Supplementary Information

TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease

Do Hoon Kwon^{1,†}, Feng Zhang^{1,†}, Brett A. McCray², Shasha Feng³, Meha Kumar², Jeremy M. Sullivan², Wonpil Im³, Charlotte J. Sumner^{2.4} & Seok-Yong Lee^{1,*}

Affiliations:

 ¹ Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA.
² Department of Neurology, Johns Hopkins University School of Medicine, Baltimore,

² Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA

³ Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania, 18015, USA.

⁴ Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA

[†] These authors contributed equally.

*Correspondence to: S.-Y. Lee Email: seok-yong.lee@duke.edu Telephone: 919-684-1005

Supplementary Information

A. Supporting Information Figures S1-S11	2-19
B. Supporting Information Table S1	20
C. Source gel data.	21-22

Supplementary Fig. 1. Cryo-EM data processing summary

a, SDS-PAGE and western blot of purified TRPV4 show co-purified Rho GTPase. The results shown are representatives of $n \ge 6$ purifications and $n \ge 4$ western blots.

b, Cryo-EM reconstruction of GSK279-TRPV4-RhoA with C1 symmetry. The four RhoA densities (red) are equally strong, indicating that RhoA binds to each protomer of TRPV4.

c, General cryo-EM data processing procedure. Tasks performed in the RELION software are colored in orange and those in cryoSPARC in blue.

d, Representative micrographs of TRPV4-RhoA sample in vitreous ice and 2D classification images. Approximately 1 million particles of each dataset were selected and used for further 3D classifications.

e, Local resolution estimations.

f, Euler distribution plots.

g, Fourier shell correlation (FSC) curves of the final 3D reconstructions with different masks, as calculated in cryoSPARC.

h, Map-to-model correlation plots for both full and half maps.

	Switch I					
<mark>RhoA</mark>	MAAIRKKLVIVGDGACGKTCLLIVFSKDQFPEVYVPTV <mark>FENY</mark> VADIEVDGKQV <mark>E</mark> LALWDT	60				
RhoB	MAAIRKKLVVVGDGACGKTCLLIVFSKDEFPEVYVPTV <mark>FENY</mark> VADIEVDGKQVELALWDT	60				
RhoC	MAAIRKKLVIVGDGACGKTCLLIVFSKDQFPEVYVPTVFENYIADIEVDGKQVELALWDT 60					
		58				
k-Ras	MUTIKCVVVGDGAVGKICLLISITINKFPSEIVPIVFDNIAVIVMIGGEPIILGLFDI	оо 58				
K Kuo	<u>β1</u> α1 <u>β2</u> β3	00				
	Switch II					
		440				
RhoA	AGQEDYDRLRPLSYPDTDVILMCFSIDSPDSLENIPEKWTP-EVKHFCPNVPIILVGNKK	119				
RhoB	AGOEDYDRUKPLSIPDIDVILMCFSIDSDDSLENIPEKWVP-EVKHFCDNVDIILVANKK	119				
Rac1	AGOEDYDRURY LISTI DYDVILLACI SYDSY DSHLAVIY LIKWYY LEVRIN CYNYY YHVONKK AGOEDYDRURYLSYPOTDVFLICFSLVSPASFENVRAKWYP-EVRHHCPNTPIILVGTKL	117				
Cdc42	AGQEDYDRLRPLSYPQTDVFLVCFSVVSPSSFENVKEKWVP-EITHHCPKTPFLLVGTQI	117				
k-Ras	${\tt AGQEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHHYREQIKRVKDSEDVPMVLVGNKC}$	118				
	α2β4α3β5					
RhoA	DLRNDEHTRRELAKMKOEPVKPEEGRDMANRIGAFGYMECSAKTKDGVREVFEMATRAAL	179				
<mark>RhoB</mark>	DLRSDEHVRTELARMKQEPVRTDDGRAMAVRIQAYDYLECSAKTKEGVREVFETATRAAL	179				
RhoC	DLRQDEHTRRELAKMKQEPVRSEEGRDMANRISAFGYLECSAKTKEGVREVFE <mark>M</mark> ATRA <mark>G</mark> L	179				
Rac1	DLRDDKDTIEKLKEKKLTPITYPQGLAMAKEIGAVKYLECSALTQRGLKTVFDEAIRAVL	177				
Cdc42	DLRDDPSTIEKLAKNKQKPITPETAEKLARDLKAVKYVECSALTQKGLKNVFDEAILAAL	177				
K-Mas	DLPSRTVDTKQAQDLARS-YG1PF1ETSAKTRQRVEDAFYTLVRE1R	164				
	α4β6α6					
RhoA	QARRGKK-KSGCLVL 193					
RhoB	QKRYGSQ-N-GCINCCKVL 196					
RhoC Ree1	QVRKNKR-RRGCPIL 193					
Cdc42	CPPPVKKKKKCLLL I92					
k-Ras						

