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Abstract

In this supplementary document, Sections S1-S8 describe the results of additional
simulation studies to assess different aspects of the method. Section S9 gives more
detail on the selection of tuning parameters for the application to MRS data in a
study of a mouse model for Friedreich’s ataxia, and Section S10 discusses computing
time for the applications.

S1 Evaluation of cross-validation method for select-

ing tuning parameters

We conducted a simulation study to assess how the choices of tuning parameters λ1 and
λ2 affect the performance of the proposed method. A dataset with sample size N = 100
was generated, with two classes of equal size (N0 = N1 = 50). The predictors have the
form of a three-way array of dimensions X : P1 × P2 × P3 where P1 = 4, P2 = 5, and
P3 = 15. The N0 samples corresponding to class -1 were generated from a multivariate
normal distribution N(0,IP1P2P3×P1P2P3). The other N1 samples corresponding to class 1
were generated from a multivariate normal distribution N(µ1,IP1P2P3×P1P2P3) where µ1 =
u1 ◦ u2 ◦ u3. Here u1 and u2 were generated from N(0, IPk×Pk

), k = 1, 2. For u3 5
values are set to zero and 10 nonzero values are generated from N(0, I10×10). We consider
4 candidates for λ1 (10−4, 0.001, 0.005, 0.01) and 3 candidates for λ2 (1, 0.5, 0.1). We
applied the multiway sparse DWD method to the simulated data with fixed parameters
and selected parameters by cross-validation. The simulation is repeated 100 times. The
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results are shown in Table S1 and Table S2 with average correlations between true values
and estimates for uk and average percentages of zero or non-zero coefficients in u3 that
are correctly estimated. The accuracy of classification decreases as λ2 decreases. For fixed
λ2, as λ1 becomes larger, more zero coefficients for u3 are correctly shrunk to 0. Table S2
shows simulations where the correlations between true values and estimates are very high,
and the classification is accurate using the cross-validation method to select parameters,
although the selected parameters might be slightly different for each replicate.

Table S1: Simulation results based on multiway sparse DWD with prespecified λ1 and
λ2 candidates. “Cor(uk)” is the correlation between the estimated linear hyperplane and
the true hyperplane for kth dimension. “TP(u3)” is the true positive rate that is the
proportion of non-zero coefficients in u3 are correctly estimated to be non-zero.“TN(u3)”
is the true negative rate that is the proportion of zero coefficients in u3 are correctly
estimated to be zero. The results are the mean over 100 replicates.

λ2 1 0.5 0.1
λ1 1e-4 0.001 0.005 0.01 1e-4 0.001 0.005 0.01 1e-4 0.001 0.005 0.01
Cor(u1) 0.96 0.96 0.97 0.97 0.93 0.93 0.93 0.93 0.89 0.91 0.93 0.92
Cor(u2) 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.98 0.95 0.95 0.95 0.93
Cor(u3) 0.98 0.99 0.98 0.98 0.97 0.97 0.97 0.96 0.94 0.93 0.93 0.92
TP (u3) 1.00 0.98 0.81 0.85 1.00 0.98 0.90 0.83 0.99 0.94 0.80 0.72
TN (u3) 0.03 0.37 0.81 0.91 0.03 0.41 0.81 0.92 0.09 0.59 0.90 0.95

Table S2: Simulation results based on multiway sparse DWD with selected penalty param-
eters by cross-validation. λG

1 and λG
2 denote the geometric means of selected parameters

over 100 replicates.
λG
1 = 0.0008, λG

2 = 1.56
Cor(u1) 0.98
Cor(u2) 0.99
Cor(u3) 0.99
TP(u3) 0.39
TN(u3) 0.93

S2 Simulation results based on the objective function

with separable L2 penalty

In this section, we consider a simulation study to evaluate the performance of the higher
rank model based on the objective function with separable L2 penalty (i.e. PU

λ1,λ2
(B)

defined in the main article). We observed that the separable L2 penalty tends to reduce
the rank of the estimated coefficient array, motivating us to use the non-separable L2

penalty (i.e. Pλ1,λ2(B)) for the higher rank model. We simulated 200 datasets with
high dimensions (30 × 15 × 15) under the case of no sparsity. The process of generating
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Figure S1: Histograms of the two singular values computed based on the estimated coef-
ficient matrix.

multiway data is identical to that for the higher rank model (R = 2) described in Section
5.3 of the main article. Table S3 shows average correlations, misclassification rates and
true positive rates over 200 simulation replicates. Multiway sparse DWD (M-SDWD)
with R = 2 has similar performance to M-SDWD with R=1, which implies M-SDWD
(R=2) may not recover the true rank specified in the model. To measure the rank of the
estimated model, we conduct SVD to obtain singular values for the estimated coefficient
matrix. In most simulations, the second singular values of the estimated coefficient matrix
are zero or nearly zero, as shown in Figure S1, which indicates the solutions of higher rank
(R=2) model are often shrunk to a lower rank. The proportion of simulations that give
estimates with true rank R = 2 is only 14.5%. Table S4 shows the results of simulations
that can truly detect rank 2 components, and we can see the model with R=2 performs
much better than rank-1 multiway models and full SDWD.

