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S1 Appendix
Bayesian statistical analysis methods

Detection of resistance during experimental evolution

Defining the statistical model

Here we ask whether the initial mutator frequency and antibiotic treatments had an effect on
resistance evolution, and whether these effects interacted. We fitted a categorical regression
statistical model (also called a ‘multinomial logistic’ model) to the data, to analyse how different
initial mutator frequencies and antibiotic treatments affected which type of resistance was
observed at the end of the experiment. Note that in this section, ‘model’ refers to statistical
model, and not to the ‘stochastic population dynamics model’ introduced later.

To make our analysis explicit, we will briefly describe the statistical model here. We will
refer to Y; as the value of the ith observation, x,, ; as the independent variables, and f3,, x as
the estimated coefficients. It is the coefficients f,, x that are of interest as they relate how
different experimental conditions influence the probability of observing any given outcome.
Categorical regression can be formulated as an extension of logistic regression. Let Y; be a
categorical variable that takes a value k from {1, 2, ..., K}, and the probability that Y; has
outcome k be P (Y; = k). We use a linear predictor function to compute P (Y; = k). For a
statistical model considering M explanatory variables, this takes the form

f(k, i) = Box + Prex1,i + PokX2,i + oo + BMKXM,i, (S1)

where B, « is the regression coefficient associated with the mth explanatory variable and the
kth outcome, and B  is the intercept associated with the kth outcome. This function can be



written more compactly using vector notation and taking the dot product, f(k, i) = .Ek - X;, where
Bk and x; each have length M + 1.

The reader may be familiar with binary logistic regression with K = 2 outcomes, usually
with k = 1 defined as ‘success’ and k = 0 as ‘failure’. The function f(k, i) is linked to the
probability of observing outcome k by taking the log of the odds-ratio of the two outcomes, i.e.
the logit function.

lfpi =P(Yi =1),
logit(p;) = log (1ﬁ—1%) = El . )?i
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where }Zi is the vector of values taken by the explanatory variables x; for the observation Y;.

For K > 2 outcomes, the multinomial logit can be thought of as computing K — 1
independent logistic regression models with respect to a consistent reference level [1]. If K is
chosen as the reference level, B k is defined as the ‘intercept’ and all other elements of ﬁqK are
equal to zero. This results in
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The fact that Zl,le P(Y; = k) = 1 allows calculating P (Y; = K) = 1/(1 + Zlktll eﬁk'X"),
which can then be used to solve the other probabilities. For any outcome c, the general form of
P (Y; = c) is thus given as
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which can then be used to estimate the coefficients ﬁk through various methods. The particular
method we used, Bayesian categorical regression, is described in the next section.

Fitting the statistical model and hypothesis testing using Bayesian categorical
regression

In our particular analysis, Y; represents the type of resistance observed, with five possible
outcomes: ‘no resistance’, ‘rifampicin resistance’, ‘nalidixic acid resistance’, ‘mixed resistance’



and ‘double resistance’. For ‘mixed resistance’, populations grew on selective plates containing
either rifampicin or nalidixic acid, but not on plates containing both rifampicin and nalidixic acid,
whereas ‘double resistant’ populations grew on plates containing both antibiotics. We note that
these outcomes refer to detection of resistance, rather than fixation, i.e. the frequency of
resistant individuals within each population has a value between > 0 and < 1.

The independent variables, X;, were the initial mutator frequency, the antibiotic treatment
applied, which microtitre plate the population inhabited, and position within each microtitre plate.
Initial mutator frequency was treated as a categorical predictor (with levels ‘zero’, ‘low’, ‘medium’
or ‘high’, using ‘zero’ as the reference level), as we have no a priori expectation of a linear
relationship between the proportion of mutators and the estimated coefficient. Antibiotic
treatment was a categorical predictor (with levels ‘no antibiotic’, ‘rifampicin’, ‘nalidixic acid’, or
‘combination’, using ‘no antibiotic’ as the reference level). Initial mutator frequency and
antibiotic were each treated as a fixed effect,as variance estimates from random effects
variables with fewer than five levels tends to be imprecise [2]. Plate number and position within
each microtitre plate were treated as random effects.

Incorporating both fixed and random effects requires fitting a ‘mixed-effects model’ to the
data. However, mixed-effects models for categorical data are not straightforward to fit using
standard frequentist inference methods. While it is possible to fit such models in principle [3],
there is not, to our knowledge, a readily-available software implementation. However,
mixed-effects categorical models can be fit using recently-developed tools that use Bayesian
inference methods [4, 5]. We provide an example below. In addition to the software availability,
there are additional benefits of using a Bayesian inference approach [6].