а

RhoA

RhoB

RhoC

Supplementary Fig. 2. Sequence alignment of the Rho GTPase family

a, Secondary structure elements based on RhoA are shown as gray cylinders (helices) and arrows (beta-strand). The Rho GTPase residues critical for TRPV4 interaction are highlighted: blue for backbone - M1, A3, E40, N41, pink for sidechain - R5, E54, D76, orange for hydrophobic - A2, F39, Y42, L69, P75, and red for subtype-specific sites M173 and A178. **b**, Close-up views of the α 6- β 5 region of Rho GTPase in the TRPV4 ARD-RhoA focused-map.

The dotted circles indicate cryo-EM density unaccounted for in the respective models for RhoB and RhoC. Gray mesh indicates cryo-EM densities contoured at 0.15 thresholding.

Supplementary Fig. 3. Cryo-EM data processing of the open state (GSK101) structure The detailed procedure for determining the open state GSK101-TRPV4-RhoA structure. The final cryo-EM reconstruction was resolved at a resolution of 3.47 Å for GSK101-TRPV4-RhoA, at 3.3 Å for the RhoA-ARD focused map, and at 3.5 Å for the TRPV4 focused map.

Supplementary Fig. 4. Representative cryo-EM density of the TRPV4-RhoA reconstructions

a-d, Representative cryo-EM densities for various structural elements in the reconstructions of GSK279-TRPV4-RhoA (**a**, blue and cyan), GSK101-TRPV4-RhoA (**b**, orange and pink), 4 α -PDD-TRPV4-RhoA, (**c**, light gold), and ligand-free-TRPV4-RhoA (**d**, green). The RhoA densities in the GSK279- and GSK101-bound reconstructions are from the focused-refined maps. EM densities are shown as gray meshes at thresholding of 0.23-0.25, 0.22–0.24, 0.17–0.19, and 0.16–0.18, respectively, in **a-d**.

Supplementary Fig. 5. Structural comparisons between human TRPV4 and frog TRPV4 a, Architecture of the human TRPV4 protomer and RhoA with subdomains indicated: ankyrin repeat domain (ARD), coupling domain (CD), transmembrane helices (S1-S6), pore helix (PH), TRP helix, C-terminal domain (CTD), and RhoA. Membrane-anchored lipid tail of RhoA is highlighted in blue.

b, Cylinder representation of the TMD of human TRPV4 in cyan.

c, Cryo-EM density (C1 symmetry) of the GSK279-TRPV4-RhoA complex with the domainswapping linkers (S4-S5 and S6-TRP) outlined, at thresholding 0.35.

d, Cylinder representation of the TMD of the truncated frog TRPV4 structure in green.

e, Comparison of the TMDs of the human TRPV4 and the frog TRPV4 structures viewed from the membrane plane. The linkers between S4 and S5 are highlighted.

f, The domain-swapping architectures of the human TRPV4, the rat TRPV1, and the human TRPV6 structures.

g, The non-domain-swapping architectures of the truncated frog TRPV4 and the mutated rat TRPV6 structures.