S3 Simulation results under different signal to noise

ratios

We conducted more simulation studies to compare the proposed method with other meth-
ods under different signal to noise ratios (SNR= (0.1,0.2,0.3,0.5)). We considered the
high-dimensional, more sparsity case of Section 5.1 in the main article for this simulation.
Tables S5 and S6 show the results based on all simulations and those simulations with
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Table S3: Simulation results based on all simulations under the high dimensional scenario:
“Cor” is the correlation between the estimated linear hyperplane and the true hyperplane.
“Mis” is the average misclassification rate. “TP” is the true positive rate, i.e., the propor-
tion of non-zero coefficients that are correctly estimated to be non-zero.The margins of
error (2* standard errors across 200 replicates) for each statistic are also listed following
the ±.

Methods Cor Mis TP
M-SDWD (R=2) 0.833±0.012 0.000±0.000 0.883±0.029
M-SDWD (R=1) 0.792±0.011 0.000±0.000 0.872±0.029
M-SDWD (λ1 = 0, R=1) 0.800±0.010 0.000±0.000 1.000±0.000
M-DWD 0.771±0.014 0.000±0.000 1.000±0.000
Full SDWD 0.781±0.006 0.000±0.000 0.419±0.036

Table S4: Simulation results among simulations that give estimates with true rank (R=2)
under the high-dimensional scenario: “Cor” is the correlation between the estimated linear
hyperplane and the true hyperplane. “Mis” is the average misclassification rate. “TP”
is the true positive rate, i.e., the proportion of non-zero coefficients that are correctly
estimated to be non-zero.“TN” is the true negative rate, i.e., the proportion of zero
variables that are correctly estimated to be zero. The margins of error (2* standard
errors across 200 replicates) for each statistic are also listed following the ± symbol.

Methods Cor Mis TP % rank 2
M-SDWD (R=2) 0.984±0.008 0.000±0.000 0.955±0.040 0.145
M-SDWD (R=1) 0.709±0.033 0.000±0.000 0.844±0.088 -
M-SDWD (λ1 = 0, R=1) 0.726±0.023 0.000±0.000 1.000±0.000 -
M-DWD 0.676±0.024 0.000±0.000 1.000±0.000 -
Full SDWD 0.782±0.016 0.000±0.000 0.492±0.088 -

correlations larger than 0.5, respectively. The multiway sparse DWD model performs
better than other methods in terms of its correlation with the true hyperplane, and has
competive misclassification rates across the different SNR levels. The last column in Ta-
ble S6 show the proportions of simulations with correlations larger than 0.5 for different
methods under different SNRs. As the SNR increases, the proportion increases as well,
as the algorithm tends to converge to the true solution with more signal.

S4 Assessment of convergence

We conducted more simulations to explore how the signal to noise ratio (SNR) affects the
convergence of the proposed methods and other alternatives. Figure S2 and S3 show the
distributions of correlations between the true hyperplane and the estimated hyperplane
for SNR = 0.1 and SNR=0.3, under the more sparsity case based on high dimensional
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Table S5: Simulation results for different signal to noise ratios: “Cor” is the correlation
between the estimated linear hyperplane and the true hyperplane. “Mis” is the average
misclassification rate. “TP” is the true positive rate, i.e., the proportion of non-zero
coefficients that are correctly estimated to be non-zero.“TN” is the true negative rate,
i.e., the proportion of zero variables that are correctly estimated to be zero. The margins
of error (2* standard errors across 200 replicates) for each statistic are also listed following
the ± symbol.
SNR Methods Cor Mis TP TN
0.1 M-SDWD 0.717±0.053 0.225±0.029 0.484±0.050 0.837±0.038

M-SDWD (λ1 = 0) 0.594±0.054 0.220±0.028 1.000±0.000 0.000±0.000
M-DWD 0.560±0.058 0.235±0.030 1.000±0.000 0.000±0.000
Full SDWD 0.469±0.040 0.251±0.025 0.168±0.028 0.917±0.029

0.2 M-SDWD 0.849±0.038 0.089±0.020 0.668±0.040 0.806±0.041
M-SDWD (λ1 = 0) 0.796±0.040 0.101±0.021 1.000±0.000 0.000±0.000
M-DWD 0.766±0.049 0.121±0.025 1.000±0.000 0.000±0.000
Full SDWD 0.636±0.035 0.136±0.022 0.172±0.023 0.957±0.022

0.3 M-SDWD 0.879±0.035 0.066±0.018 0.720±0.036 0.776±0.045
M-SDWD (λ1 = 0) 0.838±0.037 0.077±0.020 1.000±0.000 0.000±0.000
M-DWD 0.831±0.042 0.084±0.021 1.000±0.000 0.000±0.000
Full SDWD 0.690±0.031 0.104±0.020 0.165±0.017 0.982±0.011

0.5 M-SDWD 0.927±0.026 0.039±0.014 0.777±0.033 0.762±0.048
M-SDWD (λ1 = 0) 0.890±0.030 0.048±0.016 1.000±0.000 0.000±0.000
M-DWD 0.884±0.036 0.053±0.018 1.000±0.000 0.000±0.000
Full SDWD 0.760±0.027 0.066±0.017 0.189±0.017 0.993±0.002

data (30 × 15 × 15) with sample size N = 100. Combining with results for SNR=0.2
shown in the main article we can see as the SNR increases, the number of correlations
with small values decreases, and the convergence issue becomes less severe.

