Hedgehog signaling via its ligand DHH acts as cell fate determinant during skeletal muscle regeneration

Alessandra M. Norris¹, Ambili Bai Appu¹, Connor D. Johnson¹, Lylybell Y. Zhou¹, David W. McKellar², Marie-Ange Renault³, David Hammers¹, Benjamin D. Cosgrove² and Daniel Kopinke^{1*}.

¹Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA.

²Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA

³Biology of Cardiovascular Diseases, INSERM, University of Bordeaux, Pessac, France

*Correspondence: dkopinke@ufl.edu

Supplemental Figures and Table

Supplemental Figure 1. Validation of the *Dhh*^{-/-} mouse model.

a) Experimental outline. Body weight (g) of 13-week-old $Dhh^{-/-}$ (females, n=15 mice; males, n=12 mice) and ctrl mice (females, n=19 mice; males n=15 mice). Wet-weight of uninjured TAs (mg) of $Dhh^{-/-}$ (females, n=10 TAs; males, n=8 TAs) and ctrl mice (females, n=17 TAs; males n=9 TAs). **b)** Experimental outline. RT-qPCR of Dhh expression 7 days after CTX injury of $Dhh^{-/-}$ (n=5 TAs) and ctrl (n=3 TAs) mice. **c)** *Left*: Immunofluorescence of adipocytes (PERILIPIN⁺, green) 21 days post CTX injury of $Dhh^{+/+}$, $Dhh^{+/-}$ and $Dhh^{-/-}$ mice. Nuclei were visualized with DAPI (purple). Scale bars: 250 µm. *Right:* Quantification of adipocytes per injured area (mm²) 21 days post CTX injury in $Dhh^{+/+}$ (n=6 TAs), $Dhh^{+/-}$ (n=8 TAs) and $Dhh^{-/-}$ (n=8 TAs) mice. Adipocyte quantification of $Dhh^{-/-}$ and ctrl mice separated by females ($Dhh^{-/-}$ n=7 TAs; ctrl n=13 TAs) and males ($Dhh^{-/-}$ n=6 TAs; ctrl n=6 TAs). **d)** *Left:* Histological Sirius red staining 21 days post CTX injury in $Dhh^{-/-}$ and ctrl mice. Scale bars: 500 µm. *Right:* Quantification of percent of collagen (red) over total TA area 21 dpi in $Dhh^{-/-}$ (n=6 TAs) and ctrl mice (n=9 TAs). All data are represented as mean ± SEM. An unpaired two-tailed t test or a one-way ANOVA followed by a Dunnet's multiple comparison was used.

Supplemental Figure 2. Validation of DHH loss of function data and Dhh cKO mouse model.

a) Experimental outline. **b)** *Left*: Myofibers color-coded according to size (μ m²) of Gant61- and vehicle treated mice 7 days post CTX injury. Scale bar: 250 μ m. *Right*: Average CSA (μ m²) of vehicle (n=10 TAs) and Gant61 (n=19 TAs) treated mice 7 days post CTX. **c)** *Top*: Experimental outline. *Bottom*: RT-qPCR of expression of *Gli1* and *Ptch1* 7 days post CTX in ctrl (n=7 TAs); and 7 days post GLY injury in ctrl (n=7 TAs) and *Dhh^{-/-}* (n=8 TAs) mice. **d)** Experimental outline. **e)** *Left*: Immunofluorescence of adipocytes (PERILIPIN⁺, green) and nuclei visualized with DAPI (purple); color-coded myofibers according to CSA of *Dhh^{-/-}* and ctrl mice 21 days post GLY. Scale bars: 250 μ m. *Right*: Quantification of adipocytes per injured area (mm²) 21 days post GLY in *Dhh^{-/-}* (n=8 TAs) and ctrl (n=9 TAs) mice. Average CSA (μ m²) of *Dhh^{-/-}* (n=8 TAs) and ctrl (n=8 TAs) mice 21 days after GLY injury. **f)** Experimental outline. **g)** RT-qPCR of expression of *Dhh* and *Gli1* 7 days post CTX in Dhh cKO (n=8 TAs) and ctrl (n=6 TAs) mice. **h)** *Left*: Color-coded myofibers according to CSA (μ m²) of Dhh cKO and ctrl 7 days post CTX injury. Scale bar: 250 μ m. *Right*: Average CSA (μ m²) of Dhh cKO (n=10 TAs) and ctrl (n=6 TAs) mice Average CSA (μ m²) of Dhh cKO (n=10 TAs) and ctrl (n=6 TAs) mice 7 days post CTX injury. All data are represented as mean ± SEM. An unpaired two-tailed t test or a one-way ANOVA followed by a Dunnet's multiple comparison was used.

