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Text S1. Quality assessment of microarray data 
The microarray data consists of three separate experimental series: (1) 
Endogenous developmental time-course data (LCM and manually separated 
tissues); (2) Pax9 and Msx1 mutant mouse derived datasets; and (3) datasets 
from signaling molecule treatment (or “perturbation”) experiments (fig. T1).  To 
ensure high quality integrative analysis, we used a rigorous filtering and batch 
effect removal procedure to process the data. 
 

Fig. T1. Summary of the microarray datasets used in this study.  The numbers in 
the table represent the number of biological replicates in each biological condition. 
 
All 105 samples were hybridized to Illumina Mouse WG-6 v2 Expression 
BeadChip microarrays.  This microarray contains 45,281 probes for 31,508 
genes.  Many probes in the microarray did not generate detectable signals.  Raw 
data were loaded and processed by the R package lumi (1).  We define a probe 
to have a ‘detectable signal’ if its detection P-value (as determined by Illumina 
BeadStudio software) is less than 10-8 in more than 6 (out of 105) samples.  By 
this criterion, only 20,379 probes were detectable and were used for further 
analysis (fig. T2).   

 
Fig. T2. Distribution of probes with different numbers of detectable samples.  More 
than 50% of the probes in this microarray are detectable (P <10-8) in more than six 
samples in the Illumina Mouse WG-6 v2 Expression BeadChip microarray.  All non-
detectable probes were removed from further analysis.  
 



 2 

We first log2 transformed all profiles, and then applied robust spline 
normalization (2) implemented in lumi to each of the four experimental series 
independently.  We further applied quantile normalization to all profiles across 
the four experimental series.  We assessed the quality by analyzing the pairwise 
correlation between samples (fig. T3A).  However, we noticed that quantile 
normalization alone was insufficient to remove a potential batch effect that was 
likely caused by the use of different microarray preparation protocols (cRNA or 
cDNA).  This possible systematic difference between cRNA and cDNA in sample 
preparation has been reported previously (3), and is related to hybridization 
sensitivity and specificity.  Therefore, we performed batch effect removal using 
an R package called ComBat (4).  When using ComBat, we assumed the use of 
cRNA and cDNA was the only source of variation.  After batch effect removal, the 
average correlation between all samples was much higher (fig. T3B).  Notably, 
the two top-level clusters (as determined by hierarchical clustering) corresponded 
to samples from epithelium and mesenchyme.  This indicated that the batch 
effect removal step could recover biologically relevant groupings of the profiles.  
We also plotted the probe intensity distribution of all the samples after batch 
effect removal to show that the intensity distribution is similar across all samples 
(fig. T4). 
 
In the Illumina Mouse WG-6 v2 Expression BeadChip microarray, each gene is 
typically represented by more than one probe.  To identify the most 
representative probe for each gene, we selected the probe with the highest 
median expression value across all samples as the unique probe for each gene.  
The final dataset contains 14,032 genes since many genes do not have probes 
with detectable expression.  Next, we investigated whether two time-course 
datasets generated by different sample preparation protocols (LCM and manually 
separated tissues) could be integrated in a meaningful manner.  We calculated 
the correlation between all pairs of profiles from the two time-course 
experiments, and visualized the results using heat maps (fig. T5A).  The profile-
wide Pearson correlations between samples were generally high (mostly above 
0.9), regardless of whether the samples were generated using the cDNA or 
cRNA protocol.  Also, samples were clustered by their expected biological 
categories (epithelium or mesenchyme, and initiation- or bud-stage, and enamel 
knot).  Similar conclusions were reached by inspecting the gene expression 
patterns of the 50 most variably expressed genes (as determined by sample 
variance across all samples; fig. T5B).  Thus, we did not observe any bias due to 
the use of two independently generated datasets. 
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Fig. T3. Heat maps of correlation coefficients between every pair of gene 
expression profiles before and after batch effect removal.  a, Before batch effect 
removal.  There is a systematic difference between samples processed by cDNA and 
cRNA protocols.  b, After batch effect removal.  The samples cluster by tissue type and 
the overall correlation between samples is higher.  
 
 
 
 

 
Fig. T4. Distribution of probe intensity of all samples after batch effect removal.  
The y-axis shows the expression intensity in log2 scale, and the x-axis denotes the 
sample. 
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Fig. T5. Clustering of samples from the two time-course datasets.  a, Correlation 
coefficients between every pair of samples from the two time-course experiments.  
Samples are clustered by their expected biological categories (epithelium or 
mesenchyme, and initiation- or bud-stage, and enamel knot).  The average profile-wide 
Pearson correlation between samples is high (mostly above 0.9).  b, Heat map showing 
the expression pattern of the 50 most highly variable genes.  Profiles are grouped 
according to their expected biological categories.  
 
Text S2. Comparison with qualitative gene expression data from the BITE-
IT database 
The BITE-IT database (http://bite-it.helsinki.fi/) is currently the most comprehensive 
gene expression database for all stages of mammalian tooth development.  It 
contains qualitative mRNA expression measurements (mostly using in situ 
hybridization), and protein expression measurement for about one hundred 
genes that are pertinent to tooth development.  Gene expression is recorded as 
either "+" for expression or "-" for lack of expression.  The data in this database 
were manually assembled from reading and recording results in the primary 
research literature.  We compared our microarray gene expression time series 
dataset against the BITE-IT records as an independent means to assess the 
quality of our microarray data.  
 