To estimate the coefficients, Ek, we fit a mixed-effects categorical model using brm()
from the brms package [4, 5] in R [7]. To fit a categorical model, ‘family’ was set to ‘categorical’
(with the default link ‘logit’). To ensure convergence was achieved, we set max_treedepth = 15
and adapt_delta = 0.99. We ran four chains of 2000 iterations each, with 1000 burn-in
iterations. To permit hypothesis testing on point estimates, samples from specified priors were
drawn by setting sample_prior="yes". The choice of priors was based on preliminary data,
and is described in detail in a later section. Default values were used for other settings.

To evaluate whether the interaction between initial mutator frequency and antibiotic
treatment was important, we compared the full model (i.e. main effects and interaction) to a
model with a main-effects only using ‘Pareto-smoothed importance sampling leave-one-out
cross-validation’ (PSIS-LOO [8]). Incorporating interactions effects into the model did not
significantly improve fit (PSIS-LOO difference in fit: —2.6 + 5.4 S.E.), hence we present
estimates from the main effects model.

An example of the function call is shown below (full R scripts are also available, see
‘Data Availability’ statement in the main text).

# Control parameters and priors
priors = c(set_prior ("student_t(7, -5, 2.5)", class = "Intercept"),
set_prior ("student_t(7, 0, 2.5)", class = "b"))



controls = list(adapt_delta = 0.99, max_treedepth = 15)

# Model calls

M1.full = state ~ (pmutS.text + antibiotic)*2 + (1|row) + (1]col)
M1l.main = state ~ (pmutS.text + antibiotic) + (1|row) + (1l]col)

modelM1. full brm(M1. full,
family = categorical("logit"),
chains 4, cores = 4, iter = 2000, warmup = 1000,
prior = priors, control = controls, sample_prior = "yes",
data = popnsday6)

modelM1.main = brm(M1.main,
family categorical("logit"),
chains = 4, cores = 4, iter = 2000, warmup = 1000,
prior = priors, control = controls, sample_prior = "yes",
data = popnsday6)

Establishing priors for the model

Priors were established through a preliminary experiment in which pure populations of either
wild-type or mutator bacteria were subjected to increasing concentrations of single and
combination antibiotic treatments (see Methods in the main text). For this preliminary
experiment, we assayed the proportion of populations by measuring OD at 600 nm relative to a
‘blank’ well with no bacteria present, using a BMG POLARstar OPTIMA plate reader (BMG
Labtech, Ortenberg, Germany). A population was considered to be ‘alive’ with OD > 0.1,
otherwise ‘extinct’. The data are presented in Fig A. We observed that, in the absence antibiotic
treatment, all populations survived. For single antibiotic treatments, all mutator populations
survived, but some wild-type populations went extinct. For the combination antibiotic treatment,
0/54 wild-type and 39/54 mutator populations survived. We use this information to first establish
priors for the intercepts of the model (Fig A).

As we observed no alive wild-type populations in the combination treatment, we
therefore have some confidence that the proportion of multi-resistant outcomes is then
Pdouble < 1/54. Therefore, the intercept for multi-resistance should be less than
logit(1/54) ~ —3.97. We therefore used a t-distribution with mean u = -5 and broad and
heavy tails with standard deviation ¢ = 2.5, and degrees of freedom v = 7, to reflect
uncertainty. This distribution covers both pgoubie ~ 0 in the left tail, and pgouvie = 39/54, i.e. the
number of alive populations in pure mutator populations, in the right tail. Given that the
probability of being single-drug resistant in the absence of antibiotic is likely greater than double
resistant, intercepts for other resistance outcomes are likely covered by this distribution, and so
we use the same prior for the single-resistance intercepts.

Next, we use this information to establish priors for the other coefficients. We observed
that the presence of mutators increases survival in the presence of both single and combination
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Fig A. Preliminary experiment with purely wild-type and mutator populations. A) The
proportion of populations ‘alive’ (i.e. with OD > 0.1) under antibiotic treatments. B) lllustration
of priors used to conduct Bayesian categorical regression using information from preliminary
experiment, indicated by vertical dashed lines. Curves show the probability density for a
Student’s ¢ distribution with means p = 0 (solid) or 1 = —5 (dotted), standard deviation 0 = 2.5
(both curves) and degrees of freedom v = 7 (both curves).



