Ligand-Enabled C–H Hydroxylation with Aqueous H₂O₂ at Room Temperature

Zhen Li,¹[†] Han Seul Park,¹[†] Jennifer X. Qiao,² Kap-Sun Yeung,³ and Jin-Quan Yu*

¹The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037,USA.

²Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543, USA.

³Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, MA 02142, USA.

> *yu200@scripps.edu † These authors contributed equally

Table of Contents

1. General information	S 3
2. Experimental Section for C–H Hydroxylation	S 4
2.1. Preparation of Carboxylic Acids Substrates	S4
2.2. Preparation of Bidentate Carboxyl-Pyridone(CarboxPyridone) Ligand	S 5
2.3. Optimization of the C–H Hydroxylation	S 6
2.4. General Procedure and Characterisation Data	S10
3. Synthetic Application	S37
3.1. Large Scale Reactions	S37
3.2. Further Derivatizations of Phenolic products	S40
3.3. Synthesis of Coumestan and Ptercarpene Derivatives	S44
4. Mechanistic Studies	S48
4.1. Deuterium-Labeling Experiments	S48
4.2. KIE Experiments	S 52
4.3. Stoichiometric Reaction	S 54
4.4. Hydrogen Peroxide Decomposition Experiments	S55
5. References	S57
NMR Spectra	S59

1. General Information:

Hydrogen peroxide (35 wt.% in H₂O) was purchased from Acros. Solvents were obtained from Sigma-Aldrich, Alfa-Aesar, and Acros, and used directly without further purification. Other reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254 or Merck pre-coated aluminium-backed silica gel F254 plates. ¹H NMR spectra were recorded on Bruker AMX-400 or Bruker DRX-600 instruments. The following abbreviations (or combinations thereof) were used to explain multiplicities: s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker DRX-600 or JEOL instruments (100 MHz) and were fully decoupled by broad band proton decoupling. ¹⁹F NMR Spectra were recorded on Bruker AMX-399 spectrometer (376 MHz) or JEOL-400 (376 MHz) and were fully decoupled by broad band proton decoupling. Chemical shifts were referenced to the appropriate residual solvent peaks. Column chromatography was carried out automated using Biotage Isolera One with Biotage SNAP Ultra Column. Automated reversed-phase chromatography was carried out using Biotage Isolera One with Biotage SNAP Samplet (C18). High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. Experimental Section for C-H Hydroxylation

2.1. Preparation of Carboxylic Acids Substrates

Carboxylic acid substrates **1aa**, **3e** were obtained from the Bristol-Myers Squibb compounds collection. Substrates $1ak^1$, $3w^2$ were prepared following the reported procedures. Substrate **1aj** were prepared with the following procedure. Other substrates are commercially available.

To a solution of **1aj'** (294 mg, 1.0 mmol) (compound **1aj'** was prepared by the known literature³) in EtOAc-MeCN-H₂O 2:2:3 (7 mL) was added RuCl₃ (20.6 mg, 0.1 mmol, 10 mol%). The mixture was stirred and NaIO₄ (1.711 g, 8.0 mmol, 8.0 equiv.) was added in two portions. The reaction solution was stirred vigorously for an additional 6 h. Upon completion, the mixture was diluted with H₂O and extracted with EtOAc. The combined organic phases were dried, filtered, and evaporated under reduced pressure. The residue was subjected to flash chromatography (Hexane-EtOAc 2:1 with 1% AcOH, v/v) to give **1aj** as a white solid (221.5 mg, 71%).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.26 (d, *J* = 8.0 Hz, 1H), 7.08 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.03 (d, *J* = 2.0 Hz, 1H), 3.59 (s, 2H), 2.93 – 2.90 (m, 2H), 2.58 – 2.47 (m, 1H), 2.46 – 2.38 (m, 1H), 2.33 – 2.25 (m, 1H), 2.21 – 2.13 (m, 1H), 2.09 – 1.94 (m, 3H), 1.68 – 1.59 (m, 2H), 1.56 – 1.39 (m, 4H), 0.91 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 221.42, 177.70, 138.88, 136.87, 130.84, 130.00, 126.81, 125.74, 50.51, 48.07, 44.31, 40.63, 38.10, 35.92, 31.59, 29.34, 26.49, 25.70, 21.63, 13.87. HRMS (ESI-TOF) Calcd for C₂₀H₂₃O₃ [M-H]⁻: 311.1647; found: 311.1647.

2.2. Preparation of Bidentate Carboxyl-Pyridone(CarboxPyridone) Ligand

Step 1: A solution of LiHMDS (1.0 equiv.) in toluene was added to a solution of 2,6difluoropyridine (1.5 equiv.) and isobutyronitrile (1.0 equiv.) in toluene at room temperature. The resulting mixture was heated to 80 °C and stirred for overnight. After cooling the mixture to the room temperature, water was added to quench the reaction and toluene was removed under reduced pressure. The resulting mixture was extracted with ethyl acetate several times and combined organic layers were dried over Na_2SO_4 and concentrated to afford the product. In most cases, product was pure enough for the next step. If necessary, column chromatography was used for the purification.

Step 2: The 2-(6-fluoropyridin-2-yl)-2-methylpropanenitrile was weighed to the round bottom flask and was added 9M HCl aq. to make 0.3M solution. The resulting mixture was heated to 90 °C and stirred for overnight. The reaction progress can be monitored through LCMS by consumption of the starting materials. After completion, the solution was concentrated under reduced pressure then diluted with H₂O. 4M NaOH solution was added until the pH reaches 2~3. The resulting aqueous solution was extracted with CHCl₃/IPA (3:1) several times and combined organic layers were dried and concentrated to afford the product. If the ligand is not pure in this stage, residue was purified by column chromatography on silica gel using DCM/MeOH (20:1with acetic acid) solution as eluent.

2-methyl-2-(6-oxo-1,6-dihydropyridin-2-yl) propanoic acid (L4)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.54 (dd, *J* = 9.1, 7.2 Hz, 1H), 6.56 (dd, *J* = 9.1, 0.9 Hz, 1H), 6.40 (dd, *J* = 7.2, 0.9 Hz, 1H), 1.64 (s, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ

179.15, 165.25, 151.36, 142.81, 118.10, 105.13, 46.17, 25.45. HRMS (ESI-TOF) Calcd for C₉H₁₂O₃ [M+H]⁺: 182.0812; found: 182.0807.

2.3. Optimization of the C-H Hydroxylation

	2 mc CO ₂ H 2	ol% Pd(OAc) ₂ 2-4 mol% L		 со₂н
F ₃ C	H 3.5 equ bas	uiv.H ₂ O ₂ (35% se, solvent, r.t.	aq.) F ₃ C	ИОН
1a , 1 mm	าดไ		2	2a
	AcHN	CO ₂ H	СО2Н О	Me Me H CO ₂ H
L1	L2	L3		L4
				Me H N
			\sim	1 11
L5	L6	L7	~	
L5 Entry	L6 Ligand	L7 Base	Solvent	L8 Yield (%)
L5 Entry 1 ^a	L6 Ligand L1	L7 Base K ₂ HPO ₄	Solvent	L8 Yield (%) 37
L5 Entry 1ª 2	L6 Ligand L1 L1	L7 Base K ₂ HPO ₄ K ₂ HPO ₄	Solvent DMA DMA	L8 Yield (%) 37 0
L5 Entry 1 ^a 2 3	L6 Ligand L1 L1 L2	Base K ₂ HPO ₄ K ₂ HPO ₄ K ₂ HPO ₄	Solvent DMA DMA DMA	L8 Yield (%) 37 0 0
L5 Entry 1ª 2 3 4	L6 Ligand L1 L1 L2 L3	L7 Base K ₂ HPO ₄ K ₂ HPO ₄ K ₂ HPO ₄ K ₂ HPO ₄	Solvent DMA DMA DMA DMA	L8 Yield (%) 37 0 0 0 0
L5 Entry 1 ^a 2 3 4 5	L6 Ligand L1 L1 L2 L3 L4	L7 Base K ₂ HPO ₄ K ₂ HPO ₄ K ₂ HPO ₄ K ₂ HPO ₄	Solvent DMA DMA DMA DMA DMA	L8 Yield (%) 37 0 0 0 0 65
L5 Entry 1 ^a 2 3 4 5 6	L6 Ligand L1 L1 L2 L3 L4 L4 L5	L7 Base K ₂ HPO ₄ K ₂ HPO ₄ K ₂ HPO ₄ K ₂ HPO ₄ K ₂ HPO ₄	Solvent DMA DMA DMA DMA DMA DMA	L8 Yield (%) 37 0 0 0 0 65 trace
L5 Entry 1 ^a 2 3 4 5 6 7	L6 Ligand L1 L2 L3 L4 L5 L6	L7 Base K ₂ HPO ₄ K ₂ HPO ₄	Solvent DMA DMA DMA DMA DMA DMA DMA	L8 Yield (%) 37 0 0 0 0 65 trace trace
L5 Entry 1 ^a 2 3 4 5 6 7 8 ^b	L6 Ligand L1 L2 L3 L4 L5 L6 L6 L7	L7 Base K ₂ HPO ₄ K ₂ HPO ₄	Solvent DMA DMA DMA DMA DMA DMA DMA	L8 Yield (%) 37 0 0 0 65 trace trace trace <5
L5 Entry 1 ^a 2 3 4 5 6 7 8 ^b 9 ^b	L6 Ligand L1 L2 L3 L4 L5 L6 L7 L8	L7 Base K ₂ HPO ₄ K ₂ HPO ₄	Solvent DMA DMA DMA DMA DMA DMA DMA DMA DMA	L8 Yield (%) 37 0 0 0 65 trace trace <5 0

Table S1. Ligand Effects

The reaction was performed with carboxylic acid **1a** (1 mmol), $Pd(OAc)_2$ (0.02 mmol), ligand (0.04 mmol), H_2O_2 (35% aqueous solution, 3.5 mmol), and K_2HPO_4 (1.5 mmol) in DMA (3.0 mL) at room temperature for 24 h. Determined by ¹H NMR yield using CH₃NO₂ as the internal standard. ^a 90°C. ^b2 mol% ligand.