S5 Simulations with Rank= 5

We conducted more simulations to evaluate the performances of the rank-R multiway
sparse model. These simulations were analogous to those in Section 5.3 of the main
article, with different manipulated conditions. Table S7 gives the results under a lower
dimensional setting (X : 15×4×5). Table S8 gives results for both the lower-dimensional
and higher-dimensional settings for a model with rank R = 5. From these results we can
conclude that the rank-R model can generally perform well when the data were generated
under a true rank-R model, although lower-rank approximations perform comparably well
when the dimension is small and the signal is sparse.
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Table S6: Simulation results among simulations with correlation greater than 0.5 under
different signal to noise ratios: “Cor” is the correlation between the estimated linear
hyperplane and the true hyperplane. “Mis” is the average misclassification rate. “TP”
is the true positive rate, i.e., the proportion of non-zero coefficients that are correctly
estimated to be non-zero.“TN” is the true negative rate, i.e., the proportion of zero
variables that are correctly estimated to be zero. The margins of error (2* standard
errors across 200 replicates) for each statistic are also listed following the ± symbol.
SNR Methods Cor Mis TP TN % Cor>0.5
0.1 M-SDWD 0.916±0.014 0.077±0.015 0.628±0.046 0.869±0.040 0.645

M-SDWD (λ1 = 0) 0.858±0.017 0.088±0.016 1.000±0.000 0.000±0.000 0.66
M-DWD 0.878±0.018 0.080±0.016 1.000±0.000 0.000±0.000 0.62
Full SDWD 0.718±0.023 0.096±0.017 0.124±0.014 0.993±0.002 0.52

0.2 M-SDWD 0.935±0.010 0.048±0.010 0.697±0.038 0.831±0.042 0.905
M-SDWD (λ1 = 0) 0.899±0.012 0.051±0.010 1.000±0.000 0.000±0.000 0.88
M-DWD 0.926±0.010 0.042±0.009 1.000±0.000 0.000±0.000 0.825
Full SDWD 0.760±0.017 0.060±0.011 0.156±0.016 0.994±0.001 0.765

0.3 M-SDWD 0.948±0.008 0.033±0.008 0.745±0.034 0.795±0.046 0.925
M-SDWD (λ1 = 0) 0.921±0.010 0.035±0.009 1.000±0.000 0.000±0.000 0.905
M-DWD 0.941±0.008 0.030±0.008 1.000±0.000 0.000±0.000 0.88
Full SDWD 0.781±0.016 0.048±0.010 0.170±0.016 0.994±0.002 0.825

0.5 M-SDWD 0.963±0.006 0.021±0.007 0.792±0.030 0.767±0.049 0.96
M-SDWD (λ1 = 0) 0.943±0.009 0.022±0.007 1.000±0.000 0.000±0.000 0.94
M-DWD 0.958±0.007 0.018±0.006 1.000±0.000 0.000±0.000 0.92
Full SDWD 0.816±0.015 0.030±0.009 0.202±0.018 0.994±0.001 0.89

S6 Rank estimation and misspecification

Table S9 shows the mean correlations between the estimated coefficients and the true
coefficients using the proposed method (M-SDWD) by assumed rank (R̂ = 1, 2, 3, 4, 5)
for different true ranks under the low dimensional scenario with less sparsity when N =
40. In general, the correlation is maximized when the assumed rank is equal to the true
rank; however, performance tends to be robust to small deviations from the precise value
of the true rank, especially when the true rank is higher. Table S9 also shows the mean
correlation when the rank is estimated by maximizing the t-statistic of the validation
scores between the two classes under 10-fold cross-validation. This approach performs
better than any fixed rank over all scenarios, including the true rank of the underlying
signal.

S7 Simulations with correlated predictors

In this section, we considered a simulation study in which the predictors are correlated.
The covariance matrix for the predictor array is assumed to have a separable structure
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Figure S2: Histogram of correlations between true hyperplane and estimates with four
classification methods under high-dimensional scenario with SNR=0.1 and sample size
N= 100.

Σ = Σ1 ⊗ Σ2 ⊗ Σ3, where Σk : Pk × Pk is the covariance along dimension k. Each of Σ1,
Σ2, and Σ3 have an AR(1) structure, with correlation determined by a shared parameter
ρ:

Σk =


1 ρ ρ2 . . .

1 ρ . . .
. . .

1

 for k = 1, 2, 3.