antibiotics, hence the effect of mutators on fotal resistance (i.e. the sum of all resistance states
observed) is likely to be positive. However, it is possible that different resistance states may
have a negative relationship with the proportion of mutators, if for example, elevated mutation
rates pushes double resistance to arise in the background of single-drug resistance, single-drug
resistance may have a negative relationship with initial mutator frequency. Hence for the effects
of initial proportion of mutators, we use a t-distribution centred at u = 0 with the same broad
and heavy tails ¢ = 2.5, and v = 7 to reflect uncertainty. This covers the observed proportion of
alive populations in a purely mutator population p = 39/54; we should however expect to
observe fewer resistance events when the proportion of mutators is less than 1, as was the
case in the selection experiment described in the main text. It also allows for the extreme
possibilities of (nearly) zero or (nearly) all resistance, albeit with less weight given.

From this experiment, we have limited direct evidence for how the presence of antibiotics
should affect the probability of observing resistance. On one hand, the presence of antibiotics
decreased the number of alive populations (and an extinct population cannot be resistant). On
the other, our growth measurements of resistant strains in the presence of antibiotics suggest a
positive effect of being resistant in the presence of antibiotics, which would allow them to spread
to high frequency and thus escape loss due to genetic drift. The effect of antibiotics is likely to
be in the same range as for mutators (which includes ‘no effect’), hence we use the same prior
distribution (i.e. a t-distribution with y =0, 0 = 2.5, and v = 7).

Estimated model coefficients

Estimated model coefficients for the main-effects only model are shown in Table A. These are
reported as treatment contrasts (i.e. relative to the treatment of no antibiotics and no mutators).
We used 95% credible intervals (95% C.l.s) for all hypotheses tested. Coefficients were
estimated on the logit scale (i.e. log-odds, which can assume any value between —oco and oo,
corresponding to proportions of outcomes of presistance state = 0 and 1 respectively). A coefficient
is estimated for each possible combination of response outcome (resistance state) and the
predictors (initial mutator frequency and antibiotic), which indicates how a specific combination
of predictor levels (e.g. ‘low’ mutator frequency and ‘rifampicin’ treatment) influences the
probability that a given resistance state is observed (e.g. ‘rifampicin resistance’).

Mutators generally have a positive effect on resistance, as indicated by positive
treatment contrasts (Table A). However, as previously noted, although we expect an overall
positive association between mutator frequency and resistance, we do not necessarily expect a
straightforward relationship with each resistance state. This is because the ‘mixed resistance’
and ‘double resistance’ states follow from a single-drug resistance state. Indeed, this is the
case for the ‘low’ mutator treatment and nalidixic acid resistance state, which is overtaken by
‘mixed resistance’. Recall that the mixed resistance state contains both single-drug resistance
types. Thus, to assess the effect of mutators on the presence of nalidixic acid resistance types,
we can combine these treatment contrasts. We can perform Bayesian hypothesis tests on
combinations of treatment contrasts using hypothesis(). The combined treatment contrast for



the ‘low’ mutator frequency for the combination of ‘nalidixic acid resistance’ and ‘mixed
resistance’ is 3.36 [95% C.l. of (1.74, 5.00)], which is positive as predicted. The same
combination of treatment contrasts could be performed for rifampicin resistance or for the other
initial mutator frequencies, but as these already exclude zero, the combinations of their
contrasts will also exclude zero.

Table A. Effects of initial mutator frequency and antibiotic treatment on resistance state
observed at the end of the experiment. Estimated model coefficients come from fitting a
Bayesian categorical regression model to the selection experiment outcomes. Treatment
contrasts on the logit scale are shown. (* denotes 95% credible intervals excluding zero).

Resistance state Coefficient Treatment contrast 95% credible interval
rifampicin resistance intercept -2.83 (-3.58,-2.14) *
low 1.48 (0.78,2.25) *
intermediate 1.98 (1.23,2.74) *
high 3.36 (2.56,4.17) *
rifampicin 3.29 (2.60, 4.02) *
nalidixic acid -1.22 (-2.28,-0.29) *
combination -2.22 (-3.16,-1.38) *
nalidixic acid resistance intercept -4.00 (-5.06,-3.08) *
low -0.88 (-2.30, 0.34)
intermediate 1.51 (0.65,2.39) *
high 2.81 (1.90,3.78) *
rifampicin -2.41 (-7.70, 0.75)
nalidixic acid 2.67 (1.88,3.54) -~
combination -0.88 (-2.11, 0.26)
mixed resistance intercept -6.78 (-8.46,-5.37) *
low 4.27 (3.02,5.81) *
intermediate 4.89 (3.60,6.45) *
high 6.51 (5.20,8.10) *
rifampicin 3.63 (2.77,452) *
nalidixic acid 2.84 (2.18,3.53) *
combination -0.96 (-1.90,-0.10) *
double resistance intercept -10.99 (-18.91,-8.71) ~
low 5.14 (3.57,7.39) *
intermediate 5.98 (4.36,8.26) ~
high 8.01 (6.35,10.28) *
rifampicin 7.80 (6.21,9.97) -~
nalidixic acid 5.20 (8.71,7.36) *
combination 4.22 (2.78,6.33) *