СО2Н_	2 mol% Pd(OAc) ₂ 4 mol% L4	СО2Н
F ₃ C 3.	5 equiv.H ₂ O ₂ (35% aq.) K ₂ HPO ₄ , solvent, r.t.	F ₃ C
1a , 1mmol		2a
Entry	Solvent	Yield (%)
1	DMA	65
2	DMF	53
3	THF	16
4	NMP	46
5	DMSO	<2
6	HFIP	<2
7	CH ₃ CN	86
8	Acetone	50
9	<i>t</i> -Amyl-OH	37
10	DCE	35

Table S2. Solvent Effect

The reaction was performed with carboxylic acid **1a** (1 mmol), $Pd(OAc)_2$ (0.02 mmol), ligand (0.04 mmol), H_2O_2 (35% aqueous solution, 3.5 mmol), and K_2HPO_4 (1.5 mmol) in solvent (3.0 mL) at room temperature for 24 h. Determined by ¹H NMR yield using CH₃NO₂ as the internal standard.

Table S3. Base Effect

	CC CC	2 mol% Pd(C 9 ₂ H4 mol% L	0Ac) ₂ 4	€СО₂Н
F ₃ 0	1a , 1mmol	3.5 equiv.H ₂ O ₂ base, CH ₃ C	(35% aq.) F ₃ C	2a
•	Entry	Base	Solvent	Yield (%)
•	1	K ₂ HPO ₄	CH ₃ CN	86
	2	K ₃ PO ₄	CH ₃ CN	<2
	3	KH ₂ PO ₄	CH ₃ CN	<2
	4	K ₂ CO ₃	CH ₃ CN	<2
	5	KHCO3	CH ₃ CN	<2
	6	CsOAc	CH ₃ CN	60
	7	NaOAc	CH₃CN	55
	8	KOAc	CH ₃ CN	58
	9	Na ₃ PO ₄	CH₃CN	<2
	10	1	CH₃CN	8

11	K ₂ HPO ₄	DMA	65
12	KHCO ₃	DMA	80
13	K ₂ CO ₃	DMA	<2
14	K ₃ PO ₄	DMA	17
15	NaOAc	DMA	42
16	Na ₂ HPO ₄	DMA	25
17	KH ₂ PO ₄	DMA	5
18	КОН	DMA	<2

The reaction was performed with carboxylic acid **1a** (1 mmol), $Pd(OAc)_2$ (0.02 mmol), ligand (0.04 mmol), H_2O_2 (35% aqueous solution, 3.5 mmol), and base (1.5 mmol) in solvent(3.0 mL) at room temperature for 24 h. Determined by ¹H NMR yield using CH₃NO₂ as the internal standard.

 Table S4. Ligand loading effect

The reaction was performed with carboxylic acid **1a** (0.5 mmol), $Pd(OAc)_2$ (2 mol%), ligand (x mol%), H_2O_2 (35% aqueous solution, 3.5 eq and K_2HPO_4 (1.5 eq) in acetonitrile (1.5 mL) at room temperature for 24 h. Determined by ¹H NMR yield using CH₃NO₂ as the internal standard.

Table S5. Oxidant effect				
CO ₂ H	Pd 	(OAc) ₂ (2%) L4 (4%) PO ₄ (1.5 eq.)	СО2Н	
F ₃ C H 1a, 0.5 mmol	3.5 eq.	ACN, r.t. F ₃ C 24 h	2a OH	
Oxidant	Yield	Oxidant	Yield	
K ₂ S ₂ O ₈	No Product	TBHP in H ₂ O (70%	ő) 8%	
(NH ₄) ₂ S ₂ O ₈	No Product	TBHP in decane (~5.	5M) 11%	
PhI(OAc) ₂	No Product	H ₂ O ₂ in H ₂ O (35%) 87%	
selectfluor	No Product	Na ₂ CO ₃ •1.5H ₂ O ₂	trace	
selectfluor+H ₂ O(150uL)	No Product	H ₂ O ₂ •Urea	24%	

The reaction was performed with carboxylic acid **1a** (0.5 mmol), $Pd(OAc)_2$ (2 mol%), **L4** (4 mol%), oxidant (3.5 eq), and K₂HPO₄ (1.5 eq) in acetonitrile (1.5 mL) at room temperature for 24 h. Determined by ¹H NMR yield using CH₃NO₂ as the internal standard.

Table S6. Control experiments

CO2	2 mol% Pd(OAc) ₂ 2H 4 mol% L4	СО2Н
F ₃ C	3.5 equiv.H ₂ O ₂ (35% aq.) K ₂ HPO ₄ , CH ₃ CN, r.t. 24 h	F ₃ C
1a , 1mmol		2a
Entry	Conditions	Yield (%)
1	1	86
2	w/o Pd(OAc) ₂	0
3	w/o ligand	0
4	w/o H ₂ O ₂	0
5	w/o K ₂ HPO ₄	8
6	1 mol% Pd(OAc) ₂	76
7	0.5 mol% Pd(OAc) ₂	46
8	0.1 mol% Pd(OAc) ₂	5
9	6 h	44
10	12 h	80

The reaction was performed with carboxylic acid **1a** (1 mmol), $Pd(OAc)_2$ (0.02 mmol), ligand (0.04 mmol), H_2O_2 (35% aqueous solution, 3.5 mmol), and K_2HPO_4 (1.5 mmol) in CH₃CN (3.0 mL) at room temperature for 24 h. Determined by ¹H NMR yield using CH₃NO₂ as the internal standard.

$F + H_2O_2 (aq.) + $					
Pd loading	Solvent	Base	Temp.	Yield	
2%	ACN	K ₂ HPO ₄	r.t.	No product	
2%	ACN	K ₂ HPO ₄ •3H ₂ O	r.t.	No product	
5%	ACN	K ₂ HPO ₄ •3H ₂ O	r.t.	trace	
5%	ACN	K ₂ HPO ₄ •3H ₂ O	60 °C	20%	
5%	DMA	K ₂ HPO ₄ •3H ₂ O	60 °C	33%	
5%	DMA	KHCO ₃	60 °C	64%	
5%	DMA	NaOAc	60 °C	70%	
5%	DMA	KOAc	60 °C	25%	
5%	DMA	CsOAc	60 °C	78%	

Table S7. Optimization using 2,4-difluorobenzoic acid as a substrate

...

The reaction was performed with carboxylic acid **1a** (0.5 mmol), $Pd(OAc)_2$ (0.01 mmol), ligand (0.02 mmol), H_2O_2 (35% aqueous solution, 1.75 mmol), and base (0.75 mmol) in CH₃CN or DMA (1.5 mL) for 24 h. Determined by ¹H NMR yield using CH₃NO₂ as the internal standard.

2.4. General Procedures and Characterisation Data

General Procedure for C(sp²)–H hydroxylation of phenylacetic acids

Pd(OAc)₂ (4.5 mg, 0.02 mmol, 2 mol%), L4 (7.3 mg, 0.04 mmol, 4 mol%), carboxylic acid 1 (1.0 mmol), and K₂HPO₄ (260.0 mg, 1.5 mmol, 1.5 equiv.) were weighed and placed in an 8 mL vial. Then, CH₃CN (3.0 mL) was added and stirred for 10 min, followed by the addition of H₂O₂ (35% aq., 300 uL, 3.5 equiv.). The vial was sealed with a screw cap and stirred at ambient temperature for 24 h (typically ran at 25 °C unless otherwise noted). Upon completion, the reaction was diluted with methanol and acidified with 0.3 mL formic acid. The solution was filtered through a pad of Celite and washed with methanol then concentrated under vacuum (The organic phase should be tested by the potassium iodide starch test paper before concentration, and quenched with Na₂S₂O₃ aq. solution if necessary). The crude mixture was purified by flash chromatography (Hexane/EtOAc or DCM/MeOH with 1% AcOH, v/v).

2-(2-hydroxy-4-(trifluoromethyl)phenyl)acetic acid (2a)

Substrate **1a** was hydroxylated following general procedure, the hydroxylated product **2a** was obtained as a greyish white solid (175 mg, 80%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.30 (d, *J* = 7.8 Hz, 1H), 7.06 (d, *J* = 7.9 Hz, 1H), 7.03 (s, 1H), 3.65 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 175.27, 157.32, 132.82, 131.44 (q, *J* = 32.2 Hz), 127.45, 125.60 (q, *J* = 271.4 Hz), 116.75 (q, *J* = 3.9 Hz), 112.20 (q, *J* = 3.8 Hz), 36.30. ¹⁹F NMR (376 MHz, Methanol-*d*₄) δ -66.76. HRMS (ESI-TOF) Calcd for C₉H₆F₃O₃ [M-H]⁻: 219.0269; found: 219.0270.