Thus, ρ controls the overall level of correlation in the predictors. The samples for class
-1 are generated via vec(Xi) = Normal(0,Σ) and the samples for class +1 are generated
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Figure S3: Histogram of correlations between true hyperplane and estimates with four
classification methods under high-dimensional scenario with SNR=0.3 and sample size
N= 100.

via vec(Xi) = Normal(vec(
√
αµ1),Σ), with

√
αµ1 generated as in Section 5.1 of the main

article. As a representative scenario we consider the high-dimensional (30×15×15), more
sparsity, small sample size (N=40) case of Section 5.1 in the main article, and generate√
αµ1 under those conditions. The CATCH method is considered as a competing approach

here because it assumes a separable multiway residual covariance structure analogous to
that in our data generating process. However, the CATCH model does not assume a low-
rank or any other multiway structure on the mean signal distinguishing the two groups,
µ1, and thus is not well-suited for the other simulation scenarios.

Table S10 shows the results over 200 replications across different methods and dif-
ferent correlation levels ρ. This shows that the M-SDWD method performs relatively
well for scenarios with no correlation or mild correlation, but less well for scenarios with
high correlation. As expected, CATCH performs relatively well for scenarios with higher
correlation but has no advantage when there is no correlation. We find that the multiway
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Table S7: Simulation results under the low dimensional scenario (15×4×5) when the true
model is rank-2. In the Sparsity column, the numbers in parentheses indicate the number
of non-zero variables in each dimension. “Cor” is the correlation between the estimated
linear hyperplane and the true hyperplane. “Mis” is the average misclassification rate.
“TP” is the true positive rate, i.e., the proportion of non-zero coefficients that are correctly
estimated to be non-zero.“TN” is the true negative rate, i.e., the proportion of zero
coefficients that are correctly estimated to be zero. The margins of error (2* standard
errors across 200 replicates) for each statistic are also listed following the ± symbol.
N Sparsity Methods Cor Mis TP TN
40 More (5× 2× 2) M-SDWD (R=2) 0.716±0.034 0.191±0.027 0.659±0.052 0.678±0.048

M-SDWD (λ1 = 0, R=2 ) 0.643±0.032 0.183±0.023 1.000±0.000 0.000±0.000
M-SDWD (R=1) 0.746±0.038 0.157±0.024 0.676±0.052 0.711±0.056
M-SDWD (λ1 = 0, R=1 ) 0.713±0.036 0.167±0.024 1.000±0.000 0.000±0.000
M-DWD 0.724±0.041 0.168±0.025 1.000±0.000 0.000±0.000
Full SDWD 0.618±0.033 0.188±0.023 0.410±0.034 0.861±0.033

Less (5× 4× 5) M-SDWD (R=2) 0.875±0.014 0.038±0.010 0.786±0.036 0.440±0.052
M-SDWD (λ1 = 0, R=2 ) 0.870±0.015 0.036±0.009 1.000±0.000 0.000±0.000
M-SDWD (R=1) 0.810±0.017 0.043±0.010 0.698±0.042 0.530±0.054
M-SDWD (λ1 = 0, R=1 ) 0.818±0.015 0.040±0.009 1.000±0.000 0.000±0.000
M-DWD 0.824±0.017 0.039±0.010 1.000±0.000 0.000±0.000
Full SDWD 0.703±0.019 0.064±0.014 0.334±0.032 0.847±0.033

No (15× 4× 5) M-SDWD (R=2) 0.958±0.007 0.003±0.003 1.000±0.000 -
M-SDWD (λ1 = 0, R=2 ) 0.959±0.006 0.003±0.002 1.000±0.000 -
M-SDWD (R=1) 0.840±0.014 0.006±0.003 0.839±0.034 -
M-SDWD (λ1 = 0, R=1 ) 0.849±0.012 0.005±0.003 1.000±0.000 -
M-DWD 0.843±0.014 0.005±0.003 1.000±0.000 -
Full SDWD 0.773±0.012 0.011±0.005 0.469±0.038 -

100 More (5× 2× 2) M-SDWD (R=2) 0.853±0.021 0.144±0.023 0.764±0.046 0.702±0.051
M-SDWD (λ1 = 0, R=2 ) 0.791±0.026 0.156±0.023 1.000±0.000 0.000±0.000
M-SDWD (R=1) 0.862±0.022 0.141±0.020 0.735±0.052 0.763±0.059
M-SDWD (λ1 = 0, R=1 ) 0.840±0.022 0.148±0.021 1.000±0.000 0.000±0.000
M-DWD 0.834±0.031 0.148±0.022 1.000±0.000 0.000±0.000
Full SDWD 0.798±0.027 0.160±0.025 0.395±0.037 0.934±0.025

