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A.  Supplementary Tables 

Supplementary Table 1. Comparison of ML approaches for analyzing diagnostic test image 

data.   

 

Assay format 

that generates 

diagnostic test 

image data  

Hardware 

complexity 

Exemplary 

reference 

ML model Number of 

training 

images 

Real-time 

operation 

requirement 

Performance 

Microfluidic High 1 CNN 15,057   

Microfluidic High 2 Domain 

adaptation, 

episodic 

training (no 

few-shot 

learning) 

1000s of 

unlabeled 

images  

  

LFA Low 3 CNN 4000 to 

6000 

Manual user 

alignment of 

images 

95% 

sensitivity, 

95% 

specificity 

LFA Low 4 CNN 498  100% 

sensitivity, 

96% 

specificity 

LFA Low 5 CNN ~3000  98.9% 

sensitivity 

LFA Low Current study Few-shot 

learning, 

with 

episodic 

training 

20 Automated 

image pre-

processing 

(demonstrated 

with data 

collection from 

field site) 

99% 

sensitivity, 

99% 

specificity 
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Supplementary Table 2. Smartphone-based diagnostics comparison table 

 

Test 

type 

Hardware 

requirement 

category 

Specific 

hardware 

requirement 

No. of 

training 

images from 

target 

domain 

Real-time 

result 

generation 

(within 

seconds) 

References 

Paper-

based 

assays 

External 

kit/phone 

holder and 

custom optics 

3D printed 

enclosure with 

embedded 

lighting system 

2291 Yes 6 

3D printed 

enclosure with 

LEDs and 

external lens 

~200 Yes 1,7 

Enclosure with 

real-time 

camera reader 

N/A Yes 8 

External 

kit/phone 

holder 

3D printed 

platform to 

hold 

smartphone and 

rapid test kit 

N/A Yes 9 

Black 

cardboard box 

to hold test kits 

and smartphone 

N/A No 10 

LFA casette 

modifications 

Cassette sticker 

for detection 
N/A Yes 11 

No hardware 

requirement 

None 650 Yes 12,13 

None N/A Yes 14  

None 476 Yes 15  

None 498 Yes 4 

None ~3000 Yes 5 

None 4000 to 6000 Yes 3 

None 10 to 20 Yes This work 
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Supplementary Table 3. Assay kit parameters. Summary of manually measured parameters 

for each of the assay kits. 

 

Kit name Designation No. of zones 

per kit 

Kit aspect 

ratio 

Membrane 

aspect ratio 

Zone aspect 

ratio 

EcoTest Base 3 0.29 0.21 3.23 

Flowflex New 2 0.28 0.22 2.94 

DeepBlue New 2 0.28 0.19 2.17 

Jinwofu New 2 0.30 0.21 3.03 

ACON IgG/IgM New 3 0.28 0.21 2.86 

EcoTest housing 2 New 3 0.53 0.21 3.13 
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Supplementary Table 4. Dataset split of training and evaluation sets for 5 new kits. The 

train and evaluation dataset sizes in terms of cropped zone images and membranes for the five 

new assay kits. 

 

 Flowflex DeepBlue Jinwofu ACON IgG/IgM 
EcoTest 

housing 2 

 Zone Memb. Zone Memb. Zone Memb. Zone Memb. Zone Memb. 

Positive class 

(train) 
149 50 125 25 146 50 182 63 20 5 

Negative 

class 

(train) 

51 49 75 75 54 46 118 37 10 5 

Positive 

class 

(evaluation) 

304 83 244 60 164 60 386 126 66 21 

Negative 

class 

(evaluation) 

142 138 124 124 44 44 193 67 6 3 
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Supplementary Table 5. Patient survey results after COVID-19 drive through Study. Note 

that 21 (53%) antigen testing participants and 25 (78%) antibody participants opted to complete 

the survey.  