2-(2-hydroxy-4-methylphenyl)acetic acid (2b)

Substrate **1b** was hydroxylated following general procedure, the hydroxylated product **2b** was obtained as a white solid (145 mg, 87%), ¹H NMR (600 MHz, Methanol- d_4) δ 6.97 (d, J

= 7.5 Hz, 1H), 6.63 - 6.56 (m, 2H), 3.53 (s, 2H), 2.24 (s, 3H). ¹³C NMR (151 MHz, Methanold₄) δ 176.42, 156.54, 139.24, 131.83, 121.14, 119.76, 116.58, 36.18, 21.23. HRMS (ESI-TOF) Calcd for C₉H₉O₃ [M-H]⁻: 165.0552; found: 165.0552.

2-(2-hydroxy-4-methoxyphenyl)acetic acid (2c)

Substrate **1c** was hydroxylated following general procedure with KHCO₃ (200.2 mg, 2.0 mmol, 2.0 equiv.) and DMA (3.0 mL) instead of CH₃CN and K₂HPO₄, the hydroxylated product **2c** was obtained as a white solid (132 mg, 73%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 6.99 (d, *J* = 8.2 Hz, 1H), 6.40 – 6.34 (m, 2H), 3.72 (s, 3H), 3.50 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 176.61, 161.41, 157.55, 132.45, 115.27, 105.62, 102.22, 55.59, 35.87. HRMS (ESI-TOF) Calcd for C₉H₉O₄ [M-H]⁻: 181.0501; found: 181.0502.

2-(2-hydroxyphenyl)acetic acid (2d)

Substrate **1d** was hydroxylated following general procedure, the hydroxylated product **2d** was obtained as a white solid (129 mg, 85%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.14 – 7.04 (m, 2H), 6.78 – 6.75 (m, 2H), 3.58 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 176.22, 156.77, 132.07, 129.25, 122.84, 120.41, 115.88, 36.53. HRMS (ESI-TOF) Calcd for C₈H₇O₃ [M-H]⁻: 151.0395; found: 151.0393.

2-(3-hydroxy-[1,1'-biphenyl]-4-yl)acetic acid (2e)

Substrate **1e** was hydroxylated following general procedure with KHCO₃ (200.2 mg, 2.0 mmol, 1.5 equiv.) and DMA (3.0 mL) instead of CH₃CN and K₂HPO₄, the hydroxylated

product **2e** was obtained as an ivory solid (179 mg, 79%), ¹H NMR (600 MHz, Methanol- d_4) δ 7.58 – 7.52 (m, 2H), 7.42 – 7.36 (m, 2H), 7.32 – 7.25 (m, 1H), 7.18 (d, J = 7.7 Hz, 1H), 7.07 – 7.01 (m, 2H), 3.63 (s, 2H). ¹³C NMR (151 MHz, Methanol- d_4) δ 176.16, 157.06, 142.78, 142.32, 132.48, 129.71, 128.20, 127.80, 122.00, 119.09, 114.38, 36.26. HRMS (ESI-TOF) Calcd for C₁₄H₁₁O₃ [M-H]⁻: 227.0708; found: 227.0714.

2-(4-bromo-2-hydroxyphenyl)acetic acid (2f)

Substrate **1f** was hydroxylated following general procedure, the hydroxylated product **2f** was obtained as white solid (200 mg, 87%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.03 (d, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.92 (dd, *J* = 8.0, 2.0 Hz, 1H), 3.54 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 175.56, 157.93, 133.46, 123.22, 122.44, 121.87, 118.80, 35.97. HRMS (ESI-TOF) Calcd for C₈H₆BrO₃ [M-H]⁻: 228.9500; found: 228.9503.

2-(2-hydroxy-4-iodophenyl)acetic acid (2g)

Substrate **1g** was hydroxylated following general procedure with KHCO₃ (200.2 mg, 2.0 mmol, 2.0 equiv.) and DMA (3.0 mL) instead of CH₃CN and K₂HPO₄, the hydroxylated product **2g** was obtained as a white solid (184 mg, 66%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.14 (d, *J* = 1.7 Hz, 1H), 7.11 (dd, *J* = 7.9, 1.7 Hz, 1H), 6.87 (d, *J* = 7.9 Hz, 1H), 3.53 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 175.55, 157.81, 133.68, 129.48, 124.79, 123.05, 92.89, 36.07. HRMS (ESI-TOF) Calcd for C₈H₆IO₃ [M-H]⁻: 276.9362; found: 276.9365.

2-(4-chloro-2-hydroxyphenyl)acetic acid (2h)

Substrate **1h** was hydroxylated following general procedure, the hydroxylated product **2h** was obtained as a white solid (150 mg, 81%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.08 (d, *J* = 8.0 Hz, 1H), 6.79 (d, *J* = 2.1 Hz, 1H), 6.77 (dd, *J* = 8.0, 2.2 Hz, 1H), 3.55 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 175.67, 157.75, 134.16, 133.10, 121.95, 120.21, 115.87, 35.90. HRMS (ESI-TOF) Calcd for C₈H₆ClO₃ [M-H]⁻: 185.0005; found: 185.0005.

2-(4-fluoro-2-hydroxyphenyl)acetic acid (2i)

Substrate **1i** was hydroxylated following general procedure with KHCO₃ (200.2 mg, 2.0 mmol, 2.0 equiv.) and DMA (3.0 mL) instead of CH₃CN and K₂HPO₄, the hydroxylated product **2i** was obtained as a white solid (123 mg, 72%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.09 (dd, *J* = 8.3, 6.7 Hz, 1H), 6.56 – 6.44 (m, 2H), 3.54 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 176.04, 164.05 (d, *J* = 242.5 Hz), 158.05 (d, *J* = 11.0 Hz), 132.89 (d, *J* = 10.1 Hz), 119.03 (d, *J* = 3.2 Hz), 106.55 (d, *J* = 21.4 Hz), 103.04 (d, *J* = 24.3 Hz), 35.82. ¹⁹F NMR (376 MHz, Methanol-*d*₄) δ -119.34. HRMS (ESI-TOF) Calcd for C₈H₆FO₃ [M-H]⁻: 169.0301; found: 169.0306.

2-(4-cyano-2-hydroxyphenyl)acetic acid (2j)

Substrate **1j** was hydroxylated following general procedure at 60 °C, the hydroxylated product **2j** was obtained as a yellow solid (131 mg, 74%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.30 (d, *J* = 7.7 Hz, 1H), 7.14 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.05 (d, *J* = 1.6 Hz, 1H), 3.65 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 174.80, 157.51, 133.34, 129.47, 124.14, 119.78, 118.45, 112.48, 36.44. HRMS (ESI-TOF) Calcd for C₉H₆NO₃ [M-H]⁻: 176.0348; found: 176.0345.

2-(2-hydroxy-4-nitrophenyl)acetic acid (2k)

Substrate **1k** was hydroxylated following general procedure at 60 °C, the hydroxylated product **2k** was obtained as an orange solid (138 mg, 70%), ¹H NMR (600 MHz, Methanol*d*₄) δ 7.66 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.62 (d, *J* = 2.3 Hz, 1H), 7.35 (d, *J* = 8.3 Hz, 1H), 3.69 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 174.66, 157.60, 149.32, 132.74, 130.99, 115.08, 110.07, 36.33. HRMS (ESI-TOF) Calcd for C₈H₆NO₅ [M-H]⁻: 196.0246; found: 196.0247.

2-(2-hydroxy-6-methylphenyl)acetic acid (2l)

Substrate **11** was hydroxylated following general procedure, the hydroxylated product **21** was obtained as an ivory solid (143 mg, 86%), ¹H NMR (600 MHz, Methanol- d_4) δ 6.95 (t, J = 7.8 Hz, 1H), 6.73 – 6.59 (m, 2H), 3.67 (s, 2H), 2.24 (s, 3H). ¹³C NMR (151 MHz, Methanol- d_4) δ 176.07, 156.75, 139.49, 128.48, 122.21, 121.57, 113.48, 32.42, 19.78. HRMS (ESI-TOF) Calcd for C₉H₉O₃ [M-H]⁻: 165.0552; found: 165.0550.

2-(2-hydroxy-5-methylphenyl)acetic acid (2m)

Substrate **1m** was hydroxylated following general procedure, the hydroxylated product **2m** was obtained as a white solid (131 mg, 79%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 6.92 (d, *J* = 2.2 Hz, 1H), 6.88 (dd, *J* = 8.1, 2.3 Hz, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 3.54 (s, 2H), 2.21 (s, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 176.31, 154.34, 132.56, 129.59, 129.54, 122.47, 115.80, 36.52, 20.50. HRMS (ESI-TOF) Calcd for C₉H₉O₃ [M-H]⁻: 165.0552; found: 165.0554.

2-(6-hydroxy-2,3-dimethylphenyl)acetic acid (2n)

Substrate **1n** was hydroxylated following general procedure, the hydroxylated product **2n** was obtained as an ivory solid (128 mg, 71%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 6.85 (d, J = 8.2 Hz, 1H), 6.55 (d, J = 8.2 Hz, 1H), 3.71 (s, 2H), 2.17 (s, 3H), 2.13 (s, 3H), ¹³C NMR (151 MHz, Methanol-*d*₄) δ 176.35, 154.70, 137.49, 129.84, 128.32, 121.50, 112.93, 32.70, 20.11, 15.89. HRMS (ESI-TOF) Calcd for C₁₀H₁₁O₃ [M-H]⁻: 179.0708; found: 179.0710.