We manually extracted the qualitative mRNA expression measurement from 
BITE-IT for dental epithelium and dental mesenchyme at initiation-, bud- and 
cap-stages (only enamel knot genes were extracted at the cap stage).  Of all the 
records without any missing data, 52 genes can be mapped to a probe in our 
microarray platform using gene symbols.  We conducted a receiver operator 
characteristic (ROC) analysis to assess the consistency of the qualitative record 

http://bite-it.helsinki.fi/�
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in BITE-IT and our microarray gene expression time series data.  We calculated 
the average expression abundance of each gene in each of the five conditions 
(Epi init, Epi bud, Mes init, Mes bud, EK).  Treating the "+" and "-" measurement 
in BITE-IT as a ‘gold standard’, we calculated the area under the ROC curve 
(AUROC) for each gene using the average expression abundance of each gene.  
An AUROC of 1 indicates a perfect correspondence between the microarray data 
and BITE-IT, an AUROC of 0.5 indicates that the gene expression 
measurements correlate no better than expected by random, and an AUROC of 
0 indicates a perfect anti-correlation of the gene expression time series and 
BITE-IT record.  Analysis was carried out using the R package ROCR (5).  The 
overall AUROC is about 0.8.  For example, if we define the cut-off between non-
expressed and expressed genes to be 7.16, our timecourse microarray data can 
match the BITE-IT gene expression with a sensitivity of 0.83 and a specificity of 
0.71 (fig. T6).  
 

 
 
Fig. T6. Consistency between BITE-IT data and our microarray gene expression 
data.  Using a log2 gene expression cut-off of 7.16, we achieved an overall sensitivity of 
0.83 at a specificity at 0.71.  The overall area under the ROC curve is about 0.8.  
 
We further analyzed the concordance between our microarray data and the 
BITE-IT record at the gene level to test whether the expression pattern of each 
gene in our microarray dataset is consistent with BITE-IT across different tissues 
and time points.  In this analysis, there are 42 differentially regulated genes 
(DRG), and 10 genes are non-DRGs (7 non-expressed and 3 constitutively 
expressed).  The AUROC of each DRG was calculated, and the distribution is 
shown in fig. T7A.  About 70% of the 42 DRGs in the BITE-IT database are 
perfectly consistent with our microarray dataset (AUROC=1).  Of the 10 non-
DRG genes, the non-expressed genes have significantly lower expression 
compared to those constitutively expressed genes (P = 0.017, by one sided 
Wilcoxon rank sum test; fig. T7B).  To further investigate the discrepancy 
between our microarray gene expression pattern and the BITE-IT records (those 
genes with AUROC <1), we analyzed the coefficient of variation of each gene 
across different tissues and time points.  We found that genes with low AUROC 
tend to have significantly lower coefficient of variation compared to genes with 
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high AUROC (P < 0.05, by one sided Wilcoxon rank sum test; fig. T7C).  Further, 
the average expression abundances of all DRGs were similar (fig. T7D).  This 
indicates that genes with expression patterns that differ from the BITE-IT 
database generally have smaller effect sizes.  Therefore, a stringent cut-off when 
calling for differentially expressed genes should in principle remove most of these 
potential false positives. 
 

  
Fig. T7. Comparison of time-course microarray gene expression data (present 
study) and the BITE-IT database.  a, Distribution of AUROC values.  70% of the 42 
differentially regulated genes (DRGs) in the BITE-IT database are perfectly consistent 
with our microarray dataset (AUROC = 1).  b, The mean expression of 10 non-DRGs 
(also see table S1).  The seven genes that are non-expressed (const_low) have a 
statistically significant lower expression than the three constitutively expressed genes 
(const_hi) (P = 0.017, by one sided Wilcoxon rank sum test).  This indicates that the 
microarray agrees with BITE-IT records.  c, The average coefficient of variation of DRGs 
with AUROC=1 is significantly higher than those DRGs with lower AUROC (one sided 
Wilcoxon rank sum test).  d, The average expression of all DRGs are similar regardless 
of the AUROC values.  
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Overall, it is encouraging to find that about 75% of 52 genes analyzed here have 
a gene expression profile that is highly consistent with the qualitative expression 
pattern recorded in BITE-IT (table S1).  The genes with low AUROC values tend 
to have low coefficients of variation (and therefore small effect size).  This 
indicates that a stringent effect size cut-off can be used to remove most of these 
false positive genes.  It is particularly important that the expression patterns of 
key genes in our gene regulatory network (Bmp4, Wnts, Fgfs, Shh, Pax9 and 
Msx1) corroborate the mRNA measurements recorded in BITE-IT.  This analysis 
further supports the quality of our microarray data.  
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Text S3. Construction of a gene regulatory network from perturbation data 
We collected over 1,500 pieces of perturbation evidence from the literature.  The 
majority of these data (1,055 entries) are from single perturbation experiments 
(single-gene knockout or treatment with a purified signaling molecule) between 
the developmental stages of E10.0 and E14.5.  We restricted the data for 
constructing the gene regulatory network to these 1,055 entries for simplicity and 
relevance to the stages of tooth development investigated here.  Summary 
statistics of this dataset are shown in fig. T8.  In general, this dataset is 
comprehensive, with good coverage of the developmental stages, regulation type 
(positive, negative, and no regulation), tissue type, and year of publication. 
 

 
Fig. T8. Distribution of literature-derived perturbation evidence.  a, Developmental 
stage;  b, Type of regulation support (- equals downregulation; + equals upregulation; o 
equals no regulation) c, Tissue of the regulator and target;  d, Year of publication.  This 
analysis confirms comprehensive coverage of our perturbation dataset. 
 
In addition to the literature evidence, we also compiled a list of 388 DRGs from 
the perturbation experiments generated in this study.  These data were compiled 
from the DRGs in our signaling molecule treatment experiments and in our Pax9 
and Msx1 mutant gene expression experiments [FDR < 0.05; log2(fold change) > 
0.5; limma t-test].  Further, for inclusion, the genes must be involved in a 
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signaling pathway or have already been studied in the literature.  We also 
included evidence from our in vivo mouse mutants (Figs. 3 and 4).  These data 
were used to construct gene regulatory networks for E13.5 dental epithelium and 
dental mesenchyme (fig. T9). 
 