Checking robustness against choice of priors

A potential consequence of using informative priors in Bayesian inference is that they may
influence the posterior distribution for estimated coefficients unduly if they are not chosen
appropriately. However, the use of non-informative priors does not necessarily mitigate these
problems [for an in-depth discussion, see 9]. To check the robustness of our model against the
originally chosen priors, we refit the model using different priors. We set Student-t priors on the
intercept with arbitrarily chosen u of -10, -20, -30, -40, with (as before) 0 =2.5and v =7. The
estimated coefficients resulting from using these priors are quantitatively similar to our original
model.

As a second approach to evaluating robustness, we also set strongly-informative priors
on each coefficient of the model. We estimated means for each coefficient using a fixed-effects
categorical model (i.e. without the random effects) by maximum likelihood using the
multinom() function from the nnet package [10], which refers to this type of model as
‘multinomial logistic regression’. Note that assigning priors in this fashion is used here only as a
diagnostic technique, and is not recommended as a basis for assigning priors more generally.
For the model with these strong priors, the majority of coefficients were again similar to the
model with weaker priors. The exception was for coefficients associated with the ‘double
resistance’ outcome. Here, because there were zero double resistance events associated with
the reference levels of the main effects of the model (i.e. no mutators, no antibiotics), the
maximum likelihood estimated the intercept associated with this outcome to be very small
(log-odds of —38.34, equivalent to an odds ratio of approximately 4.5 x 10~1¢). The posterior
distribution for the intercept was dominated by this strong prior. Consequently, the estimated
coefficients for the coefficients associated with antibiotic treatment and the presence of
mutators where there were double resistant outcomes observed were much larger than those
estimated when using the original weakly-informative priors. However, we note that in all cases,
the qualitative outcomes with respect to antibiotic treatment and the presence of mutators
remain unchanged.

Growth of strains derived from fluctuation tests

Defining the statistical model

Here we determined under which conditions resistant strains achieved a growth advantage (see
Fig A in S3 Appendix). Growth was characterised using area under the curve (AUC) of growth
curves from OD measured at 600 nm. We compare the wild-type (E. coli K-12 BW25113) with
single- and double-drug resistant mutants selected in the BW25113 genetic background
through fluctuation tests (see Methods in the main text). The model fitted to the data Fig 2 in the
main text is a Bayesian two-way factorial model, with ‘strain’ and ‘antibiotic' as predictor
variables. We treated AUC measured in each antibiotic treatment as a multivariate response.
This was on the basis that each strain was measured at several different concentrations, hence



may be non-independent. We used Student’s t priors, as opposed to a Gaussian priors,
because doing so is more robust against extreme values, i.e. values that appear to be ‘outliers’,
but where there is no evidence of error in data collection [11].

Establishing priors for the statistical model

The intercept of this model is the mean AUC from the growth curves of OD, which is always
greater than zero. To calculate empirical AUC, we used SummariseGrowth() from the
growthcurver, which uses the trapezoidal rule to approximate the integral under the curve.
OD values on this BMG FLUOstar OPTIMA plate reader are typically less than 1.2 for
blank-corrected values. We used the trapezoidal rule to calculate extremes for the values of

AUC, i.e. ,
AUC:/a Fl)dx ~ (b—a)w.

Since AUC was calculated over 25 h, the lower extreme is (25 — 0)(0 + 0)/2 = 0 (i.e. no growth)
and the upper extreme is (25 — 0)(1.2 + 1.2)/2 = 30 (i.e. essentially instantaneous achievement
of maximum density). However, previous experience from growing wild-type E. coli suggests
they exit exponential growth in the region of 10 h after inoculation after a 1/1000 dilution in MH
broth, giving

(10-0)(0+1.2) (25-10)(1.2+1.2)

2 " 2 B
as a rough approximation of what would be expected under good growth conditions. Hence, the
prior for the intercepts should give highest density between 0 and 24. This was specified as a
t-distribution with mean u = 10 and broad and heavy tails with standard deviation o = 2.5, and
degrees of freedom v = 7. The presence of mutators could either increase or decrease evolved
fitness relative to the intercept. To set the priors on the effect of mutators, we use a
t-distribution centred on mean u = 0, with standard deviation o = 0.5, and degrees of freedom
v = 7. If the intercept takes a value in the region of the mean of its prior, this prior on the
mutator effect allows for the extreme possibility that the presence of mutators results in an AUC
of zero (if the coefficient takes value —10), or an AUC beyond the technical capabilities of the
equipment (for values > 10), with low probability. This is illustrated in Fig B.