Supplementary Fig. 6. Effects of GSK compounds and osmolarity on TRPV4^{DM} and MD simulation of 4α-PDD binding poses

a, TRPV4^{DM} (VR4^{DM}) mean normalized concentration-response relations for 2-APB. Data are shown as mean \pm SEM (n = 4 oocytes). The curves are fit to the Hill equation with EC₅₀ = 312 \pm 12 μ M.

b,c, TRPV4^{DM} mutant shows preserved stimulated calcium influx responses. Averaged ratiometric calcium plots from ratiometric calcium imaging experiments. MN-1 cells were transfected with GFP-tagged TRPV4 plasmids and stimulated with (**b**) GSK101 (50 nM) or (**c**) hypotonic saline. Baseline and hypotonic saline-stimulated calcium responses were then measured over time and then averaged, n = 11 wells per condition, with 20-40 transfected cells per well. Data are shown as mean \pm SEM.

d, Probing the GSK101 binding site. Two-electrode voltage-clamp (TEVC) recordings of TRPV4^{DM} (N456H/W737R) and additional mutants made in the background of TRPV4^{DM}, as indicated. Currents at -60 mV were elicited by 2 mM 2-APB, then 5 μ M GSK101 was applied,

and 20 μ M ruthenium red (RR) was finally introduced, as indicated by colored horizontal lines. (Right) Summary of the ratio between currents activated by 2 mM 2-APB and 5 μ M GSK101, data are shown as mean ± SEM, for VR4 DM, Y553A/DM, N474A/DM, F524A/DM, n=7, 5, 5, 6 oocytes, respectively, *P* values are calculated by two-tailed Student's t test as shown in the figure.

e, Concentration-response curve for the effects of GSK279 on the 2 mM 2-APB-stimulated currents as a percent of the maximal inhibition response with the presence of 50 μ M RR. The values are expressed as a mean \pm SEM. n=4-5 oocytes for each data point, IC₅₀=379.8 \pm 32.2 nM.

f, Probing the inhibitor binding site. TEVC recordings of TRPV4^{DM} and additional mutants made in the background of TRPV4^{DM}, as indicated. Currents at -60 mV induced by 2 mM 2-APB then co-application of 4 μ M GSK279 followed by 20 μ M RR, as indicated by colored horizontal lines.

g, Ligplot⁹⁴ schematics of the 4α -PDD interaction with TRPV4, with key chemical positions labelled. Pink colored residues are involved in both GSK101 and GSK279 bindings.

h, Cryo-EM densities (gray mesh) for the C-terminal tail of 4α -PDD (violet stick). Densities are contoured at 0.28 thresholding.

i, Illustration of ligand-binding poses of 4α -PDD: pose I (left), pose II (middle), and pose III (right).

j, Ligand RMSD values of 4α -PDD pose I show large deviations from the initial configuration with an average RMSD of 3.53Å (left). Ligand RMSD values of 4α -PDD pose II show large deviations from the initial configuration with an average RMSD of 3.65Å (middle). Ligand RMSD values of 4α -PDD pose III show relatively stable ligand binding with an average RMSD of 2.55 Å, except for one outliner ligand, rep2-D, which stumbles out of the pocket (right). Source data for (**a-f**) are provided as a Source Data file.

Supplementary Fig. 7. Comparisons of structures of RhoA in complex with TRPV4 and published structures of RhoA alone

a,**b**, Close-up view at the nucleotide binding site of RhoA in 3D reconstructions of GSK279-TRPV4-RhoA-GDP (**a**) and GSK101-TRPV4-RhoA-GTP γ S (**b**) at thresholding 0.17 and 0.135, respectively. Nucleotides are shown as sticks.

c, Comparison of the conformations of RhoA in GSK279-TRPV4-RhoA-GDP and GSK101-TRPV4-RhoA-GTPγS. Nucleotides are shown as sticks.