 

 Antigen  Antibody  Total 

Education Level  Number (%) Number (%) Number (%) 

Doctorate 1 (5%) 0 (0%) 1 (2%) 

MS 1 (5%) 5 (20%) 6 (13%) 

BS/BN 16 (76%) 14 (56%) 30 (65%) 

High School or below 3 (14%) 6 (24%) 9 (22%) 

Age Number (%) Number (%) Number (%) 

18-29 4 (19%) 0 (0%) 4 (9%) 

30-39 4 (19%) 4 (16%) 8 (17%) 

40-49 1 (5%) 4 (16%) 5 (11%) 

50-59 6 (29%) 5 (20%) 11 (24%) 

60-69 3 (14%) 9 (36%) 12 (26%) 

70-79 3 (14%) 3 (12%) 6 (13%) 
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Supplementary Table 6. Patient demographics for comparative assessment (n=23).  

 

Education Level  Number (%) 

Doctorate 5 (22%) 

MS 7 (30%) 

BS/BN 6 (26%) 

High School or below 4 (17%) 

Declined to answer 1 (4%) 

Age Number (%) 

18-29 8 (35%) 

30-39 5 (22%) 

40-49 4 (17%) 

50-59 5 (22%) 

60-69 1 (4%) 

70-79 0 (0%) 
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Supplementary Table 7. Details on contrived specimens utilized in comparative assessment 

study. Dilutions are based off the limit of detection (LoD) for the ACON FlowFlex test as 

reported the manufacturer (2500 TCID50/mL). 

 

Specimen Dilution Level Concentration (TCID50/mL) 

High positive titer  10 x LoD 25000 

Medium positive titer  7 x LoD 17500 

Low positive titer  3 x LoD 7500 

2 x LoD 5000 

1x LoD 2500 
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Supplementary Table 8.  Number of kits visually interpreted by participants in 

comparative analysis.  Two participants were excluded due to failure to meet the English 

speaking requirement.  

 

Participant number Number of test kits compared  

1 4 

2 4 

3 4 

4 4 

5 4 

6 3 

7 3 

8 2 

9 2 

10 1 

11 6 

12 6 

13 5 

14 6 

17 6 

18 6 

19 6 

20 6 

21 4 

22 3 

23 4 

24 4 

25 8 
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Supplementary Table 9. Mean classification accuracy scores using bootstrapping. The mean 

accuracy values were determined by carrying out 20 trials of bootstrap sampling with 10-shot 

adaptation (20 zone images) on the new kit’s training dataset and evaluating the performance on 

the evaluation dataset. Data is represented as mean ± standard deviation. 

 

Kit name Zone accuracy (%) Kit accuracy (%) 

Flowflex 99.6  0.2 99.3  0.3 

DeepBlue 99.3  0.2 98.6  0.4 

Jinwofu 99.6  0.4 99.2  0.7 

ACON IgG/IgM 98.4  0.5 95.3  1.3 
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Supplementary Table 10. Performance summary of AutoAdapt POC approach on ABON 

HIV image dataset. Confusion matrix of fold number 6.  9 negative membranes were classified 

as invalid and are not listed in the table.   

                                      Label                     

Prediction  

Positive Negative 

Positive (TP) 

259 

(FP) 

31 

Negative (FN) 

3 

(TN) 

4100 
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Supplementary Table 11.  Mean IoU scores using bootstrapping. The mean IoU scores for 

each of the new kit images, except for the EcoTest housing 2, was obtained by carrying out 

bootstrap sampling and obtaining three resamples. Each sample had ten randomly chosen images 

from a labelled pool of 30 images for training and the performance was evaluated on a fixed 

evaluation set of ten images. Due to a limitation on the available images only a single sampling 

was used for the EcoTest housing 2. Data is represented as mean ± standard deviation. 

 

Kit name IoU score 

Flowflex 0.92 ± 0.01 

DeepBlue 0.91 ± 0.01 

Jinwofu 0.91 ± 0.08 

ACON IgG/IgM 0.92 ± 0.01 
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B.  Supplementary Figures 

 

 

Supplementary Figure 1. Workflow for membrane extraction and rotation 

correction. The assay kit image is passed through the instance segmentation model Mask R-

CNN. The kit and membrane segmentation masks are obtained and binarized. The kit or the 

membrane mask is used for quadrilateral approximation and rotation estimation in the image, and 

the membrane mask is used to extract the membrane from the input image. The estimated 

rotation value is used to correct the perspective of the extracted membrane. Largest rectangle 

estimation is carried out to remove the black pixels in the rotation-corrected membrane to retain 

only the relevant pixels 
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Supplementary Figure 2. Illustration of different IoU scores for membrane segmentation. 

