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Figure S1. Western diet-fed Apoe™ mice treated with live bacteria exhibited smaller LV
volume and diameter at end-systole and diastole and better cardiac function; related to
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Figure 4 and Table S9.
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cardiovascular disease, related to Figure 4 and Table S9.

Figure S7. Changes in the fecal microbiome; related to Figure 5 and Table S13.

Figure S8. DMM clustering of metagenomic data (n = 476); related to Figure 5 and
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Figure S1. Western diet-fed Apoe” mice treated with live bacteria exhibited smaller LV
volume and diameter at end-systole and diastole and better cardiac function; related to
Figure 2 and Table S2. a, Body weight changes over the course of the experimental period
(6 to 8 samples per group). b-i, Comparison of animal ultrasonography in heart (6 to 8
samples per group). LVDs, left ventricular end-systolic dimension; LVDd, left ventricular
end- diastolic dimension; LV volume, s, left ventricular end-diastolic volume; LV volume, d,
left ventricular end-systolic volume; LVEF, left ventricular ejection fraction. Two-tailed
Student’s t-test or Mann-Whitney U-test was used for comparison between two groups. Data
are shown as mean =standard error of the mean.
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Figure S2. Changes of differentially expressed genes in mice of different groups; related
to Figure 3 and Table S4. a, Venn diagram of the differentially expressed genes of the liver
transcriptome in each group. b, Results of GSEA of Gene Ontologies revealed the variation of
lipogenic and circadian rhythm pathways. ¢, The heatmap of 48 overlapping genes in four
groups treated with live bacteria. d, Changes of key nuclear receptor genes involved in
lipogenic. The differentially expressed genes were defined as FDR value smaller than 0.05
and the absolute value of fold change larger than 1. WT, western diet-fed normal C57BL/6
mice treated with vehicle (n = 7); Apoe ™~ control, western diet-fed Apoe " mice treated with
vehicle (n = 6); B, western diet-fed Apoe " mice treated with B. cellulosilyticus (n = 7); F,
western diet-fed Apoe~ mice treated with F. longum (n = 8); R, western diet-fed Apoe
mice treated with R. intestinalis (n = 7); B,F,R, western diet—fed Apoe " mice treated with the
consortium of the three bacteria (n = 5).
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Figure S3. OPLS-DA loading plots for different groups; related to Figure 4. WT, western
diet-fed normal C57BL/6J mice treated with vehicle (n = 7); Apoe ™" control, western diet-fed
Apoe™~ mice treated with vehicle (n = 6); B, western diet-fed Apoe " mice treated with B.
cellulosilyticus (n = 7); F, western diet-fed Apoe ™~ mice treated with F. longum (n = 8); R,
western diet-fed Apoe™”~ mice treated with R. intestinalis (n = 7); B,F,R, western diet-fed
Apoe~ mice treated with the consortium of the three bacteria (n = 5).
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Figure S4. Changes of plasma metabolites in mice of the different groups; related to Figure 4 and Table S9. a, The heatmap of metabolites differing in
abundance between WT and Apoe ™ control groups. The grids filled with graduated color indicate the relative abundance of metabolites, and the grids filled
with pure red and blue represent the correlation between metabolites and lipids. b, Venn diagrams of the intersecting metabolites differing in abundance in the
groups treated with live bacteria. ¢, The heatmaps of the intersecting metabolites differing in abundance in the groups treated with live bacteria. The
metabolites differing in abundance were defined as P value smaller than 0.05 and the VIP value larger than 1. Two-tailed Student’s t-test was used for
comparison between two groups. WT, western diet-fed normal C57BL/6J mice treated with vehicle (n = 7); Apoe ™ control, western diet-fed Apoe " mice
treated with vehicle (n = 6); B, western diet-fed Apoe " mice treated with B. cellulosilyticus (n = 7); F, western diet-fed Apoe™" mice treated with F. longum
(n = 8); R, western diet-fed Apoe™~ mice treated with R. intestinalis (n = 7); B,F,R, western diet-fed Apoe”~ mice treated with the consortium of the three
bacteria (n = 5). GLUC, glucose; TG, triglycerides; LDLC, low-density lipoprotein cholesterol; HDLC, high-density lipoprotein cholesterol; CHOL, total
cholesterol.



a B vs. Apoe’- control b F vs. Apoe’- control

B,F,R vs. Apoe’-control
M

Sy
.