d, Comparison of RhoA conformations in GSK279-TRPV4-RhoA-GDP (blue), GDP-bound RhoA alone (PDB-1FTN, green), and GTPγS-bound RhoA alone (PDB-1A2B, gold). Nucleotides are shown as sticks and magnesium ions are shown as spheres.

e, Interaction of TRPV4-ARD and RhoA. The salt bridge between R232 and E183 in TRPV4 appears to be important for RhoA binding. Underlined residues located in RhoA, and annotated residues indicate disease-causing mutations. The red and black dotted lines indicate salt bridges and hydrophobic interactions, respectively.

f, Comparison of the interaction interface between GSK279-TRPV4-RhoA-GDP and GSK101-TRPV4-RhoA-GTPγS.

	E183*	
hTRPV4	LFDIVSRGSTADLDGLLPFLLTHKKRLTDEEFREPSTGKTCLPKALLNLSNG	205
hTRPV1	IFEAVAQNNCQDLESLLLFLQKSKKHLTDNEFKDPETGKTCLLKAMLNLHDG	169
hTRPV2	LFNAVSRGVPEDLAGLPEYLSKTSKYLTDSEYTEGST <mark>GKTCL</mark> MKAVLNLKDG	130
hTRPV3	IFAAVSEGCVEE <mark>L</mark> VELLVELQELCRRRHDEDVPDFLMHKLTASDT <mark>GKTCL</mark> MK <mark>ALL</mark> NINPN	182
hTRPV5	LLRASKENDLSV <mark>L</mark> RQ <mark>L</mark> LLDCTCDVRQRGAL <mark>GETAL</mark> HIAALYDN	91
hTRPV6	LLLAAKDNDVQA <mark>L</mark> NK <mark>L</mark> LKYEDCKVHQRGAM <mark>GETAL</mark> HI <mark>AAL</mark> YDN	131
	AR1 AR2	
	α1 α2 α3	
	R224 R232* R237* D263	
hTRPV4	RNDTIPV <mark>L</mark> LDIAERTGNM <mark>R</mark> EFINSPF <mark>R</mark> DIYY <mark>R</mark> GQTALHIAIERRCKHYVELLVAQGADVH	265
hTRPV1	QNTTIPL <mark>L</mark> LEIARQTDSLKELVNASYTDSYYK <mark>G</mark> QT <mark>ALHIA</mark> IERRNMALVTL <mark>L</mark> VENG <mark>ADV</mark> Q	229
hTRPV2	VNACILP <mark>L</mark> LQIDRDSGNPQPLVNAQCTDDYYR <mark>GHSALHIA</mark> IEKRSLQCVKLLVENG <mark>ANV</mark> H	190
hTRPV3	TKEIVRI <mark>L</mark> LAFAEENDILGRFINAEYTEEAYE <mark>GQTALNIA</mark> IERRQGDIAALLIAAG <mark>ADV</mark> N	242
hTRPV5	LEAA-LVLMEAAPELVFEPTTCEAFAGQTALHIAVVNQNVNLVRALLTRRASVS	144
hTRPV6	LEAA-MVLMEAAPELVFEPMTSELYEGQTALHIAVVNQNMNLVRALLARRASVS	184
	AR3	
	α4 α5 α6 —	
	R269* R315* R316*	
hTRPV4	AQARGRFFQPKDEGGYFYFGELPLSLAACTNQPHIVNYLTENPHKKADMRRQDSRGNTVL	325
hTRPV1	AAAHGDFFKKTKGRPGFYFGELPLSLAACTNQLGIVKFLLQNSWQTADISARDSVGNTVL	289
hTRPV2	ARACGRFFQK-GQGTCFYFGELPLSLAACTKQWDVVSYLLENPHQPASLQATDSQGNTVL	249
hTRPV3	AHAKGAFFNPKYQHEGFYFGETPLALAACTNQPEIVQLLMEHEQTDITSRDSRGNNIL	300
hTRPV5	ARATGTAFRR-SPRNLIYFGEHPLSFAACVNSEEIVRLLIEHGADIRAQDSLGNTVL	200
hTRPV6	ARATGTAFRR-SPCNLIYFGEHPLSFAACVNSEEIVRLLIEHGADIRAQDSLGNTVL	240
	AR4	
	α7 α8	
	UNIT WAT A DAMPENMUNUMUNUT TI TUCADI EDDONI DAVI MADALODI MAAAMOUTAT	295
	HALVAIADNTRENTREVTCMUDELLALCARLEPDSNLEAVLNNDGLSPLMMAARTGRIGI	340
	HALVEVADNTADNTAFVTSMINETEMEGANENPTEKEEEEINKKGMIPLALAAGTGKIGV	300
htpd//3		356
htpp://s	HILLIO PNKTEACOMYNILL SYDCHODHLOPLDI URNHOGI TEDELARMAGARET	255
	HILLIQPRATRACOMINLLISIDGRGDHLOPIDLVPNRQGLIPFALAGVEGNIVM	200
IIIKEVO		200
hTRPV4	FOHITRREVTD 396	
hTRPV1	LAYILOREIOE 360	
hTRPV2	FRHILOREFSG 320	
hTRPV3	LKYILSREIKE 367	
hTRPV5	FOHLMOKRRHI 266	
hTRPV6	FOHLMOKRKHT 306	
	α12	