AUC ~ 24

Fitting the statistical model and hypothesis testing

As previously, model fitting was performed using brm(). To use a Student’s t model, ‘family’
was set to ‘student’ (with the default link ‘identity’). To permit hypothesis testing on point
estimates, samples from specified priors were drawn by setting sample_prior="yes". To
ensure convergence, we set max_treedepth = 15 and adapt_delta = 0.99. Default values
were used for other settings. As before, we used a 95% C.l. for hypotheses. As we are primarily
interested in hypotheses on point estimates, we do not present all of the estimated effects here,
though this can be generated with the R script provided (see the ‘Data Availability’ statement in
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Fig B. lllustration of priors used to conduct Bayesian multivariate regression on the
effect of mutators on growth. Curves show the probability density for a Student’s ¢
distribution with means u = 0 (solid) or 4 = 10 (dotted), standard deviation o = 2.5 (both
curves) and degrees of freedom v = 7 (both curves). Dashed vertical lines show prior
information on technical upper and lower values for AUC, used to set a prior on the intercept.

the main text). We calculated the difference in AUC of the single-resistant and double-resistant
strains in the two single-drug treatments. Estimated model coefficients are reported as
treatment contrasts (i.e. relative to the wildtype and antibiotic-free treatment). For the rifampicin
treatment, there was no benefit of double resistance over rifampicin resistance [95% C.I. of the
difference = —0.07, 95% C.l.: (—0.38,0.23)]. For the nalidixic acid treatment, there was a
deleterious effect of double resistance over nalidixic acid resistance [95% C.I. of the difference
= —0.75, 95% C.l.: (—1.05,-0.45)].

Growth of double resistant strains from selection experiment

Defining the statistical model

Here we determine whether initial mutator frequency had an effect on the growth of double
resistant strains that evolved during selection. Decreased growth with a higher mutator
frequency may occur if deleterious variation accumulated by the elevated mutation rate
hitch-hikes to high frequency along with resistance. Alternatively, increased growth may be
realised if the elevated mutation rate allowed the accumulation of beneficial mutations, or
increased the clonal interference among resistance mutations. We fit a Bayesian multivariate
Student’s t mixed-effects model. We treated growth (measured by AUC) in the presence (20
mg/l) and absence (0 mg/l) as a bivariate response variable, and initial mutator frequency as the
sole population-level factor (‘low’, ‘intermediate’, ‘high’, with the growth of double resistant
strains derived in the BW25113 wild-type background as the reference level). As before, we
used a bivariate model to account for correlations arising from measuring the AUC of each
strain multiple times in different environments and a Student’s + model to be robust to ‘outliers’
in the data. AUC at each concentration was measured over several ‘replicate’ experiments,
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which was treated as a varying factor common to both response variables.

Establishing priors for the bivariate linear model

The same experimental procedure was used to measure growth of the selection experiment
strains, hence we use the same priors as for the fluctuation test-derived strains (Fig B).

Fitting the statistical model and hypothesis testing

As previously, statistical model fitting was performed using brm(). To use a Student’s t model,
‘family’ was set to ‘student’ (with the default link ‘identity’). To permit hypothesis testing on point
estimates, samples from specified priors were drawn by setting sample_prior="yes". To
ensure convergence, we set max_treedepth = 15 and adapt_delta = 0.99. Default values
were used for other settings. As before, we used 95% C.l.s for hypotheses. Estimated
coefficients are given in Table B, reported as treatment contrasts (i.e. relative to double
resistance in the BW25113 strain). Growth measured by AUC in 0 mg/l and 20 mg/I of the
combination antibiotic treatment was positively correlated [r = 0.68, 95% C.l.: (0.56,0.79)]. The
statistical model incorporating initial mutator frequency was a worse fit than an intercept-only
model (WAIC 564.6 + 23.7 SE vs. 540.0 + 25.2 SE), suggesting initial mutator frequency did not
have a large influence on AUC of double resistant strains.
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