2-(5-bromo-2-hydroxyphenyl)acetic acid (20)

Substrate **10** was hydroxylated following general procedure, the hydroxylated product **20** was obtained as a white solid (190 mg, 83%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.26 (d, *J* = 2.6 Hz, 1H), 7.19 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.70 (d, *J* = 8.6 Hz, 1H), 3.56 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 175.43, 156.20, 134.66, 131.88, 125.46, 117.54, 111.74, 36.09. HRMS (ESI-TOF) Calcd for C₈H₆BrO₃ [M-H]⁻: 228.9500; found: 228.9503.

2-(5-chloro-2-hydroxyphenyl)acetic acid (2p)

Substrate **1p** was hydroxylated following general procedure, the hydroxylated product **2p** was obtained as a white solid (158 mg, 85%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.12 (d, *J* = 2.6 Hz, 1H), 7.05 (dd, *J* = 8.6, 2.7 Hz, 1H), 6.74 (d, *J* = 8.6 Hz, 1H), 3.56 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 175.46, 155.68, 131.73, 128.86, 124.88, 124.72, 117.03, 36.17. HRMS (ESI-TOF) Calcd for C₈H₆ClO₃ [M-H]⁻: 185.0005; found: 185.0008.

2-(3-hydroxynaphthalen-2-yl)acetic acid (2q)

Substrate **1q** was hydroxylated following general procedure with KHCO₃ (200.2 mg, 2.0 mmol, 2.0 equiv.) and DMA (3.0 mL) instead of CH₃CN and K₂HPO₄, the hydroxylated product **2q** was obtained as a white solid (166 mg, 82%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.68 (d, *J* = 8.2 Hz, 1H), 7.61 (s, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.33 (ddd, *J* = 8.1, 6.8, 1.3 Hz, 1H), 7.23 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 1H), 7.10 (s, 1H), 3.75 (s, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 176.03, 155.33, 135.86, 131.05, 129.85, 128.35, 126.81, 126.72, 125.85, 123.94, 109.53, 37.18. HRMS (ESI-TOF) Calcd for C₁₂H₉O₃ [M-H]⁻: 201.0552; found: 201.0552.

2-(2-hydroxyphenyl)propanoic acid (2r)

Substrate **1r** was hydroxylated following general procedure, the hydroxylated product **2r** was obtained as a colourless liquid (146 mg, 88%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.13 (dd, J = 7.6, 1.7 Hz, 1H), 7.05 (td, J = 7.7, 1.7 Hz, 1H), 6.82 – 6.74 (m, 2H), 4.00 (q, J = 7.2 Hz, 1H), 1.41 (d, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 179.44, 155.96, 129.10, 128.96, 128.83, 120.58, 116.17, 40.74, 17.70. HRMS (ESI-TOF) Calcd for C₉H₉O₃ [M-H]⁻: 165.0552; found: 165.0552.

2-cyclohexyl-2-(2-hydroxyphenyl)acetic acid (2s)

Substrate **1s** was hydroxylated following general procedure, the hydroxylated product **2s** was obtained as a white solid (173 mg, 74%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.27 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.04 (td, *J* = 7.7, 1.6 Hz, 1H), 6.81 – 6.75 (m, 2H), 3.80 (d, *J* = 10.6 Hz, 1H), 1.98 – 1.88 (m, 2H), 1.78 – 1.74 (m, 1H), 1.66 – 1.60 (m, 2H), 1.36 – 1.28 (m, 2H), 1.21 – 1.08 (m, 3H), 0.89 – 0.82 (m, 1H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 178.57, 156.67, 129.74, 128.85, 125.77, 120.61, 116.32, 51.59, 41.75, 33.24, 31.01, 27.53, 27.21. HRMS (ESI-TOF) Calcd for C₁₄H₁₇O₃ [M-H]⁻: 233.1178; found: 233.1185.

2-(2-hydroxyphenyl)-3-phenylpropanoic acid (2t)

Substrate **1t** was hydroxylated following general procedure, the hydroxylated product **2t** was obtained as a white solid (171 mg, 71%), ¹H NMR (600 MHz, Methanol- d_4) δ 7.21 – 7.10 (m, 6H), 7.05 (td, J = 7.6, 1.6 Hz, 1H), 6.78 (dd, J = 8.1, 1.4 Hz, 1H), 6.77 – 6.72 (m, 1H), 4.25 (t, J = 7.6 Hz, 1H), 3.27 – 3.23 (m, 1H), 3.04 – 2.96 (m, 1H). ¹³C NMR (151 MHz, Methanol- d_4) δ 177.79, 156.10, 141.35, 130.03, 129.53, 129.09, 129.05, 127.09, 127.04, 120.46, 116.23, 48.24, 39.44. HRMS (ESI-TOF) Calcd for C₁₅H₁₃O₃ [M-H]⁻: 241.0865; found: 241.0872.

2-(2-hydroxyphenyl)-2-phenylacetic acid (2u)

Substrate **1u** was hydroxylated following general procedure with KHCO₃ (200.2 mg, 2.0 mmol, 2.0 equiv.) and DMA (3.0 mL) instead of CH₃CN and K₂HPO₄, the hydroxylated product **2u** was obtained as a white solid (135 mg, 59%), ¹H NMR (600 MHz, Methanol- d_4)

δ 7.34 – 7.27 (m, 4H), 7.26 – 7.23 (m, 1H), 7.07 (t, *J* = 7.7 Hz, 1H), 6.95 (d, *J* = 7.7 Hz, 1H), 6.80 (d, *J* = 8.1 Hz, 1H), 6.73 (t, *J* = 7.5 Hz, 1H), 5.29 (s, 1H). ¹³C NMR (151 MHz, Methanol*d*₄) δ 177.02, 156.23, 139.88, 130.30, 130.12, 129.38, 129.14, 127.96, 127.49, 120.21, 115.82, 52.39. HRMS (ESI-TOF) Calcd for C₁₄H₁₁O₃ [M-H]⁻: 227.0708; found: 227.0708.

2-hydroxy-2-(2-hydroxyphenyl)acetic acid (2v)

Substrate **1v** was hydroxylated following general procedure, the hydroxylated product **2v** was obtained as a as viscous liquid (139 mg, 83%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.34 (d, *J* = 7.7 Hz, 1H), 7.18 – 7.07 (m, 1H), 6.90 – 6.73 (m, 2H), 5.39 (s, 1H). ¹³C NMR (151 MHz, MeOD) δ 177.88, 156.25, 130.08, 128.79, 127.72, 120.62, 117.00, 70.52. HRMS (ESI-TOF) Calcd for C₈H₇O₄ [M-H]⁻: 167.0344; found: 167.0346.

2-(4-bromo-2-hydroxyphenyl)-2-hydroxyacetic (2w)

Substrate **1w** was hydroxylated following general procedure at 60 °C, the hydroxylated product **2w** was obtained as a as viscous liquid (115 mg, 47%), ¹H NMR (400 MHz, Methanol- d_4) δ 7.30 (d, J = 8.2 Hz, 1H), 6.98 – 6.90 (m, 2H), 5.20 (s, 1H). ¹³C NMR (151 MHz, Methanol- d_4) δ 178.80, 157.27, 129.64, 127.99, 123.52, 122.53, 120.38, 70.65. HRMS (ESI-TOF) Calcd for C₈H₆BrO₄ [M-H]⁻: 244.9449; found: 244.9455.

(S)-2-((*tert*-butoxycarbonyl)amino)-2-(2-hydroxyphenyl)acetic (2x)

Substrate **1x** was hydroxylated following general procedure, the hydroxylated product **2x** was obtained as a yellow solid (155 mg, 58%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.20 (dd, J = 7.8, 1.7 Hz, 1H), 7.15 – 7.10 (m, 1H), 6.83 – 6.78 (m, 2H), 5.38 (s, 1H), 1.44 (s, 9H). ¹³C NMR (151 MHz, MeOD) δ 175.64, 157.65, 156.42, 130.23, 130.05, 128.51, 125.63, 120.63, 116.69, 80.71, 28.71. HRMS (ESI-TOF) Calcd for C₁₃H₁₆NO₅ [M-H]⁻: 266.1034; found: 266.1034.

4-hydroxy-2,3-dihydrobenzofuran-3-carboxylic acid (2y)

Substrate **1y** was hydroxylated following general procedure, the hydroxylated product **2y** was obtained as a white solid (135 mg, 75%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 6.98 (t, *J* = 8.1, 1H), 6.33 (d, *J* = 8.1Hz, 1H), 6.28 (d, *J* = 7.9 Hz, 1H), 4.70 (dd, *J* = 9.1, 6.0 Hz, 1H), 4.64 (dd, *J* = 9.7, 9.0 Hz, 1H), 4.33 (dd, *J* = 9.7, 6.0 Hz, 1H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 176.19, 163.18, 155.97, 131.25, 112.05, 109.13, 102.21, 74.80, 47.04. HRMS (ESI-TOF) Calcd for C₉H₇O₄ [M-H]⁻: 179.0344; found: 179.0347.