 
Fig. T9. Construction of a signaling based gene regulatory network from 
perturbation data.  The mode of interaction of each edge is inferred independently of all 
other edges.  This example illustrates how the mode of interaction of one edge (Wnt 
Pathway to Bmp4) is inferred based on perturbation data.  Perturbation data that 
describe the regulation of Bmp4 by the Wnt Pathway are summarized in an evidence 
table.  The evidence was categorized as providing support for positive, negative, or no 
regulation.  The evidence was then summarized as an evidence matrix, which describes 
the number of pieces of evidence of each type of support at each time point.  We then 
used Bayes' rule to combine multiple pieces of evidence to estimate the probability of 
mode of interaction between this regulator and target.  The mode of interaction with the 
highest probability (and greater than 0.6) was selected as the true mode of interaction.  
This procedure was repeated for all edges.  The results of all edges were then combined 
to create a gene regulatory network.  
 
The details of the likelihood based gene regulatory network construction 
procedure are summarized in the Materials and Methods section and illustrated 
in fig. T9.  There are three important parameters associated with our likelihood 
model: α0, β and, Δα.  α0 is the probability of observing the correct experimental 
evidence at the exact developmental stage in which the model is built, for 
example, using a piece of evidence from E13.5 to support a network model of 
E13.5.  β is the probability of observing an incorrect experimental evidence due 
to insensitivity of the detection technology, and Δα is the decrease in likelihood 
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due to the time difference between the developmental stage of the observed 
evidence (for example, E12.5) and the developmental stage of the network  
model (for example, E13.5).  All parameters are biologically motivated, and have 
an intuitive interpretation.  Due to the sparsity of the perturbation evidence per 
edge, we do not deem parameter estimation an effective strategy.  Therefore in 
this study, we set these parameters to some biologically intuitive values: α0=0.9, 
Δα=0.15, and β=0.9.  To ensure that our construction procedure is robust to the 
choice of parameters, we conducted a parameter sensitivity analysis.  In this 
sensitivity analysis, we investigated the effect of changing the three parameters 
independently.  In particular, we tested α0=0.5,0.55,...,0.9;  β =0.5, 0.55,...,0.9; 
and Δα =0.1, 0.15,...,0.5.  We then calculated the proportion of consistent mode 
of interaction.  An edge is said to have a consistent mode of interaction upon 
perturbing a parameter if the probability of mode of interaction is consistently 
above or below 0.6.  Otherwise, an edge is said to have an inconsistent mode of 
interaction when a parameter is perturbed.  The results are shown in figs. T10 to 
T13.  We found that parameter β is very robust against very large changes 
(between 0.5 to 0.9).  The parameter α0 is quite robust against reasonably large 
changes (consistency only dropped to 80% when changing α0 from 0.9 to 0.6).  
The parameter Δα is also quite robust against reasonably large changes 
(consistency only dropped to 80% when changing α0 from 0.15 to 0.4).  
Therefore, we are confident that the structure of the gene regulatory network is 
robust when based on biologically motivated parameters. 
 

 
Fig. T10. Parameter sensitivity analysis of the gene regulatory network 
construction procedure.  We tested the consistency of the mode of interaction of each 
edge upon perturbing each of the three parameters in the algorithm: a, α0; b, β; c, Δα. 
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 Fig. T11. Parameter sensitivity analysis of α0. 
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Fig. T12. Parameter sensitivity analysis of β. 
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Fig. T13. Parameter sensitivity analysis of Δα. 
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Text S4. Simulation of the Wnt-Bmp feedback circuit 
We made two observations based on the microarray gene expression analysis: 
 

1. There is a surprising concordance in the changes of gene expression 
between the epithelium and mesenchyme.  This is apparent from the PCA 
(Fig. 1A) and the contingency table of the differentially expressed genes 
(Fig. 1B).  
 

2. The expression of extracellular signaling molecules is not concordant 
between the two tissues.  In particular, there is a "shift" in tissue specific 
signaling molecule expression (Fig. 1C).  Most signaling molecules are 
expressed in the epithelium at E10.0-E11.5, and later they are mostly 
expressed in the mesenchyme at E13.0-E13.5.  At E14.5, the signaling 
molecules are expressed in both tissues.  Canonical Wnt genes are 
expressed largely in dental epithelium, and Bmp4 is expressed in both the 
epithelial and mesenchymal compartments in a temporally specific 
manner.  This observation is consistent with the long-standing 
experimental observation that the instructive potential shifts temporally 
between the two tissues (6).  Our microarray data support this conclusion. 

 
How can we reconcile the globally concordant expression changes observed, 
with the discordant changes in the gene expression of key signaling molecules?  
Is it possible to use the structure of the gene regulatory network to explain this 
phenomenon?  Here we seek to build a simple ordinary differential equation 
(ODE) model to explore whether the structure of the Wnt-Bmp feedback circuit 
can explain the observed sequential and reciprocal pattern of signaling molecule 
expression and overall concordance in genome-wide gene expression changes. 
 
In particular, we aim to investigate whether a simple ODE model can generate 
the essential features that are characteristic of the dynamic expression patterns 
observed for Bmp4 and Wnts. These essential features include: [1] Bmp4 
expression is high in epithelium but low in mesenchyme at the initiation-stage 
(E10-E11.5), while the pattern is reversed at the bud-stage (E13-E13.5); [2] Wnt 
expression is higher in the epithelium at the bud- and cap-stages than the 
initiation- and placode-stages; and [3] Bmp4 expression is high in both the 
epithelial enamel knot and the mesenchyme at E14.5; and [4] Wnt expression is 
generally undetectable in the molar dental mesenchyme at any of these stages.  
To quantify these features, we converted the average scaled expression of Bmp4 
and Wnt ligands based on our timecourse microarray data (fig. T14) into a 
reduced timecourse of 4 developmental stages: Initiation-stage (E10-E15), 
placode-stage (E12-12.5), bud-stage (E13-13.5), and cap-stage (E14.5).  These 
reduced timecourse data can be represented as a line graph or bar plots (fig. 
T14).  
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Fig. T14. The expression dynamics of Wnt and Bmp4 ligands from our microarray 
timecourse data.  