Less (5× 4× 5) M-SDWD (R=2) 0.941±0.009 0.027±0.007 0.858±0.029 0.410±0.050
M-SDWD (λ1 = 0, R=2 ) 0.938±0.009 0.027±0.007 1.000±0.000 0.000±0.000
M-SDWD (R=1) 0.860±0.012 0.030±0.007 0.772±0.033 0.518±0.053
M-SDWD (λ1 = 0, R=1 ) 0.862±0.012 0.031±0.007 1.000±0.000 0.000±0.000
M-DWD 0.868±0.012 0.031±0.007 1.000±0.000 0.000±0.000
Full SDWD 0.838±0.011 0.037±0.009 0.371±0.025 0.893±0.019

No (15× 4× 5) M-SDWD (R=2) 0.976±0.004 0.004±0.003 0.964±0.012 -
M-SDWD (λ1 = 0, R=2 ) 0.979±0.004 0.004±0.003 1.000±0.000 -
M-SDWD (R=1) 0.849±0.013 0.007±0.003 0.880±0.026 -
M-SDWD (λ1 = 0, R=1 ) 0.854±0.012 0.007±0.003 1.000±0.000 -
M-DWD 0.846±0.015 0.007±0.003 1.000±0.000 -
Full SDWD 0.860±0.009 0.009±0.005 0.543±0.037 -

DWD approaches are more prone to convergence to a local optima with high levels of cor-
relation. Table S11 shows the results for those replications that converge to a reasonable
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Table S8: Simulation results when the true model is rank-5 (R=5) under high and low
dimensional scenarios and sample size N = 40. In the Sparsity column, the numbers in
parentheses indicate the number of non-zero variables in each dimension. “Cor” is the
correlation between the estimated linear hyperplane and the true hyperplane. “Mis” is
the average misclassification rate. “TP” is the true positive rate, i.e., the proportion of
non-zero coefficients that are correctly estimated to be non-zero.“TN” is the true negative
rate, i.e., the proportion of zero coefficients that are correctly estimated to be zero. The
margins of error (2* standard errors across 200 replicates) for each statistic are also listed
following the ± symbol.
Dimensions Sparsity Methods Cor Mis TP TN
High (30× 15× 15) More (5× 5× 5) M-SDWD (R=5) 0.845±0.013 0.002±0.002 0.927±0.016 0.623±0.048

M-SDWD (λ1 = 0,R=5) 0.774±0.017 0.007±0.004 1.000±0.000 0.000±0.000
M-SDWD (R=1) 0.719±0.015 0.005±0.003 0.718±0.037 0.736±0.051
M-SDWD (λ1 = 0,R=1) 0.704±0.018 0.007±0.006 1.000±0.000 0.000±0.000
M-DWD 0.702±0.020 0.010±0.008 1.000±0.000 0.000±0.000
Full SDWD 0.732±0.015 0.007±0.004 0.262±0.016 0.993±0.002

Less (10× 15× 15) M-SDWD (R=5) 0.965±0.006 0.000±0.000 0.965±0.014 0.374±0.062
M-SDWD (λ1 = 0,R=5) 0.981±0.002 0.000±0.000 1.000±0.000 0.000±0.000
M-SDWD (R=1) 0.598±0.011 0.000±0.000 0.854±0.031 0.450±0.063
M-SDWD (λ1 = 0,R=1) 0.603±0.010 0.000±0.000 1.000±0.000 0.000±0.000
M-DWD 0.574±0.013 0.000±0.000 1.000±0.000 0.000±0.000
Full SDWD 0.813±0.005 0.000±0.000 0.420±0.024 0.906±0.020

No (30× 15× 15) M-SDWD (R=5) 0.976±0.003 0.000±0.000 1.000±0.000 -
M-SDWD (λ1 = 0,R=5) 0.981±0.003 0.000±0.000 1.000±0.000 -
M-SDWD (R=1) 0.573±0.010 0.000±0.000 0.794±0.037 -
M-SDWD (λ1 = 0,R=1) 0.590±0.008 0.000±0.000 1.000±0.000 -
M-DWD 0.557±0.012 0.000±0.000 1.000±0.000 -
Full SDWD 0.828±0.006 0.000±0.000 0.556±0.037 -

Low (15× 4× 5) More (5× 2× 2) M-SDWD (R=5 0.733±0.021 0.128±0.022 0.816±0.042 0.472±0.045
M-SDWD (λ1 = 0,R=5) 0.664±0.022 0.120±0.017 1.000±0.000 0.000±0.000
M-SDWD (R=1) 0.755±0.022 0.093±0.015 0.671±0.047 0.703±0.053
M-SDWD (λ1 = 0,R=1) 0.731±0.024 0.103±0.016 1.000±0.000 0.000±0.000
M-DWD 0.739±0.026 0.102±0.017 1.000±0.000 0.000±0.000
Full SDWD 0.729±0.023 0.096±0.016 0.442±0.025 0.909±0.023

Less (5× 4× 5) M-SDWD (R=5) 0.892±0.011 0.010±0.007 0.922±0.021 0.269±0.045
M-SDWD (λ1 = 0, R=5) 0.889±0.010 0.005±0.004 1.000±0.000 0.000±0.000
M-SDWD (R=1) 0.717±0.015 0.010±0.004 0.739±0.040 0.515±0.057
M-SDWD (λ1 = 0,R=1) 0.722±0.014 0.011±0.004 1.000±0.000 0.000±0.000
M-DWD 0.717±0.015 0.010±0.004 1.000±0.000 0.000±0.000
Full SDWD 0.795±0.010 0.008±0.004 0.468±0.031 0.841±0.029