Supplemental Figure 3. SAG influences adipogenesis and myogenesis in a dose- and time-dependent manner.

a) *Left:* Experimental outline. *Right:* After 2 days post GLY injury, RT-qPCR of *Gli1* and *Ptch1* at 0 hrs (n=6 TAs), 6 hrs (n=4 TAs) and 12 hrs (n=5 TAs) following SAG administration. **b)** *Left:* Myofibers color-coded according to size (μ m²) 7 days post CTX or GLY in ctrl and SAG- treated (at 0 dpi or 4 dpi) mice. Scale bar: 250 μ m. *Right:* Average CSA (μ m²) 7 days post injury with vehicle control (CTX n=27 TAs & GLY n=30 TAs), SAG at 0 dpi (CTX: n=10 TAs & GLY: n=14 TAs) and SAG at 4 dpi (CTX: n=6 TAs & GLY: n=25 TAs). To note, these time points are part of the experiment described in the main Figure 3 and, thus, the same controls were used. **c)** SAG was administered at 0-, 2- and 4dpi at varying concentrations and TAs harvested at 7 days post GLY injury. Immunofluorescence of adipocytes (PERILIPIN⁺, green) and nuclei visualized with DAPI (purple). Color-coded myofibers based on cross sectional area (CSA). Scale bars: 250 μ m. *Bottom:* RT-qPCR of *Gli1* expression 7 days post GLY after treatment with DMSO control (n=10 TAs), SAG 1x (n=6 TAs), SAG 0.5x (n=4 TAs), SAG 0.3x (n=5 TAs) and SAG 0.2x (n=6 TAs). Quantification of adipocytes per injured area (mm²) 7 days post GLY injury of DMSO control (n=10 TAs), SAG 0.5x (n=8 TAs), SAG 0.3x (n=7 TAs), and SAG 0.2x (n=6 TAs). Average CSA (μ m²) 7 days after GLY injury of DMSO control (n=10 TAs), SAG 0.5x (n=11 TAs), SAG 0.3x (n=8 TAs), and SAG 0.2x (n=6 TAs). Average CSA (μ m²) 7 days after GLY injury of DMSO control (n=16 TAs), SAG 1x (n=10 TAs), SAG 0.5x (n=11 TAs), SAG 0.3x (n=8 TAs), and SAG 0.2x (n=6 TAs). Average CSA (μ m²) 7 days after GLY injury of DMSO control (n=16 TAs), SAG 1x (n=10 TAs), SAG 0.5x (n=11 TAs), SAG 0.3x (n=8 TAs), and SAG 0.2x (n=10 TAs). All data are represented as mean ± SEM. One- way ANOVA followed by a Dunnet's multiple comparison was used.

adipocytes/mm²

fibrotic index (%)

10-

0.

¥

Supplemental Figure 4. Genetic and pharmacological Hh activation prevents IMAT formation but causes fibrosis and impairs myogenesis.

a) *Left*: Experimental outline. *Right*: Immunofluorescence of PERILIPIN⁺ adipocytes (green) of uninjured FAP^{no} ^{Ptch1} and control mice (n=5 for each). Scale bars: 250 µm. **b)** Immunofluorescence of PERILIPIN⁺ adipocytes (green) and PHALLOIDIN+ myofibers (scale bar: 100 µm) and histological Sirius red staining (scale bar: 250 µm) 21 days post CTX injury in FAP^{no Ptch1} and control mice. *Right*: Average CSA (µm²) 21 days post CTX of ctrl (n=10 TAs) and FAP^{no Ptch1} (n=14 TAs) mice. Quantification of adipocytes per injured area (mm²) 21 days post CTX injury of ctrl (n=10 TAs) and FAP^{no Ptch1} (n=22 TAs) mice. Quantification of percent of collagen (red) of total TA area 21 dpi CTX in FAP^{no Ptch1} (n=19 TAs) and ctrl (n=24 TAs). **c)** *Left*: Sirius red staining 7 days after CTX *(top)* or GLY *(bottom)* injury after vehicle control, SAG at 0-, 2- and 4 dpi, or SAG at 2 dpi. Scale bars: 250 µm. *Right:* Quantification of percent of Sirius red-positive collagen (red) over total TA area 7 days after injury from mice treated with vehicle control (CTX: n=10 TAs & GLY: n=15 TAs), SAG at 0-, 2- and 4 dpi (CTX: n=10 TAs & GLY: n=14 TAs) or SAG at 2 dpi (CTX & GLY: n=12 TAs). **c)** All data are represented as mean ± SEM. An unpaired two-tailed t test or a one-way ANOVA followed by a Dunnet's multiple comparison was used.