Images shown are of the EcoTest (base kit) with the membrane segmentation mask overlaid on 

the zoomed-in image of the membrane. For each membrane image, segmentation masks 

corresponding to different IoU scores are shown with the score listed below the image. 
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Supplementary Figure 3. Excerpt for Instructions for Use for ACON Flowflex.  Non-experts 

consulted these instructions before visual interpretation of the bands, in the comparative 

assessment study.  (https://www.fda.gov/media/152698/download)  

 

https://www.fda.gov/media/152698/download
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Supplementary Figure 4: Subset of test kit images captured in comparative analysis study using 

contrived samples. Titers of “high”, “medium”, and “low, corresponded to target tissue culture 

infectious dose of 25,000, 17,500, and <7500 dilution factors, respectively. Highlighted in green 

is the test kit that triggered the false-negative reading with the algorithm compared to non-expert 

(interpreted as negative by the non-expert)  
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Supplementary Figure 5. Sample data display dashboard for real-time population disease 

surveillance. The sample dashboard displays graphical plots for tracking user demographic data 

in real-time using the results generated by the AutoAdapt POC pipeline.  
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C.  Supplementary Methods 

 

Image acquisition and processing based on Mask R-CNN 

 

The image processing workflow starts with an image of the assay kit being taken by the 

user through the SMARTtest application13 in a fixed portrait orientation.  This image is saved in 

an AWS S3 bucket as an JPEG image from the frontend, and the corresponding URL is sent to 

the AWS Lambda Function.  The function reads the image data, stores the original resolution 

image in a copy, and resizes the image while preserving the aspect ratio by capping the height of 

the image to a maximum of 800 pixels. The membrane is localized in the resized image using the 

instance segmentation model Mask RCNN (Supplementary Figure 1), and the predicted 

bounding box coordinates in the resized image are then transformed to the corresponding 

coordinates in the image of the original resolution to get the highest possible resolution of the 

membrane which is then sent to the classifier. 

 

 Mask R-CNN16 builds on top of the preceding Faster R-CNN17 and Fast R-CNN18 models 

and combines them with a fully-convolutional network (FCN) and introduces object mask 

prediction (i.e., segmentation19) in parallel to bounding box regression. Given an input image, the 

model extracts feature maps via a pretrained deep neural network (e.g., VGG16), and 

subsequently passes these in parallel through a ROI-specialized pooling layer followed by 

several fully-connected layers and an FCN.  The instance segmentation model has been trained 

for two object classes: the kit and the membrane. The model outputs i) detection scores, ii) 

bounding boxes, and iii) segmentation masks of a maximum of 100 objects. The bounding box 
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defines a rectangular area that contains the assay kit or the membrane. The segmentation mask 

includes all the pixels that correspond to the actual area of the assay kit or the membrane and do 

not necessarily have to be rectangular in shape. From all the detected objects we retain 

information for a kit and membrane object with the highest detection score greater than 0.9. 

Supplementary Figure 2 illustrates different IoU scores and the corresponding membrane 

segmentation masks for the EcoTest (base kit). 

 

 The bounding boxes and segmentation masks of the kit and membrane with the highest 

detection score are retrieved and a binary segmentation mask is generated for both kit and 

membrane. Next, the rotation angle is estimated by performing contour detection on the 

segmentation mask of the kit and membrane, and approximating a minimum-area quadrilateral 

mask whose corner coordinates can be used to construct a right-angle triangle. In particular, the 

coordinates of the bottom and top points of the left edge are first obtained, (i.e., (𝑖𝑙𝑏 , 𝑗𝑙𝑏) and 

(𝑖𝑙𝑡, 𝑗𝑙𝑡)), to estimate the angle by arctan⁡
𝑗𝑙𝑏−𝑗𝑙𝑡

𝑖𝑙𝑏−𝑖𝑙𝑡
⁡. As an alternative, we can also use the right edge 

to estimate the angle and then use the average of the two estimated angles as the final estimated 

angle. 