No (15× 4× 5) M-SDWD (R=5) 0.857±0.009 0.000±0.000 0.950±0.018 -
M-SDWD (λ1 = 0, R=5) 0.864±0.007 0.000±0.000 1.000±0.000 -
M-SDWD (R=1) 0.693±0.013 0.000±0.000 0.836±0.033 -
M-SDWD (λ1 = 0,R=1) 0.701±0.012 0.000±0.000 1.000±0.000 -
M-DWD 0.687±0.014 0.000±0.000 1.000±0.000 -
Full SDWD 0.841±0.005 0.000±0.000 0.573±0.035 -

solution (with correlation greater than 0.5 with the true vector), and the multiway DWD
approaches perform better under all levels of residual correlation ρ for these replications.
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Table S9: Mean correlations between the estimated linear hyperplane and the true hyper-
plane by assumed rank R̂ for different true ranks R for N=40 under the low dimensional
scenario 15×4×5 with less sparsity (5×4×5 of variables has signals have signal discrim-
inating the classes). The mean correlation when the rank is selected via cross validation
is shown under R̂CV.

R̂ = 1 R̂ = 2 R̂ = 3 R̂ = 4 R̂ = 5 R̂CV

R = 1 0.753 0.705 0.657 0.664 0.639 0.822
R = 2 0.809 0.855 0.837 0.829 0.821 0.896
R = 3 0.777 0.858 0.858 0.858 0.853 0.914
R = 4 0.737 0.845 0.871 0.865 0.868 0.918
R = 5 0.719 0.836 0.875 0.880 0.887 0.919

S8 Simulation with component-wise sparsity

We conducted a simulation study to illustrate recovery of a higher rank signal in which
each rank-1 component has a different sparsity structure. Such scenarios are plausible for
our motivating applications. For example, if different subsets of metabolites discriminate
sample groups in different brain regions, that is efficiently captured by multiple sparse
rank-1 components.

We simulate data under a moderate dimensional scenario with P1 = 20, P2 = 4, and
P3 = 4, and sample sizes N0 = N1 = 50. For the N0 samples corresponding to class -1,
the entries of Xi were generated independently from a N(0, 1) distribution. For the other
N1 samples corresponding to class 1, the entries of Xi were generated independently from
a normal distribution with variance 1 and the mean for each entry given by the rank-2
array

√
0.2µ1 where µ1 = u11 ◦u12 ◦u13+u21 ◦u22 ◦u23. The loadings for the first rank-1

component are

u11[i] =

{
1 for i = 1, . . . , 10

0 for i = 11, . . . , 20
, u12[i] =

{
1 for i = 1, 2

0 for i = 3, 4
, u13[i] =

{
1 for i = 1, 2

0 for i = 3, 4

and for the second rank-1 component are

u21[i] =

{
0 for i = 1, . . . , 10

1 for i = 11, . . . , 20
, u22[i] =

{
0 for i = 1, 2

1 for i = 3, 4
, u23[i] =

{
0 for i = 1, 2

1 for i = 3, 4
.

Thus, every dimension of every mode has some discriminating signal, but the two rank-1
components that make up the signal have separate non-zero support that does not overlap.

Table S12 shows the performance of different methods over 100 replications of this
simulation scenario. As expected, the sparse (λ1 > 0) rank-2 model that best matches
the data generation tends to have the performance in terms of test misclassification rate
and correlation with the true mean difference. The overall sparsity structure is also
recovered relatively well under this approach, as shown by the true positive and true
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Table S10: Simulation results under the high dimensional (30 × 15 × 15), more spar-
sity, small sample size (N=40) with different residual correlation levels ρ. “Cor” is the
correlation between the estimated linear hyperplane and the true hyperplane. “Mis” is
the average misclassification rate. “TP” is the true positive rate, i.e., the proportion of
non-zero coefficients that are correctly estimated to be non-zero.“TN” is the true negative
rate, i.e., the proportion of zero coefficients that are correctly estimated to be zero. The
margins of error (2* standard errors across 200 replicates) for each statistic are also listed
following the ± symbol.

