Phylogeny, ancestral ranges and reclassification of sand dollars

Hsin Lee^{1,2,3+}, Kwen-Shen Lee^{4,+}, Chia-Hsin Hsu², Chen-Wei Lee², Ching-En Li², Jia-Kang Wang², Chien-Chia Tseng², Wei-Jen Chen³, Ching-Chang Horng², Colby T. Ford^{5,6,7,8}, Andreas Kroh⁹, Omri Bronstein^{10,11}, Hayate Tanaka¹², Tatsuo Oji¹³, Jih-Pai Lin^{2,*}, Daniel Janies^{7,8}

¹National Museum of Marine Biology and Aquarium, Pingtung, 944401, Taiwan
²Department of Geosciences, National Taiwan University, Taipei, 10617, Taiwan
³Institute of Oceanography, National Taiwan University, Taipei, 10617, Taiwan
⁴Biology Department, National Museum of Natural Science, Taichung, 40453, Taiwan
⁵Tuple LLC, 2413 Commonwealth Ave, Charlotte, North Carolina, 28205, USA
⁶School of Data Science, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina, 28223 USA
⁷Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University, 9201
University City Blvd, Charlotte, North Carolina, 28223 USA

⁸Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina, 28223 USA

⁹Department of Geology and Palaeontology, Natural History Museum Vienna, Vienna, 1010, Austria

 ¹⁰School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
 ¹¹Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, 6997801, Israel
 ¹²Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan

¹³University Museum, Nagoya University, Furo-cho, Nagoya, 464-8601, Japan

*Correspondence and requests for materials should be addressed to J.-P.L. (email: alexiplin@ntu.edu.tw;

xyloplax1@gmail.com)

+These authors contributed equally to this work

Electronic Supplementary Material

Previous classifications of Clypeasteroida discussed

Mortensen 1948 (ref.¹) Order Clypeasteroida Suborder Clypeastrina Family Clypeastridae Family Arachnoididae Suborder Laganina Family Fibulariidae Family Laganidae Family Scutellidae Durham 1955 (ref.²) Order Clypeasteroida Suborder Clypeasterina Family Clypeasteridae Family Arachnoididae Suborder Laganina Family Fibulariidae Family Laganidae **†**Family Neolaganidae Suborder Scutellina Family Scutellidae **†**Family Protoscutellidae **†**Family Eoscutellidae Family Dendrasteridae Family Echinarachniidae **†**Family Monophorasteridae **Family Mellitidae** Family Astriclypeidae **†**Family Abertellidae **†**Family Scutasteridae Suborder Rotulina Family Rotulidae

Wang 1984 (ref.³) Order Clypeasteroida

Suborder Clypeasterina Family Clypeasteridae Family Arachnoididae Suborder Scutellina Infraorder Scutellidea Family Scutellidae Family Astriclypeidae Infraorder Laganidea Superfamily Taiwanasteritida Family Taiwansteridae Family Fibulariidae Superfamily Laganitida Family Laganidae **†**Family Neolaganidae Superfamily Rotulitida Family Rotulidae Wang 1992 (ref.⁴) Order Oligopygoida **†**Family Oligopygidae **†**Family Protolampadidae Order Clypeasteroida Suborder Lenitina **†**Family Lenitidae Suborder Laganina Family Fibulariidae **†**Family Sismondiidae Family laganidae **†**Family Neolaganidae **†**Family Proescutellidae **†**Family Tarphypygidae Family Rotulidae Suborder Clypeasterina Family Clypeasteridae Family Arachnoididae **†**Family Fossulasteridae Suborder Scutellina **†**Family Eoscutidae **†**Family Protoscutellidae Family Scutellidae Family Astriclypeidae Infraorder Kewiidea

†Family Kewiidae
Superfamily Dendrasteracea
Family Echinarachniidae
Family Dendrasteridae
Family Mellitidae
Superfamily Eoscutellacea
†Family Eoscutellidae
†Family Abertellidae
†Family Monophorasteridae
†Family Scutasteridae