 

The membrane is cropped from the input image with the binary segmentation mask, and 

is subsequently rotated by the estimated angle. The rotated membrane will have black regions if 

the estimated angle is greater than zero, and the largest rectangle that doesn’t include any black 

pixels is estimated and extracted as the final membrane to be sent to the classifier. Additionally, 

we have the capability to compute the homography matrix20 between the predicted segmentation 
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mask and bounding box of the kit, and use it to transform the kit of the image to correct for 

distortion along the pitch axis. 

 

Pre-processing of zone images for classification 

 

As we use the model pre-trained on ImageNet1K as the initialization for our feature 

extractor, we need to follow the pre-defined image normalization function used in pre-processing 

ImageNet1K. Specifically, we normalize the pixel values by 𝑖′ =
𝑖 − 𝑚𝑒𝑎𝑛𝑐

𝑠𝑡𝑑𝑐
⁄  according to 

the channel where 𝑖 is the original pixel value and (𝑚𝑒𝑎𝑛𝑐, 𝑠𝑡𝑑𝑐) varies for different channels. 

For the channel R, G, and B, the corresponding (𝑚𝑒𝑎𝑛𝑐, 𝑠𝑡𝑑𝑐) are (125.3, 63.0), (123.0, 62.1) 

and  (113.9, 66.7). However, as mentioned before, our approach does not require image 

calibration and does not perform any other hand-craft pre-processing steps (e.g., white balancing, 

shadow removal). 

 

Summary of training loss 

 

 Mean Squared Error (MSE): Given the predicted image 𝐼𝑒̂ ∈ ℛℎ×𝑤 and the ground truth 

edge-enhanced image 𝐼𝑒 ∈ ℛℎ×𝑤 where (ℎ, 𝑤) = (100,64) are the height and width of the 

image. Then, the loss is 

ℒ𝑀𝑆𝐸(𝐼𝑒 , 𝐼𝑒̂) =
1

ℎ𝑤
∑ (𝐼𝑒(𝑖, 𝑗) − 𝐼𝑒̂(𝑖, 𝑗))

2

1≤𝑖≤ℎ,1≤𝑗≤𝑤
 

(1) 

Cross Entropy Loss (CE): Given the output of the binary classifier [𝑙+, 𝑙−] and the  

ground truth class label 𝑦 ∈ {0,1}, the loss function is defined as  
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ℒ𝐶𝐸([𝑙+, 𝑙−], 𝑦) = 𝑦 ⋅ log(𝑝+) + (1 − 𝑦) log(𝑝−) (2) 

where 𝑝+ =
exp(𝑙+)

exp(𝑙+)+exp(𝑙−)
 and 𝑝− =

exp(𝑙−)

exp(𝑙+)+exp(𝑙−)
. 

 Supervised contrastive loss (SupCT) compares a set of features 𝓧 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝑸} ∈

ℛℎ×𝑑 extracted from the zone images {𝐼𝟏, 𝐼𝟐, … , 𝐼𝑸} paired with class labels {𝑦𝟏, 𝑦𝟐, … , 𝑦𝑸}, 

where 𝑑 is the dimension of each feature. Then, for each sample 𝒙𝑖, the contrastive loss is 

defined as  

ℒ𝑆𝑢𝑝𝐶𝑇(𝒙𝑖,𝓧) =
∑ 𝟏𝑦𝑖=𝑦𝑗 exp𝒙𝑖 ⋅ 𝒙𝑗

𝑻
𝑗∈{1,2,…,𝑄},𝑗≠𝑖

∑ exp𝒙𝑖 ⋅ 𝒙𝑗
𝑻

𝑗∈{1,2,…,𝑄},𝑗≠𝑖

 
(3) 

where 𝟏𝑦𝑖=𝑦𝑗 is an indicator function, i.e.,  1 if 𝑦𝑖 = 𝑦𝑗 ⁡and 0 otherwise. 