8-hydroxy-1,2,3,4-tetrahydronaphthalene-1-carboxylic acid (2z)

Substrate **1z** was hydroxylated following general procedure, the hydroxylated product **2z** was obtained as an ivory solid (123 mg, 64%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 6.95 (t, *J* = 7.8 Hz, 1H), 6.61 – 6.55 (m, 2H), 3.80 (dd, *J* = 6.8, 4.9 Hz, 1H), 2.81 – 2.63 (m, 2H), 2.12 – 2.06 (m, 1H), 2.04 – 1.99 (m, 1H), 1.88 – 1.81 (m, 1H), 1.76 – 1.69 (m, 1H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 180.15, 156.71, 139.85, 128.20, 122.79, 121.15, 112.74, 41.29, 30.44, 28.49, 21.53. HRMS (ESI-TOF) Calcd for C₁₁H₁₁O₃ [M-H]⁻: 191.0708; found: 191.0714.

2-(3-hydroxydibenzo[b,d]furan-2-yl)acetic acid (2aa)

Substrate **1aa** was hydroxylated following general procedure with KHCO₃ (200.2 mg, 2.0 mmol, 2.0 equiv.) and DMA (3.0 mL) instead of CH₃CN and K₂HPO₄, the hydroxylated product **2aa** was obtained as a white solid (160 mg, 66%), ¹H NMR (600 MHz, Methanold4) δ 7.81 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.71 (s, 1H), 7.45 (d, *J* = 8.1 Hz, 1H), 7.34 – 7.28 (m, 1H), 7.25 (td, *J* = 7.5, 1.0 Hz, 1H), 6.98 (s, 1H), 3.72 (s, 2H). ¹³C NMR (151 MHz, Methanold4) δ 176.42, 158.04, 157.48, 157.23, 126.41, 125.84, 123.72, 123.44, 120.51, 119.40, 117.18, 111.97, 98.54, 36.81. HRMS (ESI-TOF) Calcd for C₁₄H₉O₄ [M-H]⁻: 241.0501; found: 241.0503.

Compound **2ab** easily converts into the corresponding lactone during work-up and purification. The isolated yield is based on the lactone **2ab'** after following the produce below. Procedure: Upon completion of C–H hydroxylation, 0.5 mL concentrated sulfuric acid was added to the reaction mixture and stirred for 2h. The solution was quenched with saturated solution of Na₂SO₃ in water. The mixture was filtered through Celite, and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude mixture was purified by flash chromatography affording the product as colourless liquid, 130 mg, 80%. (Hexane/EtOAc = 10/1, v/v).

3,3-dimethylbenzofuran-2(3H)-one (2ab')

¹H NMR (600 MHz, Chloroform-*d*) δ 7.38 (td, *J* = 7.8, 1.5 Hz, 1H), 7.31 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.25 (td, *J* = 7.5, 1.0 Hz, 1H), 7.21 (dt, *J* = 7.9, 0.8 Hz, 1H), 1.59 (s, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 181.07, 152.37, 133.82, 128.66, 124.40, 122.86, 110.96, 43.03, 25.40. The NMR data matches the reported data⁴.

1-(2-hydroxyphenyl)cyclopropane-1-carboxylic acid (2ac)

Substrate **1ac** was hydroxylated following general procedure, the hydroxylated product **2ac** was obtained as a colourless oil (139 mg, 78%), ¹H NMR (600 MHz, Methanol- d_4) δ 7.14 (dd, J = 7.4, 1.7 Hz, 1H), 7.07 (td, J = 7.7, 1.7 Hz, 1H), 6.75 (m, 2H), 1.56 (q, J = 4.1 Hz, 2H), 1.11 (q, J = 4.0 Hz, 2H). ¹³C NMR (151 MHz, Methanol- d_4) δ 178.73, 158.20, 131.85, 129.33, 127.74, 120.11, 116.03, 25.74, 17.19. HRMS (ESI-TOF) Calcd for C₁₀H₉O₃ [M-H]⁻: 177.0552; found: 177.0550.

1-(4-chloro-2-hydroxyphenyl)cyclopropane-1-carboxylic acid (2ad)

Substrate **1ad** was hydroxylated following general procedure, the hydroxylated product **2ad** was obtained as a yellow solid (119 mg, 56%), ¹H NMR (600 MHz, Methanol- d_4) δ 7.10 (d, J = 8.1 Hz, 1H), 6.78 (d, J = 2.1 Hz, 1H), 6.75 (dd, J = 8.1, 2.1 Hz, 1H), 1.57 – 1.53 (m, 2H), 1.11 – 1.07 (m, 2H). ¹³C NMR (151 MHz, MeOD) δ 178.38, 159.25, 134.28, 132.92, 127.02, 119.90, 116.07, 25.43, 17.06. HRMS (ESI-TOF) Calcd for C₁₀H₈ClO₃ [M-H]⁻: 211.0162; found: 211.0157.

2-(2-hydroxy-4-isobutylphenyl)propanoic acid (2ae)

Substrate **1ae** was hydroxylated following general procedure, the hydroxylated product **2ae** was obtained as a white solid (195 mg, 88%), ¹H NMR (600 MHz, Chloroform-*d*) δ 7.06 (d, J = 7.8 Hz, 1H), 6.71 (dd, J = 7.7, 1.7 Hz, 1H), 6.67 (d, J = 1.7 Hz, 1H), 3.93 (q, J = 7.2 Hz,

1H), 2.40 (d, J = 7.2 Hz, 2H), 1.85 – 1.81 (m, 1H), 1.55 (d, J = 7.3 Hz, 3H), 0.89 (d, J = 6.7 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 182.11, 153.79, 143.13, 128.34, 122.83, 122.20, 118.02, 45.08, 40.84, 30.15, 22.55, 16.14. HRMS (ESI-TOF) Calcd for C₁₃H₁₇O₃ [M-H]⁻: 221.1178; found: 221.1179.

2-(5-benzoyl-2-hydroxyphenyl)propanoic acid (2af)

Substrate **1af** was hydroxylated following general procedure, the hydroxylated product **2af** was obtained as a white solid (151 mg, 56%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.75 – 7.67 (m, 3H), 7.63 – 7.58 (m, 2H), 7.54 – 7.48 (m, 2H), 6.90 (d, *J* = 8.4 Hz, 1H), 4.05 (q, *J* = 7.2 Hz, 1H), 1.44 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 197.81, 178.56, 161.20, 139.75, 133.12, 132.49, 132.33, 130.65, 129.88, 129.51, 129.37, 115.69, 40.53, 17.46. HRMS (ESI-TOF) Calcd for C₁₆H₁₃O₄ [M-H]⁻: 269.0814; found: 269.0813.

2-(2-fluoro-5-hydroxy-[1,1'-biphenyl]-4-yl)propanoic acid (2ag)

Substrate **1ag** was hydroxylated following general procedure, the hydroxylated product **2ag** was obtained as a pale-yellow solid (174 mg, 67%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.49 (d, *J* = 7.3 Hz, 2H), 7.41 (t, *J* = 7.8 Hz, 2H), 7.36 – 7.29 (m, 1H), 6.99 (d, *J* = 11.6 Hz, 1H), 6.85 (d, *J* = 6.8 Hz, 1H), 4.03 (q, *J* = 7.2 Hz, 1H), 1.46 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 178.54, 154.50 (d, *J* = 237.7 Hz), 152.24 (d, *J* = 2.1 Hz), 137.25, 129.95 (d, *J* = 7.2 Hz), 129.86 (d, *J* = 2.9 Hz), 129.40, 128.95 (d, *J* = 14.9 Hz), 128.57, 117.13 (d, *J* = 3.5 Hz), 116.29 (d, *J* = 25.2 Hz), 40.28, 17.62. ¹⁹F NMR (376 MHz, Methanol-*d*₄) δ -134.88. HRMS (ESI-TOF) Calcd for C₁₅H₁₂FO₃ [M-H]⁻: 259.0770; found: 259.0769.

2-(4-acetamido-2-hydroxyphenyl)acetic acid (2ah)

Substrate **1ah** was hydroxylated following general procedure with KHCO₃ (200.2 mg, 2.0 mmol, 2.0 equiv.) and DMA (3.0 mL) instead of CH₃CN and K₂HPO₄, the hydroxylated product **2ah** was obtained as an ivory solid (140 mg, 67%), ¹H NMR (600 MHz, Methanol*d*₄) δ 7.25 (d, *J* = 2.1 Hz, 1H), 7.03 (d, *J* = 8.1 Hz, 1H), 6.83 (dd, *J* = 8.1, 2.1 Hz, 1H), 3.53 (s, 2H), 2.08 (s, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 176.39, 171.55, 156.92, 139.83, 131.98, 118.82, 112.06, 108.17, 36.29, 23.80. HRMS (ESI-TOF) Calcd for C₁₀H₁₀NO₄ [M-H]⁻: 208.0610; found: 208.0609.

2-(2-hydroxy-4-((2-oxocyclopentyl)methyl)phenyl)propanoic acid (2ai)

Substrate **1ai** was hydroxylated following general procedure, the hydroxylated product **2ai** was obtained as an yellow oil (197 mg, 75%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.04 (d, J = 8.3 Hz, 1H), 6.65 – 6.58 (m, 2H), 3.97 (q, J = 7.2 Hz, 1H), 2.98 – 2.94 (m, 1H), 2.47 – 2.42 (m, 1H), 2.39 – 2.25 (m, 2H), 2.12 – 2.03 (m, 2H), 1.96 – 1.91 (m, 1H), 1.79 – 1.70 (m, 1H), 1.60 – 1.53 (m, 1H), 1.39 (d, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 222.98, 179.31, 155.85, 141.17, 128.87, 126.89, 121.19, 116.56, 52.04, 40.16, 39.03, 36.17, 30.08, 21.45, 17.72. HRMS (ESI-TOF) Calcd for C₁₅H₁₇O₄ [M-H]⁻: 261.1127; found: 261.1129.