Schultz 2005 (ref.⁵) Order Clypeasteroida Suborder Clypeasterina Family Clypeasteridae FamilyArachnoididae **†**Family Fossulasteridae **†**Family Scutellinoididae Suborder Laganina Family Fibulariidae FamilyLaganidae **†**Family Neolaganidae Family Rotulidae Suborder Scutellina **†**Family Scutellinidae **†**Family Protoscutellidae **†**Family Eoscutellidae **†**Family Scutellidae Family Echinarachniidae **†**Family Abertellidae Family Dendrasteridae **†**Family Scutasteridae Family Astriclypeidae **†**Family Monophorasteridae Family Mellitidae

Schultz 2017 (ref.⁶) Clypeasteroida Clypeasterina Arachnoididae

Clypeasteridae

Scutellina

Scutelliformes

Taiwanasteridae Echinarachniidae

Scutellidae

Echinarachniidae

Dendrasteridae

Astriclypeidae

Mellitidae

Laganiformes

Fibulariidae

Laganidae Rotulidae

Kroh 2020 (ref.⁷) Stem group Neognathostomata **†**Family Clypeidae **†**Family Nucleolitidae Crown group Neognathostomata Family Apatopygidae **†**Family Pygaulidae **†**Family Archiaciidae **†**Family Clypeolampadidae Order Clypeasteroida Stem group Clypeasteroida **†**Family Faujasiidae **†**Family Plesiolampadidae **†**Family Conoclypeidae **†**Family Oligopygidae Crown group Clypeasteroida Family Clypeasteridae **†**Family Fossulasterinae Echinolampadacea Order Cassiduloida Suborder Cassidulina Family Cassidulidae Suborder Neolampadina Family Neolampadidae Order Echinolampadoida Family Echinolampadidae

Order Scutelloida Stem group Scutelloida **†**Family Scutellinidae Crown group Scutelloida Infraorder Laganiformes Family Fibulariidae Family Laganidae Infraorder Scutelliformes Family Taiwanasteridae Stem group Scutelliformes **†**Family Protoscutellidae Crown group Scutelliformes Family Echinarachniidae Family Dendrasteridae Family Rotulidae **†**Family Scutellidae **†**Family Eoscutellidae **†**Family Scutasteridae **†**Family Abertellidae Family Astriclypeidae **†**Family Monophorasteridae **Family Mellitidae**

Mongiardino Koch et al. 2022 (ref.⁸) Irregularia Atelostomata Holasteroida Spatangoida Neognathostomata Luminacea Clypeasteroida Echinolampadacea Cassiduloida Scutelloida

RASP DEC Analysis result

DEC result file of Name [TAXON] Rhyncholampas_pacificus G 1 2 Conolampas sigsbei AH 3 Echinolampas_crassa AHJ 4 Ech18_Arachnoides_placenta А 5 Clypeaster reticulatus ABCDGHJK 6 Ech106_Clypeaster_virenscens ABCDGHJK 7 Ech32_Clypeaster_japonica ABCDGHJK 8 Echinocyamus_pusillus ACDHIJ 9 Ech43_Laganum_fudsiyama ABCD 10 Ech13_Peronella_lesueuri ABCD Peronella_japonica ABCD 11 12 Ech30_Astriclypeus_manni AC 13 Ech14_Sculpsitechinus_auritus ABD Ech49_Echinodiscus_bisperforatus 14 ACD 15 Ech29_Sinaechinocyamus_mai AC 16 EG Dendraster_excentricus 17 Echinarachnius_parma CEF 18 Scaphechinus_mirabilis С 19 Lanthonia longifissa G 20 Mellita_isometra Н 21 G

- 21 Mellita_notabilis G 22 Mellitella_stokesii G
- 23 Leodia sexiesperforata FH
- 24 Encope aberrans H
- 25 Encope_grandis G

[TREE]

 $\label{eq:tree} Tree = (((1:106.214225,(2:6.490878,3:6.490878):99.723346):8.551437,((4:39.028993,(5:18.015538,(6:4.489178,7:4.489178):13.52636):21.013455):64.088521,(8:52.439209,(9:35.070895,(10):18.000753,11:18.000753):17.070141):17.368315):50.678305):11.648147):5.138475,((12:50.388548,(13:39.354713,14:39.354713):11.033834):40.337605,((15:32.872547,(16:26.781921,(17:20.996038,18:20.996038):5.785883):6.090626):10.672663,((19:15.7555,(20:5.410499,21:5.410499):10.345001):3.852497,(22:17.564041,(23:15.345302,(24:12.062763,25:12.062763):3.282539):2.218739):2.043956):23.937213):47.180942):29.177984);$