 We note the parameters within the deep neural network (feature extractor, classifier, and 

decoder) are not manually set, but updated through gradient backpropagation and chain rule 

where the gradient is obtained by minimizing the corresponding losses mentioned above. Thus, 

by varying the hyper-parameters such as training epochs and learning rate listed below, the 

parameters will be different. 

 

Hyperparameter Selection 

 

Instance segmentation model structure. We used the ResNet50 CNN as the backbone of 

the Mask R-CNN and pretrained it on the ImageNet1K dataset for model initialization. The 

backbone has been trained on ImageNet1K as a fully-supervised image classification task among 

1,000 classes. We used a hidden layer size of 256 for the mask predictor. 
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Instance segmentation training. We used 50 epochs and Adam optimizer for all of the 

training processes. We pretrained the model on a training subset of 50 images of the base kit with 

a learning rate of 5E-5 and achieved an IoU score of 0.93 on an evaluation set of ten images. We 

then finetuned the model on the new assay kits with a learning rate of 5E-6 using 10 training 

images and evaluated the performance on 10 evaluation images. We used the following train-

time augmentations: (i) horizontal flip, (ii) scaling, (iii) aspect-ratio modification, (iv) brightness 

adjustment, (v) contrast adjustment, (vi) hue adjustment, (vii) saturation adjustment, (viii) color 

distortion, (ix) jitter addition, (x) cropping, (xi) padding, and (xii) Gaussian noise addition. 

Supplementary Table 11 shows the results from the test of robustness of the instance 

segmentation model using bootstrapping. 

 

For training the instance segmentation model on the ABON HIV test we finetuned the pre-

trained instance segmentation model on 75 images of the test kit. Hyperparameters used during 

finetuning are the same as described in the Hyperparameter Selection section. It is important to 

note that the images from this dataset only featured the membrane as opposed to the entire test kit 

as in other assay kits. Although no architectural change was needed, minor differences were 

introduced for the adaptation in the post-processing stage of the instance segmentation model. First, 

we discarded all model outputs (detection scores, bounding boxes, and segmentation masks) for 

the kit object class and retained model outputs only for the membrane object class. Consequently, 

the rotation angle is estimated only on the segmentation mask of the membrane.  

 

Classification model structure. We used the ResNet18 CNN as the feature extractor and 

pretrained the model on the ImageNet1K dataset for model initialization21. The feature extractor 
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has been trained on ImageNet1K as a fully-supervised image classification task among 1,000 

classes. As shown in Figure 2a, during the pretraining on base kit images, classifier is 

configured as a fully connected layer (top output) and the decoder is configured as a stack of 

three deconvolution layers (bottom output). 

 

Classification model pre-training. Given a training set, all the images were fed into the 

model in sequence and the loss was calculated for both gradient backpropagation and for 

updating the model. A single epoch is completed when the model has seen all the images once. 

90 epochs were run in our training process. The performance of the model on the validation 

dataset was determined after each epoch and the model achieving the highest accuracy was 

selected. 

 

Classification model adaptation & fine-tuning. The network was trained for 100 epochs 

for each of the new kits with a learning rate of 0.001. Within each epoch, we sample 30 episodes 

and set Q (number of samples per class) as 32 for each episode. The feature extractor was tuned 

with a learning rate of 0.0001. Adam optimizer was used for the network parameter update of 

both the feature extractor and the classifier. The inbuilt PyTorch image transformation functions 

were used, namely: 1) horizontal flip, 2) Random Rotation, 3) Color Jitter (including grayscale).  

Supplementary Table 6 shows the results from the test of robustness of the adapted model on 

the 4 new test kits using bootstrapping. 

 

Classification model training from scratch. Similar to the initialization step before self-

supervision, a ResNet18 CNN is used as the feature extractor which has been trained with the 
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ImageNet1K dataset as a fully-supervised image classification task. The network is then trained 

on the training images of the new assay kit with Adam optimizer and a learning rate of 0.001. 