  
4.1 Model description 
 
The ODE model we have built is based on the Wnt-Bmp feedback circuit 
structure in fig. T15.  Signal transduction and transcriptional activation (orange 
and black edges in the fig. T15, respectively) are modeled using the Hill 

equation, 

 

h(x) =1+
xn

xn + K n , where x represents expression of the regulator, K 

represents the activation threshold and n is the sigmoidicity constant, to model 
the non-linear influence a regulator(s) has on its target.   
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This approach for modeling gene regulatory networks has been used previously 
as a simple approximation of gene expression dynamics (7).  We therefore 
created eight simple equations to model the activity of Wnt and Bmp pathways in 
the two tissue compartments (epithelial Bmp pathway activity = BE, epithelial Wnt 
pathway activity = WE, mesenchymal Bmp pathway activity = BM, mesenchymal 
Wnt pathway activity = WM), as well as the expression of the genes encoding the 
Wnt and Bmp4 ligands by the two compartments (epithelial Bmp4 expression = 
bE, epithelial Wnts expression = wE, mesenchymal Bmp4 expression = bM, 
mesenchymal Wnts expression = wM). 
 

 

BE :
dx1

dt
= h(x5 + x7) − Dx1

WE : dx2

dt
= h(x6 + x8) − Dx2

BM :
dx3

dt
= h(x5 + x7) − Dx3

WM : dx4

dt
= h(x6 + x8) − Dx4

 

 

 
Fig. T15. The Wnt-Bmp feedback circuit, and the names of the variables used in the ODE 
model. 

  
The model contains two tunable parameters: K and D. The two parameters have 
the following intuitive meanings:

 

 
K:  The threshold in which the target expression is activated by its regulator 
 
D:  The rate of expression degradation  

 

bE : dx5

dt
= h(x2) − Dx5

wE :
dx6

dt
= h(x1) − Dx6

bM : dx7

dt
=

1
2

h(x3) + h(x4 )[ ]− Dx7

wM :
dx8

dt
= 0
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The parameter n in the Hill equation controls the sigmoidicity of the function h(x).  
In the simulation, we fixed this parameter as n = 20.  We note that different 
values of n would also be appropriate as long as they allow the generation of a 
sharp activation curve (fig. T16).  A sigmoidal function was chosen mainly to 
capture the non-linear dynamics pervasive in biochemical signaling systems.  
The rate of degradation, D, and the activation threshold, K, were identified by an 
exhaustive search.  Both D and K are identical across all 8 ODEs in the 
simulation of wildtype and mutant conditions. 
 

 
 
Fig. T16. The Hill equation.  The parameter n controls the sigmoidicity of the curve: the 
larger the n, the sharper the bend at the inflection point (n=20 in this example).  The 
parameter K determines the inflection points.  In this example, the inflection is set to 
K=3.   

  
Modeling assumptions:  

1. The activity of one pathway in both tissue compartments (for example, the 
Wnt pathway in epithelium and mesenchyme) is identical for all time points 
in wild-type.  This assumption enforces the observation that the genome-
wide expression patterns are concordant between tissues.  The 
expression patterns of Wnt and Bmp ligands are allowed to differ. 

2. The activation threshold (K), and coefficient of signal degradation (D) is 
the same across all eight equations.  This implies that we do not make an 
assumption about pathway specific dynamics. This assumption reduces 
the number of parameters in the overall model, and therefore guards 
against over-fitting the model.   

 
The model was implemented and simulated using GNU Octave 
(http://www.gnu.org/software/octave/).  The ODE model was solved using the lsode 
function.  
 

http://www.gnu.org/software/octave/�
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4.2 Implementation and parameter estimation 
 
The initial values of signaling molecule expression and pathway activity were 
assigned based on the microarray data at the initiation-stage (Fig. 2).  Since the 
microarray data only provide relative expression measurements, the actual 
numerical values of these initial values cannot be specified.  Nonetheless, the 
relative magnitude of expression should be sufficient to capture this set of initial 
values.  The results shown in this section are not sensitive to small changes in 
the initial values. 
 
 
 
 
 
 
 
We conducted a systematic parameter search to identify a set of parameters that 
could qualitatively capture the observed expression dynamics of the Wnt and 
Bmp4 signaling molecules.  We tested all combinations of K and D within the 
following range (below). 
 

Parameter Number of candidate searched Range 
K 50 [0.6,1.0] 
D 50 [1.8,2.2] 

 
For each set of parameters, we simulated a time-course profile, and checked 
whether there was a single cut-off value such that the expression could be 
characterized as high (H) or low (L), and that would match the observed 
expression profile (below).  
 

Signaling 
 

Initiation Placode Bud Cap 
Epi Bmp4 H L L H 
Epi Wnt L L H H 
Mes Bmp4 L H H H 
Mes Wnt L L L L 

 
If the qualitative expression profile matched all 20 qualities (4 signaling 
molecules and 5 time points), this set of parameters was termed “valid”.  All 
“valid” parameters are shown in fig. T17.  This experiment shows that K and D 
are correlated, and must be balanced to obtain the observed expression 
patterns.  For the following discussion, we chose one valid parameter set, K=0.9 
and D=2, for subsequent analysis. 
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Fig. T17. Estimation of valid parameters for ODE modeling.  Each valid combination 
of parameters D and K is indicated as a dot in this parameter space.   