Supplemental Figure 5. Ectopic Hh activation does not impact muscle homeostasis.

a) Experimental outline. Color-coded myofibers based on cross sectional area (CSA) of uninjured FAP^{no Ptch1} and control mice. Scale bar: 250 µm. H&E staining of uninjured FAP^{no Ptch1} and control mice. Scale bar: 500 µm. **b)** *Top*: Experimental outline. *Middle*: Fiber number distribution, displayed as percent of total fibers, based on their CSA (µm²) in FAP^{no Ptch1} (n=18) and ctrl mice (n=14) 21 days post GLY injury. Source data are provided as a Source Data file. All data are represented as mean ± SEM. A two-way ANOVA followed by Tukey's multiple comparison test was used. A p value less than 0.05 was considered statistically significant where: ** p≤ 0.01, *** p≤ 0.001 and **** p≤ 0.0001. Source data are provided as a Source Data file.

Supplemental Figure 6. Screen for FAP-specific and Hh-induced factors that control adipogenesis and myogenesis.

a) Enzyme-linked immunosorbent assay (ELISA) of whole muscle protein lysates from FAP^{no Ptch1} and ctrl mice 5 days post GLY injury. **b)** Experimental outline. **c)** RT-qPCR of whole muscle RNA from FAP^{no Ptch1} (n=5 TAs) and ctrls (n=5 TAs); and *Dhh^{-/-}* (n=6 TAs) and ctrls (n=4-6) 5 days post injury for the known FAP targets: *Ccl2, Ccl7, Cxcl5, Fst, Gdf10, Igf1, Igf2, II10, II4, Spp1, Timp3* and *Wisp1*. **d)** RT-qPCR of *Serpine 1* from RNA isolated from C2C12 cells (n= 3 replicates per experimental group) 3 days after induction in ctrl versus rGDF10-treated cells (1 ng & 100 ng). All data are represented as mean ± SEM. A one-way ANOVA followed by a Dunnet's multiple comparison was used.

Supplementary Table

Supplementary Table 1: List of primers used for RT-qPCR

Gene	Forward	Reverse
Hprt	CATAACCTGGTTCATCATCGC	TCCTCCTCAGACCGCTTTT
Pde12	ACCTTTTGGGTGCCAGTAGA	CCAGAGGTCATCTGTCCTTCA
Dhh	CGATGGCTAGAGCGTTCAC	GTACCCAACTACAACCCCGA
Timp3	TAGACCAGAGTGCCAAAGGG	CCAGGATGCCTTCTGCAAC
Gli1	GGTGCTGCCTATAGCCAGTGTCCTC	GTGCCAATCCGGTGGAGTCAGACCC
Ptch1	AATTCTCGACTCACTCGTCCA	CTCCTCATATTTGGGGCCTT
Gdf10	CCAAATCCTTTGACGCCTACT	GCTCTGACGATGCTCTGGAT
Acta2	GACAGAGGCACCACTGAACC	ACAGCACAGCCTGAATAGCC
Ccl12	TTAAAAACCTGGATCGGAACCAA	GCATTAGCTTCAGATTTACGGGT
Ccl17	GCTGCTTTCAGCATCCAAGTG	CCAGGGACACCGACTACTG
Cxcl15	GTTCCATCTCGCCATTCATGC	GCGGCTATGACTGAGGAAGG
Fst	GCCTCCTGCTGCTGCTACTC	TTATACAGGACCTGGCAGCG
lgf1	CTGAGCTGGTGGATGCTCTT	TCATCCACAATGCCTGTCTG
lgf2	GTGCTGCATCGCTGCTTAC	ACGTCCCTCTCGGACTTGG
ll10	AGCATTTGAATTCCCTGGGT	TTTTCACAGGGGAGAAATCG
114	GGTCTCAACCCCCAGCTAGT	GCCGATGATCTCTCTCAAGTGAT
<i>ll6</i>	TAGTCCTTCCTACCCCAATTTCC	TTGGTCCTTAGCCACTCCTTC
Spp1	AGCAAGAAACTCTTCCAAGCAA	GTGAGATTCGTCAGATTCATCCG
Wisp1	GTGTGATGATGACGCAAGGA	ATGCAGTTCTCATACCGTTGC
Serpine 1	GTGAATGCCCTCTACTTCAGTG	GCTGCCATCAGACTTGTGGAA