The same transformation functions used for the adaptation were used here. 

Threshold determination and ambiguity region description  

 

We devised an ambiguity region to evaluate the distribution of detection scores 

(probability of positive class). The ambiguity region is bounded by the detection score thresholds 

such that an image will be correctly classified only if the probability of the ground truth class is 

high.  The thresholds can be either manually set or statistically estimated with 95% area under 

the curve. We checked the detection scores of all the images in the evaluation dataset against the 

ambiguity regions and those images with scores falling in ambiguity region were not classified.  

We computed the percentage of images that were categorized as ambiguous as well as the 

accuracy over the images that were classified.  Since the detection score for the false predictions 

were close to 0.5, they fell into the ambiguity region. Therefore, by using this concept of the 

ambiguity region we were able to treat most of the failure cases as ambiguous while keeping the 

number of true predictions that fell into the ambiguity region to a minimum. This further 

increased the classification accuracy among the classified samples consistently over four new 

target kits.   

 

In general, the thresholds (𝛿𝑛𝑒𝑔, 𝛿𝑝𝑜𝑠) for negative class and positive class were 

determined individually by feeding the detection score (probability of positive, 𝑃𝑝𝑜𝑠) of all 

images of each class into the statistical model and fitting separately. Using the threshold 

determination of positive class as an example, the steps are explained below: 1) Select 
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the Inverse Gaussian Distribution as the model template to be fitted22,23. The reasons why we 

select this one-side distribution model are, a) The inverse Gaussian distribution is used to model 

variables of non-negative values; b) Since the probability output from the model is between 0 

and 1, the inverse gaussian distribution is selected as it is tighter within the range [0,1] (i.e., the 

area under its probability density function (PDF) curve within [0,1] is closer to one), compared 

to other distribution models such as Gamma distribution which may have an observable tail in [1, 

infinity) interval.  1) Feed the 𝑃𝑝𝑜𝑠 of all labelled positive zone images into the statistical model 

and use the fitted parameters to draw the PDF curve.  2) We set the area under the probability 

distribution curve (between the threshold and the extreme value, i.e., 1 for positive and 0 for 

negative) as 95% and use Divide and Conquer to find the corresponding threshold value 𝛿, 

which is threshold for positive class 𝛿𝑝𝑜𝑠. 

 

For a negative class, 𝑃𝑝𝑜𝑠 is still used as input to find the classification score threshold 

𝛿𝑛𝑒𝑔. For the convenience of presentation, [𝛿𝑛𝑒𝑔, 𝛿𝑝𝑜𝑠] is used to denote the ambiguity region 

where images with 𝛿𝑛𝑒𝑔 ≤ 𝑃𝑝𝑜𝑠 ≤⁡𝛿𝑝𝑜𝑠 will not be classified since they fall within the region, 

and the images with 𝑃𝑝𝑜𝑠 ≤ 𝛿𝑛𝑒𝑔 or  𝑃𝑝𝑜𝑠 ≥ 𝛿𝑝𝑜𝑠 are classified as negative or positive 

respectively. The ratio of the unclassified images with respect to the entire evaluation set is 

reported as the percentage of ambiguous cases.   

 

Calculation of execution time 

 

For the drive-through study and in general, the overall execution time was measured from 

sending the AWS S3 pathname of the test kit image to the Lambda function for processing, to the 
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return of the test assessment classification results by the function. The specific processing steps 

were: 1) Image down sampling to 800 px height (Inline python code), 2) Object detector (AWS 

SageMaker Real-Time Inference), 3) Process object masks, rotate to vertical, compute object 

overlap, apply homography correction, extract full resolution membrane image for classification 

(Inline python code), 4) Classifier (AWS SageMaker Real-Time Inference), 5) Assemble and 

return JSON results data (Inline python code).  For the object detector model, an NVIDIA T4 

Tensor Core (16 GB GPU memory) instance was employed. The classifier model employed a 

CPU instance. 
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