[RESULT]

DEC results:

node 26 (LR): AHJ 74.23 AH 25.77

node 27 (LR): A 67.25 G 22.65 H 10.10

node 28 (LR): A 41.04 C 6.35 G 6.27 D 6.19 B 6.16 H 5.83 J 5.76 E 5.61 F 5.60 I 5.59 K 5.59 node 29 (LR): A 100.00

node 30 (LR): A 100.00

- node 31 (LR): ABCD 27.17 A 6.82 ACD 6.69 ABC 6.69 ABD 6.64 AC 5.55 AD 5.51 AB 5.50 BCD 5.14 C 4.14 D 4.07 B 4.06 CD 4.03 BC 4.02 BD 3.98
- node 32 (LR): ABCD 22.17 A 13.84 ACD 6.28 ABC 6.27 ABD 6.19 AC 6.16 AD 6.08 AB 6.06 C 4.74 D 4.52 B 4.48 BCD 3.83 CD 3.17 BC 3.15 BD 3.08
- node 33 (LR): A 38.38 ABCD 14.15 C 9.41 D 8.73 B 8.60 AC 7.00 AD 6.88 AB 6.86
- node 34 (LR): A 100.00
- node 35 (LR): A 86.31 G 13.69
- node 36 (LR): A 69.69 D 16.18 AD 14.13
- node 37 (LR): A 68.76 AC 16.82 C 14.42
- node 38 (LR): C 75.91 CE 24.09
- node 39 (LR): C 28.04 CE 25.20 CG 24.77 CEG 13.58 E 8.40
- node 40 (LR): C 42.27 CG 22.11 CE 12.95 AC 8.55 CEG 7.59 ACEG 6.52
- node 41 (LR): GH 100.00
- node 42 (LR): G 100.00
- node 43 (LR): GH 100.00
- node 44 (LR): GH 100.00
- node 45 (LR): G 63.99 GH 36.01
- node 46 (LR): G 68.29 GH 31.71
- node 47 (LR): CG 31.02 G 17.28 CEG 10.06 ACEG 9.53 ACG 9.17 CGH 7.20 C 6.26 AG 5.20 CEFG 4.30
- node 48 (LR): A 32.87 C 26.35 AG 10.00 AC 9.92 G 9.76 ACG 5.60 CG 5.50

node 49 (LR): A 3.26 ACG 2.24 AG 2.24 AC 2.18 ACDG 1.80 ACGH 1.73 ACEG 1.64 ABCG 1.57 ACGJ 1.49 ACFG 1.37 ADG 1.31 ACD 1.30 ACH 1.28 ACGI 1.28 ACGK 1.28 AGH 1.26 ABG 1.15 AEG 1.14 ABC 1.14 ACE 1.11 AH 1.10 ACJ 1.09 AGJ 1.09 AD 1.09 ACDH 1.03 ADGH 1.01 AFG 0.98 ABCD 0.98 ACF 0.97 ABDG 0.95 AE 0.95 AB 0.94 AGK 0.92 ACI 0.91 ACK 0.91 ADEG 0.91 ACDE 0.90 AJ 0.90 ABCH 0.90 ABGH 0.89 ADGJ 0.88 ACEH 0.88 AGHJ 0.88 AEGH 0.88 ACDJ 0.88 ACHJ 0.86 ABEG 0.80 AF 0.80 ACDF 0.79 ADFG 0.79 ABCE 0.78 ABGJ 0.78 ACFH 0.77 ABCJ 0.77 AFGH 0.76 AEGJ 0.76 ACDI 0.75 ACDK 0.75 ADGI 0.75 ADGK 0.75 AK 0.74 AI 0.74 ACEJ 0.74 ACHI 0.72 ACHK 0.72 AGHI 0.72 AGHK 0.72 ADH 0.71 AEFG 0.70 ABFG 0.69 ABCF 0.68 ACEF 0.68 AFGJ 0.66 ABGI 0.65 ABGK 0.65 AEGK 0.65 AEGI 0.65 ACFJ 0.65 ABCI 0.65 ABCK 0.65 ABD 0.64 ACEI 0.63 ACEK 0.63 AGJK 0.62 ABH 0.62 ADE 0.62 ACIJ 0.61 ACJK 0.61 AEH 0.61 ADJ 0.60 AHJ 0.59 CG 0.58 AFGK 0.56 AFGI 0.56 ACFI 0.55 ACFK 0.55 ABE 0.54 ADF 0.53 AFH 0.52 ABDH 0.52 AGIK 0.52 ABJ 0.52 ACIK 0.52 AEJ 0.51 ADK 0.50 ADI 0.50 ADEH 0.50 ADHJ 0.50 AHK 0.49 CDG 0.49 AEF 0.46 ABF 0.46 ABDE 0.45 CGH 0.45 ABDJ 0.44