ρ Methods Cor Mis TP TN
0 M-SDWD 0.562±0.061 0.204±0.033 0.523±0.049 0.724±0.051

M-SDWD (λ1 = 0) 0.519±0.058 0.205±0.031 1.000±0.000 0.000±0.000
M-DWD 0.516±0.060 0.226±0.034 1.000±0.000 0.000±0.000
Full SDWD 0.347±0.037 0.263±0.027 0.197±0.033 0.884±0.034
CATCH 0.455±0.043 0.208±0.027 0.045±0.006 0.999±0.000

0.3 M-SDWD 0.454±0.062 0.255±0.033 0.576±0.052 0.649±0.058
M-SDWD (λ1 = 0) 0.436±0.059 0.260±0.032 1.000±0.000 0.000±0.000
M-DWD 0.310±0.058 0.337±0.032 1.000±0.000 0.000±0.000
Full SDWD 0.355±0.036 0.253±0.026 0.193±0.032 0.884±0.034
CATCH 0.443±0.041 0.221±0.029 0.042±0.006 0.999±0.000

0.6 M-SDWD 0.323±0.062 0.325±0.035 0.456±0.057 0.680±0.058
M-SDWD (λ1 = 0) 0.292±0.060 0.356±0.033 1.000±0.000 0.000±0.000
M-DWD 0.067±0.032 0.474±0.019 1.000±0.000 0.000±0.000
Full SDWD 0.375±0.039 0.267±0.029 0.177±0.034 0.900±0.035
CATCH 0.413±0.041 0.220±0.029 0.041±0.006 0.999±0.000

0.9 M-SDWD 0.434±0.069 0.256±0.040 0.393±0.060 0.791±0.054
M-SDWD (λ1 = 0) 0.427±0.072 0.288±0.040 1.000±0.000 0.000±0.000
M-DWD 0.044±0.027 0.477±0.017 1.000±0.000 0.000±0.000
Full SDWD 0.561±0.043 0.177±0.032 0.193±0.040 0.897±0.043
CATCH 0.497±0.036 0.129±0.029 0.071±0.007 0.999±0.000

negative rates. We also assess how well the two different rank-1 components are identified
under the sparse rank-2 model. If necessary we permute the order of the estimated rank-1
components so that the “first” estimated component has the highest correlation with the
true first component. The mean correlation of each estimated component with the true
component cor(ui1 ◦ ui2 ◦ ui3, ûi1 ◦ ûi2 ◦ ûi3) was 0.923, indicating that the two separate
components are well-identified. Further, the mean true negative rate for identifying zero
values in ui1 ◦ ui2 ◦ ui3 from ûi1 ◦ ûi2 ◦ ûi3 was 0.998 and the mean true positive rate was
0.706, demonstrating that the sparsity structure in each component can also be recovered
fairly accurately.
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Table S11: Simulation results among replications with “Cor”>0.5 under the high dimen-
sional (30 × 15 × 15), more sparsity, small sample size (N=40) with different residual
correlation levels ρ. “Cor” is the correlation between the estimated linear hyperplane
and the true hyperplane. “Mis” is the average misclassification rate. “TP” is the true
positive rate, i.e., the proportion of non-zero coefficients that are correctly estimated to
be non-zero.“TN” is the true negative rate, i.e., the proportion of zero coefficients that
are correctly estimated to be zero. The margins of error (2* standard error across 200
replicates) for each statistic are also listed following the ± symbol.

ρ Methods Cor Mis TP TN %Cor> 0.5
0 M-SDWD 0.897±0.014 0.027±0.007 0.582±0.050 0.832±0.051 0.62

M-SDWD (λ1 = 0) 0.841±0.018 0.036±0.010 1.000±0.000 0.000±0.000 0.60
M-DWD 0.864±0.018 0.036±0.010 1.000±0.000 0.000±0.000 0.59
Full SDWD 0.673±0.029 0.043±0.015 0.131±0.018 0.993±0.002 0.32
CATCH 0.698±0.025 0.066±0.016 0.069±0.009 0.999±0.000 0.54

0.3 M-SDWD 0.901±0.016 0.022±0.008 0.601±0.058 0.840±0.056 0.49
M-SDWD (λ1 = 0) 0.850±0.021 0.036±0.011 1.000±0.000 0.000±0.000 0.49
M-DWD 0.893±0.022 0.028±0.011 1.000±0.000 0.000±0.000 0.33
Full SDWD 0.674±0.028 0.042±0.016 0.121±0.015 0.994±0.001 0.32
CATCH 0.698±0.020 0.039±0.010 0.076±0.008 0.999±0.000 0.47

0.6 M-SDWD 0.903±0.022 0.009±0.008 0.468±0.079 0.912±0.057 0.35
M-SDWD (λ1 = 0) 0.906±0.023 0.026±0.015 1.000±0.000 0.000±0.000 0.30
M-DWD 0.956±0.032 0.012±0.024 1.000±0.000 0.000±0.000 0.05
Full SDWD 0.679±0.028 0.050±0.016 0.123±0.018 0.995±0.001 0.36
CATCH 0.666±0.019 0.054±0.016 0.069±0.009 0.999±0.000 0.50

0.9 M-SDWD 0.877±0.026 0.002±0.002 0.475±0.075 0.934±0.042 0.49
M-SDWD (λ1 = 0) 0.935±0.019 0.018±0.013 1.000±0.000 0.000±0.000 0.45
M-DWD 0.885±0.131 0.083±0.110 1.000±0.000 0.000±0.000 0.04
Full SDWD 0.730±0.018 0.056±0.016 0.117±0.011 0.996±0.001 0.69
CATCH 0.659±0.021 0.005±0.007 0.100±0.009 0.999±0.000 0.64

