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1 Simulation Results When the Data Generating Model is Negative
Binomial

We generate datasets of 100 observations. For each of the simulated datasets, we generate the covariates from a
multivariate normal distribution with mean vector µ and covariance matrix Σ:

X ∼MVN

µ =


µ1

µ2

. . .
µp

 =


0
0
. . .
0

 ,Σ =


σ2
1 σ12 . . . σ1p

σ12 σ2
2

...
...

. . . σ(p−1)p

σ1p . . . σ(p−1)p σ2
p


 ,

where p = 12, σi
2 = 1, for i = 1, . . . , 12, and the off-diagonal elements of Σ are set as σ12 = 0.7, σ13 = 0.9, σ14 = 0.7,

σ23 = 0.6, σ24 = 0.7, σ34 = 0.7, and σij = 0.5 elsewhere.
Next we generate an outcome Yi, using a negative binomial (NB) regression model with mean exp

(
XT

i β
)

and
dispersion parameter η = 1, where β = (4.5, 1.0,−0.5, 0.875,−0.625, 0, . . . , 0). We split the 100 observations into two
equal halves. We use 50 observations for estimation, and 50 observations for prediction, to compare methods. For
prediction, we treat x1 and x2 as missing.

Our goal is to compare results from a NB regression model to a Poisson regression model, when data are generated
from a NB regression model with overdispersion. The results using both regression models and different approaches
for dealing with the missing covariates (see Section 4.3), averaged over 100 datasets, are presented in Table 1. In
order to approximate a Poisson regression model, we fix η in the NB model, at a very large value so that the mean
and variance would be about the same, and the model will not allow for overdispersion. We fix η at 102503, where
10250 is the maximum value of the mean response under the NB data generation. The results in Table 1 show that
the NB regression model performs much better than the Poisson regression model, when there is overdispersion in the
data. The NB model has lower RMSE and much better frequentist coverage. The Poisson model has undercoverage,
as expected, as it cannot account for the overdispersion in the data.

Method Cor.Pearson Cor.Spearman RMSE MAE
Coverage Size

Equal-tailed HPD Equal-tailed HPD

No missing (NB) 0.59 0.63 321.04 137.63 0.90 0.89 692.19 489.93
No missing (Poisson) 0.50 0.58 583.22 212.31 0.16 0.16 65.78 65.00

Method 1 (NB) 0.54 0.59 324.78 140.83 0.91 0.89 744.18 496.31
Method 1 (Poisson) 0.46 0.53 494.91 191.39 0.49 0.53 454.23 363.17

Method 2 (NB) 0.54 0.59 323.56 141.86 0.90 0.89 682.89 479.11
Method 2 (Poisson) 0.46 0.53 578.39 213.69 0.14 0.14 58.88 58.09

Table 1: Results related to the predictive distribution of the response variable, when data are generated from the
negative binomial regression model with overdispersion. Method 1 retains all covariates; Method 2 discards the
covariates with missing values. Results are averaged over 100 simulated datasets.
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2 Additional Results for the Tropical Storm Example

In the main manuscript we have demonstrated that the NB regression model works well for our dataset. NB regression
was mainly adopted for computational convenience. Because the dataset does not have overdispersion, we could have
alternatively used Poisson regression. We approximate Poisson regression by fixing the overdispersion parameter at
193, where 19 is the maximum count of tropical storms in the dataset. The results for July are given in Table 2. The
NB and Poisson regression models give very similar results, which is expected because the dataset does not exhibit
overdispersion. Slightly smaller prediction sets under Poisson regression is also expected because the Poisson model
does not allow for overdispersion.

Method Cor.Pearson Cor.Spearman RMSE MAE
Coverage Size

Equal-tailed HPD Equal-tailed HPD

Method 1 (NB) 0.76 0.82 1.87 1.25 1.00 1.00 14.13 13.38
Method 1 (Poisson) 0.76 0.82 1.87 1.25 1.00 1.00 13.88 13.38

Method 2 (NB) 0.71 0.70 2.00 1.50 1.00 1.00 13.50 13.13
Method 2 (Poisson) 0.71 0.70 2.00 1.50 1.00 1.00 13.38 13.00

Table 2: Results for July.

3 Diagnostic Plots for the Tropical Storm Example

In this section we first provide the list of response variables and predictors in the models used for July, in the analysis
of the tropical storm dataset. Next, we provide the associated diagnostic plots that are available in R for normal
linear regression (for modeling the SSTs) and Poisson regression (for modeling the frequency of tropical storms)
models. Based on the autocorrelation plots, the assumption of independence of the response variables in the two
levels of the model seems reasonable. The assumption of normality for the second level models for SSTs also seems
more or less reasonable. The plots for other months are similar so we do not report them here.

Response

TS OBSAtl OBSTrop CMC2Atl CMC2Trop

intercept intercept intercept intercept intercept
GFDLAAtl GFDLAAtl GFDLAAtl GFDLAAtl

GFDLBAtl GFDLBAtl GFDLBAtl GFDLBAtl

GFDLAtl GFDLAtl GFDLAtl GFDLAtl

NASAAtl NASAAtl NASAAtl NASAAtl

GFDLATrop GFDLATrop GFDLATrop GFDLATrop

GFDLBTrop GFDLBTrop GFDLBTrop GFDLBTrop

GFDLTrop GFDLTrop GFDLTrop GFDLTrop GFDLTrop

NASATrop NASATrop NASATrop NASATrop

OBSAtl OBSAtl OBSAtl

OBSTrop OBSTrop OBSTrop

CMC2Atl CMC2Atl

CMC2Trop

Table 3: Models for July.
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Figure 1: Residual plots for examining independence and normality of TS.
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Figure 2: Residual plots for examining independence and normality of ObsAtl.
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Figure 3: Residual plots for examining independence and normality of ObsTrop.
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Figure 4: Residual plots for examining independence and normality of CMC2Atl.
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Figure 5: Residual plots for examining independence and normality of CMC2Trop.
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