Substrate **1aj** was hydroxylated following general procedure, the hydroxylated product **2aj** was obtained as an orange solid (160 mg, 65%) with KHCO₃ (200.2 mg, 2.0 mmol, 2.0 equiv.) and DMA (3.0 mL) instead of CH₃CN and K₂HPO₄, ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.57 (d, *J* = 8.9 Hz, 1H), 7.53 (s, 1H), 7.03 (s, 1H), 6.97 (d, *J* = 2.5 Hz, 1H), 6.88 (dd, *J* = 8.9, 2.5 Hz, 1H), 4.09 (q, *J* = 7.2 Hz, 1H), 3.84 (s, 3H), 1.52 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 179.32, 159.32, 155.24, 136.73, 129.97, 129.22, 127.84, 125.26, 116.47, 109.27, 105.03, 55.57, 40.99, 17.74. HRMS (ESI-TOF) Calcd for C₁₄H₁₃O₄ [M-H]⁻: 245.0814; found: 245.0817.

1-(3',4'-dichloro-2-fluoro-5-hydroxy-[1,1'-biphenyl]-4-yl)cyclopropane-1-carboxylic acid (2ak)

Substrate **1ak** was hydroxylated following general procedure on 0.5 mmol scale, the hydroxylated product **2ak** was obtained as a white solid (126 mg, 74%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.64 (dd, *J* = 2.0, 1.3 Hz, 1H), 7.55 (d, *J* = 8.3 Hz, 1H), 7.42 (dt, *J* = 8.3, 1.6 Hz, 1H), 7.00 (d, *J* = 11.2 Hz, 1H), 6.82 (d, *J* = 6.7 Hz, 1H), 1.62 – 1.55 (m, 2H), 1.18 – 1.11 (m, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 178.01, 154.83, 153.82 (d, *J* = 238.4 Hz), 137.55, 133.29, 132.52, 131.61 (d, *J* = 3.8 Hz), 131.54, 130.15 (d, *J* = 7.6 Hz), 129.62 (d, *J* = 3.3 Hz), 126.73 (d, *J* = 14.8 Hz), 119.18 (d, *J* = 24.8 Hz), 116.76 (d, *J* = 2.7 Hz), 26.00, 17.09. HRMS (ESI-TOF) Calcd for C₁₆H₁₀Cl₂FO₃ [M-H]⁻: 338.9991; found: 338.9992.

Substrate **1al** was hydroxylated following general procedure on 0.5 mmol scale, the hydroxylated product **2al** was obtained as a white solid (128 mg, 78%), ¹H NMR (600 MHz, Chloroform-*d*) δ 6.86 (s, 1H), 6.84 (s, 1H), 3.64 (s, 2H), 2.85 – 2.79 (m, 2H), 2.55 – 2.48 (m, 1H), 2.34 – 2.11 (m, 3H), 2.07 – 1.92 (m, 3H), 1.66 – 1.36 (m, 6H), 0.89 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 221.65, 178.28, 152.52, 141.06, 131.63, 129.12, 118.02, 114.07, 50.59, 48.17, 44.45, 38.11, 36.77, 36.03, 31.66, 28.54, 26.71, 25.80, 21.72, 13.95. HRMS (ESI-TOF) Calcd for C₂₀H₂₃O₄ [M-H]⁻: 327.1596; found: 327.1602.

General Procedure for hydroxylation of benzoic acids

Conditions A: $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 2 mol%), **L4** (7.3 mg, 0.04 mmol, 4 mol%), carboxylic acid **3** (1.0 mmol), and K₂HPO₄•3H₂O (342.3 mg, 1.5 mmol, 1.5 equiv.) were weighed and placed in an 8 mL vial. Then, CH₃CN (3.0 mL) was added and stirred for 10 min, followed by the addition of H₂O₂ (35% aq., 300 uL, 3.5 equiv.). The vial was sealed with a screw cap and stirred at room temperature for 24 h (typically ran at 25 °C unless otherwise noted). Upon completion, the reaction was quenched with saturated solution of Na₂SO₃ (or Na₂S₂O₃) in water until H₂O₂ was completely decomposed. (Tested by the potassium iodide starch test paper). The mixture was diluted with methanol and acidified with formic acid. The solution was filtered through a pad of Celite, and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude mixture was purified by flash chromatography (Hexane/EtOAc or DCM/MeOH with 1% AcOH, v/v).

Conditions B: $Pd(OAc)_2$ (11.0 mg, 0.05 mmol, 5 mol%), **L4** (18.2 mg, 0.10 mmol, 10 mol%), carboxylic acid **3** (1.0 mmol), and CsOAc (288.0 mg, 1.5 mmol, 1.5 equiv.) were weighed and placed in a reaction tube. Then, DMA (3.0 mL) was added and stirred for 10 min, followed by the addition of H_2O_2 (35% aq., 300 uL, 3.0 equiv.). The vial was sealed with a

screw cap and stirred at 60 °C for 24 h. Upon completion, the reaction was quenched with saturated solution of Na₂SO₃ (or Na₂S₂O₃) in water until H₂O₂ was completely decomposed. (Tested by the potassium iodide starch test paper). The mixture was diluted with methanol and acidified with formic acid. The solution was filtered through a pad of Celite, and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude mixture was purified by flash chromatography (Hexane/EtOAc or DCM/MeOH with 1% AcOH, v/v).

2-hydroxybenzoic acid (4a)

Substrate **3a** was hydroxylated following general procedure conditions A, the hydroxylated product **4a** was obtained as a white solid (130 mg, 94%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.85 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.46 (ddd, *J* = 8.3, 7.2, 1.7 Hz, 1H), 6.94 – 6.85 (m, 2H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 173.51, 163.22, 136.60, 131.53, 120.04, 118.14, 113.88. HRMS (ESI-TOF) Calcd for C₇H₅O₃ [M-H]⁻: 137.0244; found: 137.0240.

2-hydroxy-4-methylbenzoic acid (4b)

Substrate **3b** was hydroxylated following general procedure conditions A, the hydroxylated product **4b** was obtained as an ivory solid (140 mg, 92%),¹H NMR (600 MHz, Methanol-*d*₄) δ 7.72 (d, *J* = 8.0 Hz, 1H), 6.75 – 6.73 (m, 1H), 6.73 – 6.70 (m, 1H), 2.33 (s, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 173.54, 163.14, 148.11, 131.37, 121.26, 118.22, 111.30, 21.79. HRMS (ESI-TOF) Calcd for C₈H₇O₃ [M-H]⁻: 151.0395; found: 151.0399.

2-hydroxy-5-methylbenzoic acid (4c)

Substrate **3c** was hydroxylated following general procedure conditions A, the hydroxylated product **4c** was obtained as a white solid (130 mg, 85%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.64 (dd, *J* = 2.3, 0.9 Hz, 1H), 7.26 (ddd, *J* = 8.3, 2.3, 0.6 Hz, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 173.50, 161.04, 137.42, 131.19, 129.35, 117.93, 113.42, 20.36 HRMS (ESI-TOF) Calcd for C₈H₇O₃ [M-H]⁻: 151.0395; found: 151.0399.

2-hydroxy-6-methylbenzoic acid (4d)

Substrate **3d** was hydroxylated following general procedure conditions A, the hydroxylated product **4d** was obtained as white solid (99.3 mg, 65%), ¹H NMR (600 MHz, Methanol- d_4) δ 7.23 (dd, J = 8.3, 7.5 Hz, 1H), 6.76 – 6.70 (m, 2H), 2.54 (s, 3H). ¹³C NMR (151 MHz, Methanol- d_4) δ 174.86, 163.32, 142.45, 134.43, 123.44, 115.86, 115.07, 23.48. HRMS (ESI-TOF) Calcd for C₈H₇O₃ [M-H]⁻: 151.0395; found: 151.0395.

4-hydroxy-[1,1'-biphenyl]-3-carboxylic acid (4e)

Substrate **3e** was hydroxylated following general procedure conditions A, the hydroxylated product **4e** was obtained as a yellow solid (191 mg, 89%), ¹H NMR (600 MHz, Methanol- d_4) δ 8.09 (d, J = 2.4 Hz, 1H), 7.74 (dt, J = 8.5, 2.2 Hz, 1H), 7.57 – 7.53 (m, 2H), 7.44 – 7.39 (m,

2H), 7.34 – 7.26 (m, 1H), 7.01 (dd, J = 8.6, 2.1 Hz, 1H). ¹³C NMR (151 MHz, Methanol- d_4) δ 173.33, 162.64, 141.28, 135.15, 133.59, 129.91, 129.54, 128.02, 127.47, 118.75, 114.21. HRMS (ESI-TOF) Calcd for C₁₃H₉O₃ [M-H]⁻: 213.0552; found: 213.0555.