  
4.3 Model simulation for mouse mutants 
 
To check the validity of the model, we applied this ODE model to simulate the 
gene expression dynamics of canonical Wnts and Bmp4 in wild-type tooth 
development from E10.0 to E14.5, as well as in various genetic mutants:  [1] 
epithelial Apc loss-of-function (LOF) (Apc LOF); [2] Pax9 null mutant (Pax9 null); 
[3] compound epithelial Apc LOF; Pax9 null; (Apc LOF ; Pax9 null); [4] epithelial 
Bmpr1a LOF mutant (Bmpr1a LOF); and [5] compound epithelial Apc LOF; 
Bmpr1a LOF (Apc LOF ; Bmpr1a LOF)  (figs. T18 to T23). 
 
The data from our microarray timecourse experiment were used to identify valid 
values for parameters K and D to capture the essential features of the observed 
signaling dynamics.  Not only can the essential features of Bmp4 and Wnt 
expression dynamics be captured by our simulation, we can observe that the 
activity of the Bmp and Wnt pathways (the third and forth panels of fig. T18) 
remain identical across the two tissues compartments, suggesting our simulation 
can also capture simultaneous reception of signals to the two compartments.  
This result therefore provides evidence that the Wnt-Bmp feedback circuit 
structure by itself is sufficient to account for reciprocal expression of signaling 
molecule genes (Bmp4 and Wnts), and suggests that simultaneous signal 
transduction may account for the genome-wide concordant gene expression 
changes that are observed in dental epithelium and mesenchyme. 
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Fig. T18. Simulation of wildtype gene expression dynamics based on the ODE 
model.

  
To simulate epithelial Apc LOF, we assumed that the activation threshold, K, of 
the epithelial Wnt pathway is halved (for example, KWE=K/2), which mimics the 
situation where the Wnt pathway is activated more easily in the absence of the 
inhibition mediated by Apc.   Our simulation (fig. T19) shows that epithelial Wnts 
and Bmp4 expression remains high throughput bud- and cap-stages, which is 
consistent with our experimental observation (Figs. 3 and 4). 
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Fig. T19. Simulation of epithelial Apc LOF gene expression dynamics based on the 
ODE model. 
To simulate the Pax9 null mutant, we assumed the rate of change of 
mesenchymal Bmp4 production to be zero: 
 

 

bM :
dx7

dt
= 0

 
 
This assumption decouples the influence of mesenchymal Bmp4 and Wnt 
pathways on Bmp4 expression, which is the main functional defect in Pax9 null 
mice. Our simulation (fig. T20) shows that the expression of Bmp4 and Wnts are 
largely lost in both compartments, which is consistent with our observations from 
in vivo validation (Fig. 3). 
 
 

 
 
Fig. T20. Simulation of Pax9 null gene expression dynamics based on the ODE 
model. 
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To stimulate the expression patterns of epithelial Apc LOF and Pax9 null 
compounds, we combined the alterations of the abovementioned mutant ODEs.  
Our simulation (fig. T21) shows that the epithelial expression of Bmp4 and Wnts 
are regained in compund Apc LOF and Pax9 null mutants.  This is consistent 
with our hypothesis that ectopic constitutive activation of epithelial Wnt signaling 
can lead to up-regulation of Bmp4 expression in the epithelium, and this epithelial 
derived Bmp4 can substitute for the ablated mesenchymal Bmp4 expression and 
satisfy the epithelial Bmp4 signaling requirement.  
 
 

 
 
Fig. T21. Simulation of epithelial Apc LOF and Pax9 null compound mutant gene 
expression dynamics based on the ODE model. 
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To stimulate the expression patterns of epithelial Bmpr1a LOF, we assume the 
rate of change of epithelial Bmp pathway activity to be zero: 
 

 

BE :
dx1

dt
= 0

 
 
This assumption decouples the influence of the epithelial Bmp pathway from the 
extracellular Bmp4 concentration. Our simulation (fig. T22) shows that the 
expression of Bmp4 and Wnts is largely lost in the epithelium while mesenchymal 
Bmp4 expression remains high, which is consistent with our observations from in 
vivo experiments (Fig. 4). 
 

 
 
Fig. T22. Simulation of epithelial Bmpr1a LOF gene expression dynamics based 
on the ODE model.
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To stimulate the expression patterns of epithelial Apc and Bmpr1a LOF 
compound mutants, we again combined the alterations of the abovementioned 
mutant ODEs. Our simulation (fig. T20) predicts increased abundances of 
epithelial Bmp4 expression and decreased abundances of epithelial Wnts 
expression in Apc and Bmpr1a LOF mutants, which is confirmed in vivo (Fig. 4). 
 
 

 
 
Fig. T23. Simulation of epithelial Apc and Bmpr1a LOF compound mutant gene 
expression dynamics based on the ODE model. 
 
4.4 Discussion 
 
The aim of this analysis was to explore whether the essential features of the 
sequential and reciprocal expression dynamics of Bmp4 and Wnts can be 
recapitulated using a network structure inferred from systematic analyses.  
Currently, our simple ODE model has a small number of parameters.  If we 
include additional tissue- or pathway-specific terms to the ODE model, the 
simulation should fit the observed expression abundances even better.  
Nonetheless, this simple model is already sufficient to yield qualitative expression 
dynamics that are consistent with the expression time-course data observed in 
endogenous tooth development, and correctly predicts the expression of Wnts 
and Bmp4 in different mutant mice.    
 