Supplementary Fig. 8. Sequence alignment of the ARDs in human TRPV channels

The α -helices are shown as gray cylinders, well-conserved residues are highlighted in yellow (identical) and gray (similar), and key residues for TRPV4 interaction are colored in red. Asterisks indicate residues mutated in TRPV4-mediated neuromuscular disease.

Supplementary Fig. 9 Inhibition of the interaction between TRPV4 and RhoA by RhoA inhibitors and mutations at the interface

a, Co-immunoprecipitation of HEK293T cells transfected with TRPV4-FLAG and RhoA-GFP with or without treatment with the RhoA inhibitor C3 transferase (0.5 μ g/ml) for 12 hours demonstrates reduced TRPV4-RhoA interaction.

b, Quantification of densitometry of TRPV4 bands on western blots, n = 4 (control) and 6 (C3 transferase). ****p<0.0001. *P* value was calculated using two-tailed unpaired t test. Data are shown as mean \pm SEM.

c, Averaged ratiometric calcium plots from ratiometric calcium imaging experiments. MN-1 cells were transfected with GFP-tagged TRPV4 plasmids and treated with C3 transferase (1 μ g/ml) or vehicle for 2 hours and then stimulated with hypotonic saline. Baseline and hypotonic saline-stimulated calcium responses were then measured over time and then averaged, n = 11 wells per condition for control and 12 wells per condition for C3 transferase, with 20-40 transfected cells per well. Data are shown as mean ± SEM.

d, Quantification of densitometry of TRPV4 bands on western blots, n = 3 independent experiments for each set of mutants. Data are shown as mean \pm SEM.

e, Representative western blot of co-immunoprecipitation of TRPV4-GFP and RhoA-Myc expressed in HEK293T cells, 1:2 ratio, IP: anti-Myc. Cells were treated with the indicated concentrations (μ M) of GSK101 for 10 minutes prior to lysis. The experiment was performed three times with similar results. Data are presented as means ± SEM. Source data for (**b-d**) are provided as a Source Data file.

Supplementary Fig. 10. Image processing workflow for the RhoA-bound fraction analysis a, Data processing workflow of GSK279-TRPV4-RhoA dataset for the purpose of the RhoAbound fraction analysis. 3D reconstruction thresholding of 0.58.

b, Data processing workflow of GSK101-TRPV4-RhoA dataset for the purpose of the RhoAbound fraction analysis. The red- and blue-outlined subsets indicate the RhoA-bound fraction and RhoA-unbound fraction, respectively. 3D reconstruction thresholding of 0.58.

c, Class distributions of particles for GSK279-TRPV4-RhoA.

d, Class distributions of particles for GSK101-TRPV4-RhoA.