3-hydroxy-[1,1'-biphenyl]-2-carboxylic acid (4f)

Substrate **3f** was hydroxylated following general procedure conditions A, the hydroxylated product **4f** was obtained as a white solid (198 mg, 92%),¹H NMR (600 MHz, Methanol- d_4) δ 7.35 – 7.26 (m, 6H), 6.91 (dd, J = 8.3, 1.1 Hz, 1H), 6.77 (dd, J = 7.5, 1.1 Hz, 1H). ¹³C NMR (151 MHz, Methanol- d_4) δ 173.41, 159.78, 144.81, 143.20, 133.07, 129.37, 128.81, 128.02, 122.80, 117.72, 116.47. HRMS (ESI-TOF) Calcd for C₁₃H₉O₃ [M-H]⁻: 213.0552; found: 213.0553.

2-hydroxy-1-naphthoic acid (4g)

General procedure following conditions A, the hydroxylated product **4g** was obtained as a white solid (172 mg, 91%),¹H NMR (600 MHz, Methanol- d_4) δ 8.86 (dd, J = 8.8, 1.0 Hz, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.75 (dd, J = 8.1, 1.5 Hz, 1H), 7.51 (dd, J = 8.6, 6.9, 1.5 Hz, 1H), 7.33 (ddd, J = 8.0, 6.8, 1.1 Hz, 1H), 7.11 (d, J = 9.0 Hz, 1H). ¹³C NMR (151 MHz, Methanol- d_4) δ 175.34, 165.31, 137.51, 133.63, 130.04, 129.93, 129.19, 126.49, 124.50, 119.95, 106.10. HRMS (ESI-TOF) Calcd for C₁₁H₇O₃ [M-H]⁻: 187.0395; found: 187.0398.

2-hydroxy-5-(trifluoromethyl)benzoic acid (4h)

Substrate **3h** was hydroxylated following general procedure conditions A but under 60 °C, the hydroxylated product **4h** was obtained as an ivory solid (167 mg, 81%), ¹H NMR (600 MHz, Methanol- d_4) δ 8.12 (dd, J = 2.4, 1.0 Hz, 1H), 7.73 (ddd, J = 8.8, 2.4, 0.7 Hz, 1H), 7.09 (dd, J = 8.8, 0.8 Hz, 1H). ¹³C NMR (151 MHz, Methanol- d_4) δ 172.42, 165.75, 132.96 (q, J = 3.5 Hz), 128.96 (q, J = 4.2 Hz), 125.45 (q, J = 270.2 Hz), 122.32 (q, J = 33.1 Hz), 119.30, 114.17. ¹⁹F NMR (376 MHz, Methanol- d_4) δ -65.77. HRMS (ESI-TOF) Calcd for C₈H₄F₃O₃ [M-H]⁻: 205.0113; found: 205.0114.

2-hydroxy-4-methoxy-6-methylbenzoic acid (4i)

Substrate **3i** was hydroxylated following general procedure conditions A, the hydroxylated product **4i** was obtained as a yellow solid (127 mg, 70%),¹H NMR (600 MHz, Methanol- d_4) δ 6.34 – 6.30 (m, 2H), 3.80 (s, 3H), 2.54 (s, 3H).¹³C NMR (151 MHz, Methanol- d_4) δ 174.96, 166.99, 165.37, 144.90, 111.46, 106.46, 99.61, 55.74, 24.29. HRMS (ESI-TOF) Calcd for C₉H₉O₄ [M-H]⁻: 181.0501; found: 181.0505.

4-hydroxy-2,3-dihydrobenzofuran-5-carboxylic (4j, left)6-hydroxy-2,3-dihydrobenzofuran-5-carboxylic acid (4j', right)

Substrate **3j** was hydroxylated following general procedure conditions A, the hydroxylated products **4j and 4j'** were obtained as inseparable mixture (1:1), (140 mg, 78%),¹H NMR (600 MHz, Methanol- d_4) δ 7.70 – 7.66 (m, 1H), 7.66 – 7.63 (m, 1H), 6.33 – 6.28 (m, 1H), 6.24 (d, J = 1.9 Hz, 1H), 4.66 – 4.62 (m, 2H), 4.61 – 4.57 (m, 2H), 3.16 – 3.08 (m, 4H).¹³C

NMR (151 MHz, Methanol- d_4) δ 173.46, 168.10, 167.78, 165.48, 160.69, 146.79, 133.11, 127.41, 120.30, 113.99, 107.68, 102.62, 98.21, 73.87, 73.81, 29.04, 27.09. (Peaks for – COOH are overlapped.) HRMS (ESI-TOF) Calcd for C₉H₇O₄ [M-H]⁻: 179.0344; found: 179.0346.

7-hydroxychromane-6-carboxylic acid (4k)

Substrate **3k** was hydroxylated following general procedure conditions A, the hydroxylated product **4k** was obtained as a brown solid (183 mg, 94%),¹H NMR (600 MHz, Methanol- d_4) δ 7.55 (t, J = 1.1 Hz, 1H), 6.22 (s, 1H), 4.34 – 3.98 (m, 2H), 2.85 – 2.49 (m, 2H), 2.11 – 1.82 (m, 2H). ¹³C NMR (151 MHz, Methanol- d_4) δ 173.34, 162.89, 162.37, 132.93, 115.48, 106.85, 104.33, 68.07, 25.15, 23.40. HRMS (ESI-TOF) Calcd for C₁₀H₉O₄ [M-H]⁻: 193.0501; found: 193.0500.

2',4'-difluoro-4-hydroxy-[1,1'-biphenyl]-3-carboxylic acid (4l)

Substrate **3I** was hydroxylated following general procedure conditions A but under 60°C, the hydroxylated product **4I** was obtained as a yellow solid (241 mg, 96%), ¹H NMR (600 MHz, Methanol- d_4) δ 7.99 (s, 1H), 7.62 (d, J = 8.6 Hz, 1H), 7.47 (td, J = 8.3, 5.9 Hz, 1H), 7.07 – 6.98 (m, 3H). ¹³C NMR (151 MHz, Methanol- d_4) δ 172.76, 164.44 (dd, J = 247.6, 12.0 Hz), 162.98, 161.06 (dd, J = 248.7, 12.1 Hz), 137.01, 132.55 (d, J = 9.3 Hz), 132.51 (d, J = 9.6 Hz), 131.86, 127.14, 125.63 (dd, J = 13.6, 3.9 Hz), 118.57, 112.71 (dd, J = 21.4, 3.8 Hz), 105.13 (dd, J = 27.0, 25.8 Hz). ¹⁹F NMR (376 MHz, Methanol- d_4) δ -113.68 (d, J = 6.8 Hz),

-115.69 (d, *J* = 7.3 Hz). HRMS (ESI-TOF) Calcd for C₁₃H₇F₂O₃ [M-H]⁻: 249.0363; found: 249.0365.

2,4-difluoro-6-hydroxybenzoic acid (4m)

Substrate **3m** was hydroxylated following general procedure conditions **B**, the hydroxylated product **4m** was obtained as a white solid (126 mg, 72%), ¹H NMR (600 MHz, Methanol- d_4) δ 6.52 – 6.45 (m, 2H). ¹³C NMR (151 MHz, Methanol- d_4) δ 171.60 (d, J = 3.6 Hz), 167.79 (dd, J = 251.0, 15.5 Hz), 166.21 (dd, J = 16.5, 6.1 Hz), 165.19 (dd, J = 261.6, 17.2 Hz), 101.20 (dd, J = 13.5, 3.5 Hz), 101.03 (dd, J = 24.4, 4.4 Hz), 97.24 – 96.59 (m). ¹⁹F NMR NMR (376 MHz, Methanol- d_4) δ -102.64 (d, J = 12.7 Hz), -102.82 (d, J = 12.7 Hz). HRMS (ESI-TOF) Calcd for C₇H₃F₂O₃ [M-H]⁻: 173.0050; found: 173.0054.

4,5-difluoro-2-hydroxybenzoic acid (4n)

Substrate **3n** was hydroxylated following general procedure conditions **B**, the hydroxylated product **4n** was obtained as an ivory solid (128 mg, 73%),¹H NMR (600 MHz, Methanol-*d*₄) δ 7.72 – 7.65 (m, 1H), 6.87 – 6.79 (m, 1H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 171.97, 160.70 (dd, *J* = 11.8, 1.7 Hz), 156.11 (dd, *J* = 254.6, 14.3 Hz), 144.63 (dd, *J* = 240.2, 13.4 Hz), 118.84 (dd, *J* = 19.5, 2.6 Hz), 110.02, 106.78 (d, *J* = 20.3 Hz). ¹⁹F NMR (376 MHz, Methanol-*d*₄) δ -128.80 (d, *J* = 21.8 Hz), -151.10 (d, *J* = 21.7 Hz). HRMS (ESI-TOF) Calcd for C₇H₃F₂O₃ [M-H]⁻: 173.0050; found: 173.0054.

3,5-difluoro-2-hydroxybenzoic acid (40)

Substrate **30** was hydroxylated following general procedure conditions **B**, the hydroxylated product **40** was obtained as a pink solid (113 mg, 65%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.38 (ddd, *J* = 8.7, 3.1, 2.0 Hz, 1H), 7.25 (ddd, *J* = 11.3, 8.3, 3.1 Hz, 1H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 171.83, 154.95 (dd, *J* = 238.8, 10.5 Hz), 152.53 (d, *J* = 247.5 Hz), 148.38 (d, *J* = 12.5 Hz), 116.85, 111.73 (d, *J* = 23.8 Hz), 110.88 (dd, *J* = 27.6, 21.9 Hz). ¹⁹F NMR (376 MHz, Methanol-*d*₄) δ -124.23, -134.42. HRMS (ESI-TOF) Calcd for C₇H₃F₂O₃ [M-H]⁻: 173.0050; found: 173.0048.