The network structure itself contains sufficient information to explain the 
observed temporal and tissue specific expression patterns of canonical Wnt and 
Bmp4 signaling molecule genes.  In the epithelium, Wnts and Bmp4 expression 
are each cross-regulated by the complementary signaling pathway, while in the 
mesenchyme, Bmp4 is jointly regulated by both pathways.  This circuit structure 
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leads to ODE solutions that predict a temporal shift in signaling between 
epithelium and mesenchyme.  Thus, the reciprocal expression of signaling 
molecules, typical of most epithelial-mesenchyme interactions, is in this case an 
inherent property of the Wnt-Bmp feedback circuit itself. 
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Fig. S1. LCM workflow.  a, Coronal sections of embryonic molar tooth 
morphology representing the stages for which RNA was analyzed by gene 
expression microarray after laser capture microdissection (LCM).  b, 
Representative LCM captures of epithelial and mesenchymal tissue 
compartments from freshly frozen E13.5 coronal cryosections.  Upper:  
epithelium; lower: mesenchyme.  Scale bars: 100 µm.  c, Representative 
Bioanalyzer tracings of total RNA purified from LCM sections.  d, NuGEN PolydT 
based total RNA amplification protocol results in cDNA suitable for microarray 
analysis.  e, Bioanalyzer gel trace displaying representative size distribution of 
amplified and end-labeled cDNA prior to hybridization on Illumina Mouse WG-6 
v2 Expression BeadChip whole genome array.   
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profiles.  a, Bar chart showing proportion of variance explained by each principal 
component (PC).  PCs 1 and 2 collectively account for over 50% of the variance 
in the dataset.  b, Two dimensional scatter plot representation of the first two 
principal components (PC1 and PC2).  PC1 separates samples based on their 
tissue type (dental epithelium or dental mesenchyme).  PC2 separates samples 
based on developmental stages [E10.0, E11.0, E11.5, E12, E12.5, E13, E13.5 
and enamel knot (EK)].  Samples from each tissue compartment form an 
approximate line along the direction of PC2, and lines formed by the epithelium 
and mesenchyme roughly parallel each other.  This pattern suggests that both 
tissue compartments experience similar changes in global gene expression 
through developmental time.  Alternatively stated, the temporal changes in gene 
expression are concordant between the epithelial and mesenchymal tissue 
compartments.  Both LCM and manually dissected time-course data were 
included in this analysis and give consistent results.  N = 3 biological microarray 
replicates for LCM generated samples and N = 2 biological microarray replicates 
for manually separated tissue. 

 
          
 
 
 
   
          
 

Fig. S2.  Principal components analysis of time series gene expression 
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Fig. S3. Analysis of gene expression concordance between epithelium and 
mesenchyme with the LCM and manually dissected time course data sets.  
a and b, Contingency table showing number of genes with significantly increased 
or decreased expression in epithelium and mesenchyme.  The distribution of 
genes in each category is significantly non-random (P<10-15, χ2 test).  c and d, 
Analysis of gene expression concordance in each gene set.  We first divided all 
genes according to different functional gene categories (Gene ontology, KEGG 
pathways, and so on), and then computed the statistical significance (χ2 test) and 
concordance score for each gene set.  Each square represents a gene set, and 
its location is determined by the false discovery rate (FDR) using the χ2 test and 
the concordance score.  The majority of statistically significant gene sets (FDR < 
0.05) have concordant gene expression changes (concordance score > 0).  Both 
LCM and manually separated time-course datasets, independently collected, 
confirm the statistically significant concordance of differentially regulated genes 
(DRGs) between the epithelial and mesenchymal tissue compartments, 
indicating that this concordance is a genome-wide property across many 
functional gene sets. 
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Fig. S4. Average scaled gene expression patterns of different signaling 
pathway components.  a, Average expression profiles of extracellular signaling 
molecules.  b, Average expression profiles of membrane-bound components 
(mostly receptors).  c, Average expression profiles of cytosolic components 
(mostly intracellular signal transduction components).  d, Average expression 
profiles of nuclear components (mostly transcription factors or transcriptional co-
activators or co-repressors).  The mesenchymal-derived extracellular signaling 
molecule average gene expression profile (a) shows a progressive increase 
between E10 and 13.5, whereas the comparable epithelial expression profile 
shows a decrease between E11 and 12.5, followed by an increase.  Thus, from 
comparison of the gene expression patterns of different signaling components, 
the spatiotemporal expression patterns of extracellular signaling molecules (a) 
appears most closely matched to the shift in tooth instructive potential from 
dental epithelium at E10-E11.5 to dental mesenchyme at E12.5-E13.5 (6). 