laxa	Earliest fossil / Reference	l ime interval	Ма	Locality
Split between	Clypeus† sp. ⁹	Middle Jurassic	170.3–168.3	Dhruma Formation (Shaqra Group), Saudi
outgroups and				Arabia
Luminacea				
Cassiduloida +	Most recent common	Early Cretaceous	146.6-102.5	
Echinolampadoida	ancestor estimated in ref 10	-		
Astriclypeidae	Echinodiscus tiliensis ^{†11}	Late Paleocene to	58.7–48.6	Tili Village, Nantou, Taiwan
	Echinodiscus yeliuensis ^{†11}	Early Eocene		Yeliu, Taiwan
Clypeasteridae	Clypeaster profundus ⁺¹²	Late Eocene	41.3-38.0	Turkey
Laganidae	Peronella archerensis ¹³	Late Eocene	38.0-33.9	Inglis Limestone Formation, Florida
Mellitidae	<i>Mellita</i> sp. ¹⁴	Early Miocene	20.44-15.97	Baitoa Formation, Dominican Republic
Encope	Encope sp. ¹⁵	Middle Miocene	16–11.6	Lowest Gatun Formation, Sand Dollar Hill,
				Panama
Mellita	Mellita aclinensis† ¹⁶	Early Pliocene	5.3–3.6	Tamiami Formation, Florida

Table S1. Fossils and references used in the divergence time analysis.

Table S2. Habitat of sand dollars collected in this study

Species	habitat
Colobocentrotus mertensii	Intertidal or subtidal zone, rocky shore
Maretia planulata	Subtidal zone, sandy bottom
Arachnoides placenta	Intertidal to subtidal zone, sandy bottom
Clypeaster japonicus	Subtidal zone, sandy bottom
Clypeaster reticulatus	Subtidal zone, sandy bottom, with a depths range shallower than C. virescens
Clypeaster virescens	Subtidal zone, sandy bottom, with a depths range deeper than C. reticulatus
Sinaechinocyamus mai	Intertidal to subtidal zone, sandy bottom
Astriclypeus mannii	Intertidal to subtidal zone, sandy bottom
Echinodiscus bisperforatus	Intertidal to subtidal zone, sandy bottom
Sculpsitechinus auritus	Intertidal to subtidal zone, sandy bottom
Laganum fudsiyama	Shallow water to deep sea (50–654 m) sandy bottom ¹⁷
Peronella lesueuri	Intertidal to subtidal zone, sandy bottom
Scaphechinus mirabilis	Intertidal to subtidal zone, sandy bottom

Table S3. Best-fit substitution models obtained from PartitionFinder 2. The suffix after each gene name denotes the codon position. The models of DNA substitution are: SYM (Zharkikh, 1994)¹⁸, HKY (Hasegawa et al., 1985)¹⁸, GTR (Rodríguez et al., 1990)¹⁸, F81 (Felsenstein, 1981)¹⁸, and JC (Jukes and Cantor, 1969)¹⁸.

Partition	cox1_1	cox1_2	cox1_3	16S	285	H3_1	H3_2	H3_3
Best model	SYM+I+G	HKY+I	GTR+I+G	GTR+I+G	GTR+I+G	GTR	F81	JC+I

Supplementary figures

Fig. S1. Phylogenetic relationships of Neognathostomata based on Bayesian Inference analysis.

Fig. S2. Rates of evolution for studied echinoids with error bars representing 95% confidence Level (see Fig. 3 and related text). Nodes with black triangles represent the constrained and assigned age priors.

Fig. S3. Key non-lunulate scutelliformes included in this study. All scales = 10 mm. A-C. *Dendraster excentricus* (Eschscholtz, 1831). D-F. *Sinaechinocyamus mai* (Wang, 1984). G-I. *Scaphechinus mirabilis* A. Agassiz, 1864. J-L. *Echinarachnius parma* (Lamarck, 1816). Image credit: Jih-Pai Lin (A-C; G-I) and Kwen-Shen Lee (D-F; J-L).