Figure S5. Causality analysis between the plasma metabolites and lipids; related to STAR Method and Table S10. The arrow "A—B" indicates that A
had a potential regulatory effect on B, and the thickness of the line indicates the level of potential causality. The color of the line reflects the correlation
between the two nodes, of which red is a positive correlation and blue is a negative correlation. The color of the text indicates the change in the level of
metabolites and lipids, with red representing upregulation and blue representing downregulation. Apoe ™~ control, western diet-fed Apoe™”~ mice treated with
vehicle (n = 6); B, western diet-fed Apoe™" mice treated with B. cellulosilyticus (n = 7); F, western diet-fed Apoe™" mice treated with F. longum (n = 8); R,
western diet-fed Apoe ™~ mice treated with R. intestinalis (n = 7); B,F,R, western diet-fed Apoe " mice treated with the consortium of the three bacteria (n =

5). TG, triglycerides; LDLC, low-density lipoprotein cholesterol.
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Figure S6. Boxplots of metabolites previously reported to play important role in cardiovascular disease, related to Figure 4 and Table S9. a,
Phenylacetyl-L—Glutamine. b, Phosphocholine. ¢, Trimethylamine N—Oxide. d, L—Isoleucine. e, L—Glutamine. f, Succinic Acid. g, L—Tyrosine and. h,
Indole—3—Acetic Acid in mice of different groups. WT, western diet-fed normal C57BL/6J mice treated with vehicle (n = 7); Apoe ™ control, western diet-fed
Apoe ™~ mice treated with vehicle (n = 6); B, western diet-fed Apoe ™~ mice treated with B. cellulosilyticus (n = 7); F, western diet-fed Apoe ™~ mice treated
with F. longum (n = 8); R, western diet-fed Apoe ™~ mice treated with R. intestinalis (n = 7); B,F,R, western diet-fed Apoe " mice treated with the cocktail of
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Figure S7. Changes in the fecal microbiome; related to Figure 5 and Table S13. B. cellulosilyticus, R. intestinalis and F. longum abundances in feces
evaluated by metagenomic sequencing. The box depicts the interquartile range (IQR) between the first and third quartiles (25th and 75th percentiles,
respectively), and the line inside denotes the median, whereas the points represent the relative abundance (asin sqrt transform) in each sample. For 1 day



after intervention and 1 weeks after intervention, the p-value indicates the ANOVA test between groups. For Full time, the p-value indicates the linear mix
model test between groups, ref group is control (Apoe ™~ control), random effect is the subject of mouse. We could not detect the three bacteria in the 4
groups at baseline and Apoe” control group along the time flow of experiment, whereas supplementation with a single species or the consortium
significantly increased the relative abundance of the three bacteria recovered in the feces of Apoe” mice.
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Figure S8. DMM clustering of metagenomic data (n = 476) ; related to Figure 5 and Table S13. A general overview of bacterial taxonomy development
at each time point. a, Heatmap showing the relative abundance of the 35 most dominant bacterial species and our 3 supplemented bacteria. Top right panel
shows the most dominant group per DMM cluster according to c. b, The appropriate number of clusters was determined based on the lowest Laplace
approximation score. ¢, Transition model showing the progression of samples through each DMM cluster per each time point per group. Nodes are colored
according to DMM cluster number and edges are colored by the transition frequency. Transitions with less than 4% frequency are not shown. The microbiota
corresponding to mice receiving either a single bacterium or the consortium developed quickly into a stable phase distinct from that of the Apoe™ control
group, which fluctuated overtime. For example, at the stable phase, the R. intestinalis and the consortium group converged in the same cluster 2, while the
Apoe " control group occupied cluster 4. These results indicated that supplementation with either a single species or the consortium affected the overall
structure of the gut microbiota.
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STAR Method and Table S14. Pathways related to BCAA and SCFA. Phosphopantothenate
biosynthesis I: valine, alanine -> coenzyme A. Tetrapyrrole biosynthesis | (from glutamate):
glutamate -> vitamin B12. Acetylene degradation: acetylene-> ethanol, acetate. Super-
pathway of N-acetylneuraminate degradation: N-acetylneuraminate -> formate, ethanol and
acetate. Phytate degradation I: inositol -> butyrate. The box depicts the interquartile range
(IQR) between the first and third quartiles (25th and 75th percentiles, respectively), and the
line inside denotes the median, whereas the points represent the relative abundance in each
sample. The p-values represent results of the Kruskal test and Wilcox test between groups.
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|
S14. a, Bai operon, which is known to contribute to the conversion from primary to secondary

bile acids via the 7a-dehydroxylation pathway. b, bai metagenomic abundance was correlated
groups, compared to the control group. d, Heatmap plot shows the bai gene cluster in taxa,
each cell colored by phmmer score. Linear model was used for association between taxa and

lipid parameter and metabolites. Relationship between taxon and treatment group was

with fecal LCA level by MS. c, bai metagenomic abundance was increased in the treatment
determined using the same model used in Figure 5¢. Only q value<0.05 is s

Figure S10. Change in the 7a-dehydroxylation pathway; related to Figure 6 and Table