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Fig. S5. Expression dynamics of representative extracellular signaling 
molecules and receptors (Bmp, Wnt, Fgf, and Shh pathways).  Gene 
expression is reported as average log2(expression) of the combined microarray 
time-course dataset (LCM and manually separated tissues).  Signaling molecules 
show highly dynamic expression changes, whereas the expression of their 
receptors is relatively unchanged over time.   These data suggest that both 
epithelial-mesenchyme compartments are competent to transduce receptor-
mediated signals over time, and that signaling dynamics are most likely 
controlled by ligand expression.   
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Fig. S6. Heat maps of average expression of cellular components in 
different signaling pathways.  a, Average expression profiles of different 
cellular components (averaging over selected pathways).  b, Average expression 
profiles of extracellular signaling molecules.  c, Average expression profiles of 
membrane-bound components (mostly receptors).  d, Average expression 
profiles of cytosolic components (mostly intracellular signal transduction 
components).  e, Average expression profiles of nuclear components (mostly 
transcription factors or coactivators or corepressors). 
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Fig. S7. A schematic illustration of the construction of a molecular concept 
map. a, Two-group statistical tests are performed to identify the differentially 
regulated genes (DRGs) for each biologically interesting comparison.  b, A Venn 
diagram is a simple means to visualize the extent of overlap among multiple 
gene sets.  However, it easily becomes cluttered when large numbers of gene 
sets are compared.  c, A MCM is a simple way to visualize statistically significant 
overlap among many gene sets.  Each node in the MCM represents a gene set, 
and an edge between two nodes represents a statistically significant overlap 
between the two gene sets.  In this study, we used Fisher's Exact test to 
determine the statistical significance of gene set overlap. 
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Fig. S8. Molecular concept maps showing significant overlap between 
various sets of differentially regulated genes.  a and b,  MCMs of DRG sets 
related to mesenchymal (initiation-stage) and epithelial (bud-stage) induction: 
endogenous tissue inductive response (Mes response; Epi response), temporally 
differentially expressed genes (Mes bud-stage compared to initiation-stage; Epi 
bud-stage compared to initiation-stage), and tissue response to exogenous 
stimulation of Wnt, Bmp, Shh, and Fgf signaling (Wnt, Bmp, Fgf, Shh).  c and d, 
MCMs showing significant overlap between Pax9 and Msx1 target genes in 
epithelium and mesenchyme, and their association with other gene sets related 
to inductive signaling.  Edges displayed in (a) and (b) are hidden in (c) and (d) for 
clarity.  Each edge demonstrates a statistically significant overlap of gene sets 
(FDR < 0.05, χ2; odds ratio > 2).  This analysis, based on three independent 
datasets, suggests that Wnt and Bmp signaling most closely recapitulates the 
effect of endogenous signaling during early odontogenesis.  N = 3 biological 
microarray replicates per sample. 
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Fig. S9. Epithelial and mesenchymal gene regulatory networks 
reconstructed using our probabilistic method.  a and b, “Full GRNs” (gene 
regulatory networks) for E13.5 dental epithelium and E13.5 dental mesenchyme 
are shown.  Each node represents a pathway, a set of extracellular signaling 
molecules, or a gene.  Red and blue edges represent activation and inhibition, 
respectively.  c and d, A small subnetwork of the ‘Full GRN’ for each tissue 
compartment is extracted to show the regulatory relationships between key 
signaling pathways and extracellular signaling molecules.  We focus here on the 
control of major extracellular signaling molecules by the Wnt, Bmp, Fgf, Shh and 
Activin pathways.  Shh and Activin pathways are not shown in these two figures 
because there is no evidence yet that they directly control the expression of other 
signaling molecules.  In the epithelium, both Bmp4 and Wnt ligands are under the 
control of the Wnt and Bmp pathways, respectively.  Together, the Wnt and Bmp 
pathways jointly control mesenchymal Bmp4, whereas Wnt is not under the 
control of either the Wnt or Bmp pathway and is not strongly expressed in dental 
mesenchyme at these stages. 
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Fig. S10. An expanded view of the Wnt-Bmp feedback circuit.  Each edge in 
this GRN is inferred from a combination of experimental data from the literature 
and this study.  We have developed an interactive web-based network viewer to 
allow users to interrogate the evidence associated with each edge.  The network 
viewer is part of ToothCODE: 
http://compbio.med.harvard.edu/ToothCODE/network.php.  For clarity, we have 
removed all pathway-to-pathway edges in Fig. 2 of the main text.  The inhibitory 
edges associated with pathway-to-pathway connections may contribute to the 
fine tuning of signaling activity, whereas Wnts and Bmp4 act as the major 
mediators of epithelial-mesenchymal interaction. 