Fig. S4. Views of pyramid morphology of key non-lunulate scutelliformes discussed in this study (modified from Wang⁴). Scales = 0.5 mm (D-F); 3 mm (A-C; G-L). A-C. *Dendraster excentricus*; D-F. *Sinaechinocyamus mai*; G-I. *Scaphechinus mirabilis*; J-L. *Echinarachnius parma*.

Fig. S5. New occurrence of *Sinaechinocyamus* sp. from Seto Inland Sea, Japan. Denuded test. Scale = 5mm. Image credit: Hayate Tanaka.

References

- 1 Mortensen, T. A Monograph of the Echinoidea IV. 2. Clypeasteroida. Clypeasteridæ, Arachnoidæ, Fibulariidæ, Laganidæ and Scutellidæ. Text. 1-471 (C. A. Reitzel, 1948).
- 2 Durham, J. W. Classification of clypeasteroid echinoids. *University of California Publications in Geological Sciences* **31**, 73-198 (1955).
- 3 Wang, C.-C. New classification of clypeasteroid echinoids. *Proceedings of the Geological Society of China* **27**, 119-152 (1984).
- 4 Wang, C.-C. *Phylogenetic analysis of the clypeasteroid echinoids* PhD thesis thesis, Yale University, (1992).
- 5 Schultz, H. Sea Urchins: A guide to worldwide shallow water species. 1-484 (Heinke & Peter Schultz Partner Scientific Publications, 2005).
- 6 Schultz, H. *Echinoidea, Volume 2: Echinoidea with Bilateral Symmetry. Irregularia.* 1-359 (Walter de Gruyter GmbH, 2017).
- Kroh, A. in Sea Urchins: Biology and Ecology, 4th Edition Vol. 43 (ed J. M. Lawrence) 1 17 (Academic Press, 2020).
- 8 Mongiardino Koch, N. *et al.* Phylogenomic analyses of echinoid diversitification promt a reevaluation of their fossil reocord. *eLife* **11**, e72460 (2022).
- 9 Manivit, J., Le Nindre, Y.-M. & Vaslet, D. Le Jurassique D'Arabie Centrale. *Document du BRGM* **4**, 25-519 (1990).
- 10 Mongiardino Koch, N. & Thompson, J. R. A total-evidence dated phylogeny of Echinoidea combining phylogenomic and paleontological data. *Systematic Biology* **70**, 421-439 (2021).
- 11 Wang, C.-C. Fossil Echinodiscus from Taiwan. *Bulletin of the central geological survey* **3**, 107-115 (1984).
- 12 Pinar, N. Sur les oursins de l'Eocène moyen de Catalca-Karacaköy (Trakkya, Turquie). Bulletin de la Société Géologique de France 1, 35-53 (1951).

- 13 Puri, H. S. & Vernon, R. O. *Summary of the geology of Florida and a guidebook to the classic exposures.* (Florida Geological Survey Special Publication 5, 1964).
- 14 Saunders, J. B., Jung, P. & Biju-Duval, B. Neogene Paleontology in the Northern Dominican Republic: 1. Field Surveys, Lithology, Environment, and Age. *Bulletins of American Paleontology* 89, 1-79 (1986).
- 15 Coppard, S. E. & Lessios, H. A. Phylogeography of the sand dollar genus *Encope*: implications regarding the Central American Isthmus and rates of molecular evolution. *Scientific Reports* 7, 11520, doi:10.1038/s41598-017-11875-w (2017).
- 16 Oyen, C. W. & Portell, R. W. Diversity patterns and biostratigraphy of Cenozoic echinodems from Florida. *Palaeogeography, Palaeoclimatology, Palaeoecology* **166**, 193-218 (2001).
- 17 Lane, D. J. W., Marsh, L. M., VandenSpiegel, D. & Rowe, F. W. E. Echinoderm fauna of the South China Sea: an inventory and analysis of distribution patterns. *The Raffles Bulletin of Zoology* **Suppl. 8**, 459–493 (2000).
- 18 Posada, D., & Crandall, K. A. MODELTEST: testing the model of DNA substitution. *Bioinformatics* **14**, 817–818 (1998).