Supplementary Fig. 11. RhoA binding stability to TRPV4 ARD in the MD simulations a, A representative snapshot at the end of 800-ns simulation of GSK279-TRPV4-RhoA complex. RhoA proteins stay bound to TRPV4.

b, A snapshot at the end of 800-ns simulation of GSK101-TRPV4-RhoA complex where the RhoA protein flips up and loses the majority of the polar contacts with TRPV4. Inset shows the residues that are in contact, a few polar contacts remain in the flip-up configuration. prenylated tail of RhoA interacts with hydrophobic residues of S2 helix.

c,d, Center-of-mass distance between RhoA and TRPV4 ARD as a function of time for both GSK279-bound (c) and GSK101-bound (d) states. In the case of GSK101-bound, one replica site shows persistent RhoA fluctuations and ends up in the flip-up pose.

	TRPV4-RhoA GSK2798745 (EMDB-28975) (PDB-8FC7)	TRPV4 GSK1016790A (EMDB-28976) (PDB-8FC8)	TRPV4-RhoA GSK1016790A (PDB-8FCB)	TRPV4-RhoA ligand-free (EMDB-28977) (PDB-8FC9)	TRPV4 4α-PDD (EMDB-28978) (PDB-8FCA)
Data collection and processing					
Magnification	81,000	81,000		81,000	81,000
Voltage (kV)	300	300		300	300
Electron exposure (e⁻ /Ų)	60	60		60	60
Defocus range (µm)	-0.8 to -1.8	-0.8 to -1.8		-0.8 to -1.8	-0.8 to -1.8
Pixel size (Å)	1.08	1.08		1.08	1.08
Symmetry imposed	C4	C4		C4	C4
Initial particles images (no.)	2,111,563	8,119,132		3,412,804	4,418,471
Final particles images (no.)	119,462	73,349	207,645	172,225	244,007
Map resolution (Å)	3.3	3.52	3.43	3.75	3.45
FSC threshold	0.143	0.143	0.143	0.143	0.143
Refinement					
Initial model used (PDB code)	TRPV1 (7LP9) RhoA (1FTN)	PDB-8FC7	PDB-8FC7	PDB-8FC7	PDB-8FC7
Map sharpening B factor (Å ²) Model composition	-136	-160	-183	-195	-165
Non-hydrogen	25,716	19,768	25,232	21,812	18,460
Protein residues	3,284	2,468	3,228	3,092	2,400
Ligands	12	8	12	0	8
<i>B</i> factors(Å ²)					
Protein	89.95	82.56	101.89	136.85	91.41
Ligand	68.98	50.97	44.81	-	62.40
R.m.s deviations					
Bond lengths (Å)	0.004	0.003	0.004	0.004	0.005
Bond angles (°)	1.077	0.568	0.967	0.562	0.649
Validation					
MolProbity score	1.58	1.17	1.39	1.06	1.33
Clashscore	5.47	2.35	4.14	3.81	6.01
Poor rotamers (%)	0	0.19	0.16	0.22	0
Ramachandran plot					
Favored (%)	95.83	97.15	96.85	98.56	98.32
Allowed (%)	4.17	2.85	3.15	1.44	1.68
Disallowed (%)	0	0	0	0	0

Supplementary Table 1. Cryo-EM data collection, refinement, and validation statistics.

Anti-RhoA

Anti-RhoB

Anti-RhoC

RhoA: (1:1000, Cell Signaling Technology, 2117) RhoB: (1:1000, Cell Signaling Technology, 2098) RhoC: (1:1000, Cell Signaling Technology, 3430)

Source Data for Supplementary Fig. 1a.

The uncropped gel and blots used in Supplementary Fig. 1a are shown.

Source Data for Supplementary Fig. 9a.

The uncropped blots used in Supplementary Fig. 9a are shown.

P-ERK (1:1000, Cell signaling, 9101)

Source Data for Supplementary Fig. 9e.

The uncropped blots used in Supplementary Fig. 9e are shown.