http://compbio.med.harvard.edu/ToothCODE/network.php�
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Fig. S11. Constitutive canonical Wnt signaling induces supernumerary 
tooth development in the absence of Pax9.  a-d, Whole mount phenotypes of 
E17.5 control (K14-Cre; Apc+/f; Pax9+/-), Pax9-null (K14-Cre; Apc+/f; Pax9-/-), 
epithelial Apc loss-of-function (K14-Cre; Apcf/f; Pax9+/-), and compound epithelial 
Apc loss-of-function; Pax9-null mutants (K14-Cre; Apcf/f; Pax9-/-).  e-h, 
Hematoxylin, eosin, and alcian blue stained molar region sagittal sections from 
respective E17.5 embryos.  i-l, Shh expression marks differentiating ameloblasts.  
m-p, Bmp4 expression in epithelial and mesenchymal compartments of K14-Cre; 
Apcf/f; Pax9+/- and K14-Cre; Apcf/f; Pax9-/-.  Scale bars: 5 mm (a-d) and 200 µm 
(e-p).  N = 3 nonadjacent sections. 
 



 37 

 
 

 
 
Fig. S12. Coronal sections of molar regions from control, Pax9-null, 
epithelial Apc loss-of-function, and compound epithelial Apc loss-of-
function; Pax9-null mutants at E14.0.  a-d, Hematoxylin, eosin, and alcian blue 
stained sections.  e-h, Increased Shh expression in epithelial Apc loss-of-function 
(K14-Cre; Apcf/f; Pax9+/-) and compound epithelial Apc loss-of-function; Pax9-null 
mutants (K14-Cre; Apcf/f; Pax9-/-) mutants compared to control mice (K14-Cre; 
Apc+/f; Pax9+/-).  Scale bars: 100 µm.  N = 3 nonadjacent sections. 
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Fig. S13. Constitutive canonical Wnt signaling induces supernumerary 
tooth formation in the absence of Msx1.  a-d, Whole mount phenotypes of 
E17.5 control (K14-Cre; Apc+/f; Msx1+/-), Msx1-null (K14-Cre; Apc+/f; Msx1-/-), 
epithelial Apc loss-of-function (K14-Cre; Apcf/f; Msx1+/-), and compound epithelial 
Apc loss-of-function; Msx1-null mutants (K14-Cre; Apcf/f; Msx1-/-).  e-h, 
Hematoxylin, eosin, and alcian blue stained sagittal sections of molar regions 
from respective E17.5 embryos. i-l, Shh expression marks differentiating 
ameloblasts.  m-p, Amel expression in K14-Cre; Apcf/f; Msx1+/- and K14-Cre; 
Apcf/f; Msx1-/- marks differentiating ameloblasts.  q-t, Dspp expression in K14-
Cre; Apcf/f; Msx1+/- and K14-Cre; Apcf/f; Msx1-/- marks differentiating 
odontoblasts.  Scale bars: 5 mm (a-d) and 200 µm (e-t).  N = 3 nonadjacent 
sections. 
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Fig. S14. Coronal sections of molar regions from control, Msx1-null, 
epithelial Apc loss-of-function, and compound epithelial Apc loss-of-
function; Msx1-null mutants at E14.0.  a-d, Hematoxylin, eosin, and alcian 
blue stained sections.  e-h, Increased Shh expression in epithelial Apc loss-of-
function (K14-Cre; Apcf/f; Msx1+/-) and compound epithelial Apc loss-of-function; 
Msx1-null (K14-Cre; Apcf/f; Msx1-/-) mutants compared to control mice (K14-Cre; 
Apc+/f; Msx1+/-).  i-l, Increased Wnt6 expression in epithelial Apc loss-of-function 
(K14-Cre; Apcf/f; Msx1+/-), and compound epithelial Apc loss-of-function; Msx1-
null (K14-Cre; Apcf/f; Msx1-/-) mutants compared to control mice.  m-p, Increased 
epithelial Bmp4 expression in epithelial Apc loss-of-function (K14-Cre; Apcf/f; 
Msx1+/-), and compound epithelial Apc loss-of-function; Msx1-null (K14-Cre; 
Apcf/f; Msx1-/-) mutants compared to control mice..  Decreased mesenchymal 
Bmp4 expression in Msx1-null mice compared to control mice.  Scale bars: 100 
µm.  N = 3 nonadjacent sections. 
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Fig. S15. Constitutive canonical Wnt signaling fails to induce tooth 
formation in the absence of epithelial Bmpr1a.  a-d, Whole mount phenotypes 
of E17.5 control (K14-Cre; Apc+/f; Bmpr1a+/f), epithelial Apc loss-of-function (K14-
Cre; Apcf/f; Bmpr1a+/f), epithelial Bmpr1a loss-of-function (K14-Cre; Apc+/f; 
Bmpr1af/f), and compound epithelial Apc loss-of-function; Bmpr1a loss-of-function 
(K14-Cre; Apcf/f; Bmpr1af/f).  e-h, Hematoxylin, eosin, and alcian blue stained 
sagittal molar sections of E17.5 embryos.  i-l, Increased Shh expression in K14-
Cre; Apcf/f; Bmpr1a+/f and K14-Cre; Apcf/f; Bmpr1af/f.  m-p, Increased Fgf4 
expression in K14-Cre; Apcf/f; Bmpr1a+/f and K14-Cre; Apcf/f; Bmpr1af/f.  q-t, 
Increased epithelial Bmp4 expression in K14-Cre; Apcf/f; Bmpr1a+/f and K14-Cre; 
Apcf/f; Bmpr1af/f, and decreased mesenchymal Bmp4 expression in K14-Cre; 
Apcf/f; Bmpr1af/f.  u-x, Msx1 expression in  K14-Cre; Apcf/f; Bmpr1af/f.  Scale bars: 
5 mm (a-d) and 200 µm (e-x).  N = 3 nonadjacent sections. 
 



 41 

 
Fig. S16. qRT-PCR expression analysis at E14.5 in the isolated epithelium 
of epithelial Apc loss-of-function and of compound epithelial Apc loss-of-
function; Bmpr1a loss-of-function mutants.  Fold changes were determined 
by comparison with the dental epithelium of control samples (Apc+/f; Bmpr1a+/f).  
The expression of Wnt4, Wnt7b, Wnt5a, Fgf4, and Fgf8 was reduced in 
compound epithelial Apc loss-of-function; Bmpr1a loss-of-function mutants 
(Apcf/f; Bmpr1af/f) compared to epithelial Apc loss-of-function mutants (Apcf/f; 
Bmpr1a+/f).  Wnt3 was increased 2-fold in compound epithelial Apc loss-of-
function; Bmpr1a loss-of-function mutants (Apcf/f; Bmpr1af/f) compared to 
epithelial Apc loss-of-function mutants (Apcf/f; Bmpr1a+/f).  Lef1 and Shh 
expression was similar in compound epithelial Apc loss-of-function; Bmpr1a loss-
of-function mutants (Apcf/f; Bmpr1af/f) and epithelial Apc loss-of-function mutants 
(Apcf/f; Bmpr1a+/f).  Data are mean ± s.d. (n=6; 2 biological replicates run in 
technical triplicate), normalized to Hprt. 
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Fig. S17. Coronal sections of molar regions from control, epithelial Apc 
loss-of-function, epithelial Bmpr1a loss-of function, and compound 
epithelial Apc loss-of-function; Bmpr1a loss-of-function mutants at E14.0.  
a-d, Hematoxylin, eosin, and alcian blue stained sections.  e-h, Increased Shh 
expression in epithelial Apc loss-of function (K14-Cre; Apcf/f; Bmpr1a+/f) and 
compound epithelial Apc loss-of-function; Bmpr1a loss-of-function (K14-Cre; 
Apcf/f; Bmpr1af/f) mutants compared to control mice (K14-Cre; Apc+/f; Bmpr1a+/f).  
i-l, Msx1 expression in dental mesenchyme is nominally similar in the different 
genotypes.  Scale bars: 100 µm.  N = 3 nonadjacent sections. 

-
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Table S1. Comparison of BITE-IT and microarray data from this study 
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Table S2.  Gene sets used in this study  
 

 
 
 
 
 
 
Table S3.  Custom gene sets used in this study 
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