S9 Tuning parameters selection for MRS data appli-

cation

Here we expand on the selection of the tuning parameters for the application of multi-
way sparse DWD to classify dox treated mice (dox group) and controls (no dox group) in
Section 6.1 of the main article. We computed the predicted DWD scores for all subjects
by 10-fold cross-validation for a grid of λ1 (0, 0.0001, 0.001, 0.005, 0.01, 0.025, 0.05) and
λ2(0.25, 0.5, 0.75, 1, 3, 5), and select the best combinations of parameters with the maxi-
mum t-test statistics that testing the differences between the scores and the two classes.
Table S13 shows the t-test statistics between dox and no-dox groups for a grid of λ1 and
λ2. The best pair of tuning parameters are λ1 = 0.01 and λ2 = 5 with the maximum
test statistic. Table S14 shows the misclassification rates that classify the TG-dox group
and other mice. Using t-test statistic as index for selecting parameters gives a unique
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Table S12: Simulation results under moderate dimensional (20×4×4) rank-2 scenario with
component-wise sparsity more sparsity. “Cor” is the correlation between the estimated
linear hyperplane and the true hyperplane. “Mis” is the average misclassification rate.
“TP” is the true positive rate, i.e., the proportion of non-zero coefficients that are correctly
estimated to be non-zero.“TN” is the true negative rate, i.e., the proportion of zero
coefficients that are correctly estimated to be zero. The margins of error (2* standard
error across 200 replicates) for each statistic are also listed following the ± symbol.
Methods Cor Mis TP TN
M-SDWD (R = 2) 0.909±0.004 0.034±0.003 0.562±0.051 0.998±0.001
M-SDWD (λ1 = 0, R = 2) 0.896±0.004 0.035±0.003 0.000±0.000 1.000±0.000
M-SDWD (R = 1) 0.605±0.004 0.097±0.004 0.709±0.049 0.593±0.026
M-SDWD (λ1 = 0, R = 1) 0.596±0.004 0.099±0.004 0.000±0.000 1.000±0.000
Full SDWD 0.673±0.005 0.079±0.004 0.442±0.042 0.919±0.011
Full SDWD (λ1 = 0) 0.664±0.004 0.081±0.004 0.000±0.000 1.000±0.000

optimal pair of parameters, which also located in the region of parameters with minimal
misclassification rates.

Table S13: T-test statistics that test the differences of predicted DWD scores between
dox and no-dox groups for a grid of λ1 and λ2

λ2/λ1 0 1e-04 0.001 0.005 0.01 0.025 0.05 0.1 0.25
0.25 2.098 2.105 2.194 2.537 2.789 2.759 2.823 3.189 3.549
0.50 1.904 1.906 1.932 2.060 2.303 2.712 2.778 2.948 3.090
0.75 1.556 1.564 1.644 1.950 2.350 2.678 2.663 2.658 3.020
1.00 2.676 2.677 2.684 2.694 2.762 3.032 3.024 3.069 3.455
3.00 3.251 3.253 3.266 3.308 3.377 3.483 3.525 3.573 3.660
5.00 3.172 3.172 3.180 3.216 3.264 3.327 3.384 3.511 3.427

Table S14: Misclassification rates that classify TG-dox and other groups for a grid of λ1

and λ2

λ2/λ1 0 1e-04 0.001 0.005 0.01 0.025 0.05 0.1 0.25
0.25 0.333 0.333 0.333 0.333 0.286 0.286 0.286 0.286 0.190
0.50 0.286 0.286 0.286 0.286 0.286 0.143 0.238 0.143 0.190
0.75 0.333 0.333 0.333 0.286 0.286 0.238 0.238 0.190 0.143
1.00 0.143 0.143 0.095 0.143 0.095 0.095 0.095 0.095 0.095
3.00 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.095 0.048
5.00 0.095 0.095 0.095 0.048 0.048 0.048 0.048 0.095 0.095
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S10 Computing time for data applications

Table S15 gives the computing time of the M-SDWD approaches for the two data appli-
cations presented in main manuscript. These results were obtained on a 2017 Macbook
Pro with a 2.9 GHz Intel Core i7 processor and 16 GB of RAM. An application of the
algorithm with fixed tuning parameters is relatively quick ( 1 second), while estimation
via cross-validation and multiple random initializations is more computationally intensive,
especially for higher ranks.

Table S15: Computing time in seconds for the MRS and gene time course (GENE) ap-
plications, under different selected ranks and 10-fold cross-validation with 5 random ini-
tializations (CV multi-start) to select λ1 and λ2, and for a single run of the algorithm
(Single-start) or with multiple initializations (Multi-start) using the selected parameters.

MRS GENE
R=1 R=2 R=3 R=1 R=2 R=3

Single start 0.5 0.3 0.5 0.2 1.6 2.7
Multi-start 0.9 1.0 2.0 0.7 4.3 6.9

CV multi-start 125.8 265.3 585.1 141.6 608.2 1103.0
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