer in terms of clonal composition (e.g., pseudobulk 2). Event D could be an artifact that does not 
have strong evidence. The four events form a connected component in the graph due to the overlaps 
between (B,D), (A,D), (A,C), and (A,B). Since event B from pseudobulk 2 has the highest likelihood 
evidence and C is called from the same pseudobulk, we include both B and C in the consensus CNV 
call set. Lastly, we retest the remaining regions (detected as aberrant in any subtree but not covered by 
the consensus calls) in each subtree to obtain the final consensus CNV profile. 
 
Mutation placement on the phylogeny. Although the mutation placement on the single-cell phylogeny 
by maximum likelihood is optimal in terms of the goodness of fit, it is not necessarily the most 
parsimonious (i.e., it tends to produce intermediate genotypes for which there is not enough evidence in 
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order to gain better fit to the observed data). We therefore adopt the following refinement procedure to 
enforce evolutionary parsimony. After identifying the optimal mutation placement on the tree by 
maximum likelihood, we iteratively simplify the mutational history (i.e., reduce the number of 
evolutionary steps) by re-assigning a mutation to the same branch as another mutation that occurred 
directly upstream or downstream, effectively collapsing an internal branch. The cost for such re-
assignment is defined by the corresponding decrease in the genotype likelihood. We iteratively perform 
the least costly reassignment until a prespecified maximum cost threshold is reached. For example, if 
the maximum likelihood mutation assignment infers a mutation history of A → B → C, we simplify the 
mutation history as A,B → C or A → B,C (i.e., reassigning mutation B to the same branch as A or C, 
effectively collapsing the A → B branch or B → C branch) if there is no sufficient likelihood evidence to 
ascertain that mutation B was acquired after A or before C. In practice, we determine the maximum 
reassignment cost as a function of the number of cells (𝑛	 ⋅ 𝜏), where 𝜏 reflects the degree of parsimony 
in simplifying the phylogeny (default: 𝜏 = 	0.3). A higher 𝜏 produces a more simplified mutational history 
with fewer evolutionary steps and intermediate genotypes.  
 
The final phylogeny specifies not only the lineage relationship between cells but also the genotypes of 
each subclone (defined as a paraphyletic or monophyletic group in the phylogeny sharing the same 
mutation profile). The tumor lineage can be identified as the clade in the phylogeny with the highest 
mutation burden (total number of mutations across all cells in the clade). 
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