Supplementary Appendix 2

Let C_i be the count for spike (primer-pair) i, i=1,...,n=260. Our basic assumption is that the $\{C_i\}$ are mutually independent, with $C_i \sim NB(m_i, d_i)$. Thus $E(C_i) = m_i$ and $Variance(C_i) = V(C_i) = m_i + d_i m_i^2$. For the moment, we assume that the parameters $\{m_i, d_i : i = 1, ..., n\}$ are all known, with m_{\bullet} and d_{\bullet} being the average of the $\{m_i\}$ and $\{d_i\}$ respectively.

The normalized counts are $N_i = \left(\frac{m_{\bullet}}{m_i}\right) C_i$. Clearly $\boldsymbol{E}(N_i) = m_i$ for all i, i.e. the normalized values have the same expected value as the original counts. How variable are they?

Their average is N_{\bullet} and their empirical variance is $s^2 = (n-1)^{-1} \sum (N_i - N_{\bullet})^2$.

We give a lower bound to the expected value of s^2 , which implies that we cannot use normalization to produce values that are guaranteed to be arbitrarily close together.

Assertion.
$$E(N_{\bullet}) = m_{\bullet}$$
, $E(s^2) \ge m_{\bullet} + d_{\bullet}m_{\bullet}^2$.

Note. The last expression is the variance of an $NB(m_{\bullet}, d_{\bullet})$.

Proof. The equality $E(N_{\bullet}) = m_{\bullet}$ follows by averaging both sides of $E(N_i) = m_i$. Now $V(N_i) = \left(\frac{m_{\bullet}}{m_i}\right)^2 V(C_i) = \frac{m_{\bullet}^2}{m_i} + d_i m_{\bullet}^2$, while $V(N_{\bullet}) = n^{-2} \sum V(N_i) = n^{-2} \sum \left(\frac{m_{\bullet}^2}{m_i} + d_i m_{\bullet}^2\right) = n^{-1} m_{\bullet}^2 \left\{n^{-1} \sum \left(\frac{1}{m_i}\right) + d_{\bullet}\right\}.$

The *harmonic mean* of the $\{m_i\}$ is $H=n/\sum \left(\frac{1}{m_i}\right)$, and so $H^{-1}=n^{-1}\sum \left(\frac{1}{m_i}\right)$, and we can write $nV(N_\bullet)=m_\bullet^2(H^{-1}+d_\bullet)$.

We now expand $\sum (N_i - N_{\bullet})^2$ in a familiar way as

$$\sum (N_i - N_{\bullet})^2 = \sum ((N_i - m_{\bullet}) - (N_{\bullet} - m_{\bullet}))^2 = \sum (N_i - m_{\bullet})^2 - n(N_{\bullet} - m_{\bullet})^2$$

as the cross term vanishes. Taking *E* of both sides, we get

$$\mathbf{E}\sum(N_i-N_{\bullet})^2=\sum\mathbf{V}(N_i)-n\mathbf{V}(N_{\bullet}).$$

The rest is algebra. The right-hand side above is

$$\sum V(N_i) - nV(N_{\bullet}) = \sum \left(\frac{m_{\bullet}^2}{m_i} + d_i m_{\bullet}^2\right) - m_{\bullet}^2 (H^{-1} + d_{\bullet}) = m_{\bullet}^2 (n-1)(H^{-1} + d_{\bullet}).$$

Hence
$$E\{(n-1)^{-1}\sum(N_i-N_{\bullet})^2\}=m_{\bullet}^2(H^{-1}+d_{\bullet})\geq m_{\bullet}+d_{\bullet}m_{\bullet}^2$$
, since $m_{\bullet}\geq H$,

with equality if and only if the $\{m_i\}$ are all equal.