2-fluoro-6-hydroxybenzoic acid (4p)

Substrate **3p** was hydroxylated following general procedure conditions **B**, the hydroxylated product **4p** was obtained as a yellow solid (96.2 mg, 62%),¹H NMR (600 MHz, Methanol*d*₄) δ 7.40 (td, *J* = 8.5, 6.0 Hz, 1H), 6.74 (dt, *J* = 8.5, 1.0 Hz, 1H), 6.62 (ddd, *J* = 10.9, 8.2, 1.0 Hz, 1H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 171.72, 164.40, 163.93 (d, *J* = 258.8 Hz), 136.16, 136.08, 113.96, 107.58 (d, *J* = 23.5 Hz). ¹⁹F NMR (376 MHz, Methanol-*d*₄) δ -107.63. HRMS (ESI-TOF) Calcd for C₇H₄FO₃ [M-H]⁻: 155.0144; found: 155.0147.

2-hydroxy-4-nitrobenzoic acid (4q)

Substrate 3q was hydroxylated following general procedure conditions **B**, the hydroxylated product 4q was obtained as a yellow solid, (136 mg, 74%),¹H NMR (600 MHz, Methanol-

 d_4) δ 8.09 (dd, J = 8.6, 0.5 Hz, 1H), 7.74 – 7.69 (m, 2H). ¹³C NMR (151 MHz, Methanol- d_4) δ 172.06, 163.45, 153.41, 133.04, 119.19, 114.29, 113.19. HRMS (ESI-TOF) Calcd for $C_7H_4NO_5$ [M-H]⁻: 182.0089; found: 182.0090.

4-acetyl-2-hydroxybenzoic acid (4r)

Substrate **3r** was hydroxylated following general procedure conditions **B**, the hydroxylated product **4r** was obtained as an ivory solid (125 mg, 69%),¹H NMR (600 MHz, Methanol-*d*₄) δ 7.97 (d, *J* = 8.1 Hz, 1H), 7.48 – 7.44 (m, 2H), 2.60 (s, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 199.90, 163.00, 143.18, 132.16, 120.12, 119.04, 117.68, 26.95. (One peak corresponds –COOH was not detected) HRMS (ESI-TOF) Calcd for C₉H₇O₄ [M-H]⁻: 179.0344; found: 179.0344.

2-hydroxy-4-methoxybenzoic acid (4s)

Substrate **3s** was hydroxylated following general procedure conditions **B**, the hydroxylated product **4s** was obtained as an ivory solid (102 mg, 61%),¹H NMR (600 MHz, Methanol-*d*₄) δ 7.76 (d, *J* = 8.7 Hz, 1H), 6.49 – 6.40 (m, 2H), 3.82 (s, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 173.38, 167.14, 165.37, 132.89, 107.93, 106.78, 101.58, 55.97. HRMS (ESI-TOF) Calcd for C₈H₇O₄ [M-H]⁻: 167.0344; found: 167.0346.

2-bromo-4-fluoro-6-hydroxybenzoic acid (4t)

Substrate **3t** was hydroxylated following general procedure conditions **B** but K₂HPO₄•3H₂O was used instead of CsOAc and the reaction was run for 48 h, the hydroxylated product **4t** was obtained as an ivory solid (157 mg, 67%),¹H NMR (600 MHz, Methanol-*d*₄) δ 6.85 (dd, J = 8.6, 2.6 Hz, 1H), 6.55 (dd, J = 10.2, 2.6 Hz, 1H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 173.96, 164.91 (d, J = 249.8 Hz), 164.81 (d, J = 14.0 Hz), 124.95 (d, J = 12.9 Hz), 118.13, 113.10 (d, J = 25.3 Hz), 103.64 (d, J = 23.2 Hz). ¹⁹F NMR (376 MHz, Methanol-*d*₄) δ -111.12. HRMS (ESI-TOF) Calcd for C₇H₃BrFO₃ [M-H]⁻: 232.9250; found: 232.9251.

2-hydroxy-6-(4-methylbenzoyl)benzoic acid (4u)

Substrate **3u** was hydroxylated following general procedure conditions **B** to afford the hydroxylated product **4u** (244 mg, 95%), ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.60 (d, *J* = 8.0 Hz, 2H), 7.53 (dd, *J* = 8.4, 7.4 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.08 (dd, *J* = 8.4, 1.1 Hz, 1H), 6.76 (dd, *J* = 7.4, 1.1 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 200.93, 162.72, 144.93, 144.57, 136.90, 133.57, 130.38, 130.06, 129.85, 118.45, 117.84, 21.57. (One peak corresponds –COOH was not detected) HRMS (ESI-TOF) Calcd for C₁₅H₁₁O₄ [M-H]⁻: 255.0657; found: 255.0657.

2-((3-chloro-2-methylphenyl)amino)-6-hydroxybenzoic acid (4v)

Substrate **3v** was hydroxylated following general procedure conditions **B**, the hydroxylated product **4v** was obtained as a brown solid (255 mg, 92%),¹H NMR (400 MHz, Methanol-*d*₄) δ 7.26 – 7.19 (m, 1H), 7.11 – 7.03 (m, 2H), 6.97 (t, *J* = 8.2 Hz, 1H), 6.26 – 6.04 (m, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 164.47, 150.04, 143.43, 136.18, 133.59, 131.48, 127.84, 125.18, 123.01, 106.38, 104.66, 104.18, 15.23. (One peak corresponds – COOH was not detected) HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClNO₃ [M-H]⁻: 276.0427; found: 276.0427.

(8*R*,9*S*,13*S*,14*S*)-2-hydroxy-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthrene-3-carboxylic acid (4w)

Substrate **3w** (0.5 mmol) was hydroxylated following general procedure conditions **B** but under room temperature, K₂HPO₄•3H₂O was used instead of CsOAc. the hydroxylated product **4w** was obtained as an ivory solid (96.2 mg, 61%), ¹H NMR (600 MHz, Methanold4) δ 7.55 (s, 1H), 6.85 (s, 1H), 2.88 – 2.78 (m, 2H), 2.53 – 2.47 (m, 1H), 2.40 – 2.35 (m, 1H), 2.31 – 2.26 (m, 1H), 2.18 – 2.01 (m, 3H), 1.93 – 1.87 (m, 1H), 1.72 – 1.39 (m, 6H), 0.93 (s, 3H). ¹³C NMR (151 MHz, Methanol-d₄) δ 223.44, 173.40, 160.97, 149.76, 131.28, 128.61, 114.55, 111.70, 51.79, 49.17, 46.03, 39.11, 36.69, 32.71, 29.31, 27.61, 26.58, 22.51, 14.21. HRMS (ESI-TOF) Calcd for C₁₉H₂₁O₄ [M-H]⁻: 313.1440; found: 313.1439.
3. Synthetic Application

3.1. Large Scale Reactions

Attention: Peroxides are particularly dangerous when they are concentrated. Large scale reactions should be quenched and tested by the potassium iodide starch test paper.

Pd(OAc)₂ (2.24 g, 0.01 mol, 1 mol%), **L4** (3.62 g, 0.02 mol, 2 mol%), carboxylic acid **1ae** (206 g, 1.0 mol), and K₂HPO₄ (260 g, 1.5 mol, 1.5 equiv.) were weighed and placed in a 3 L round bottom glass flask. Then, CH₃CN (2.0 L) was added and stirred vigorously for 30 min and H₂O₂ (35% aq., 300 mL, 3.5 equiv.) was carefully added in several portions. The mixture was stirred at ambient temperature for 24 h. After that, the reaction was monitored by LCMS and H₂O₂ (35% aq., 100 mL, 1.1 equiv.) was added and stirred vigorously for an additional 24 h. Upon completion, the reaction was carefully quenched with Na₂S₂O₃ aqueous solution until H₂O₂ was completely decomposed. The mixture was acidified with 1 M aqueous HCl and filtered through Celite then washed with EtOAc. The aqueous layer was extracted with ethyl acetate three times. The combined organic layers were washed with brine then dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude mixture was purified by flash chromatography (Hexane/EtOAc with 1% AcOH, v/v). The total hydroxylated product **2ae** was obtained as a white solid (179.2 g, 81%).

Reaction equipment

Hydroxylated product 2ae

Fig. S1. C(sp²)–H hydroxylation of Ibuprofen

Pd(OAc)₂ (224 mg, 1 mmol, 1 mol%), L4 (362 mg, 2 mmol, 2 mol%), carboxylic acid 1d (13.6 g, 100 mmol), and K₂HPO₄ (26.0 g, 150 mmol, 1.5 equiv.) were weighed and placed in a 500 mL round bottom glass flask. Then, CH₃CN (250 mL) was added and stirred vigorously for 30 min and H₂O₂ (35% aq., 30 mL, 3.5 equiv.) was carefully added in several portions. The mixture was stirred at ambient temperature for 48 h. Upon completion, the reaction was carefully quenched with Na₂S₂O₃ aqueous solution until H₂O₂ was completely decomposed. The mixture was acidified with 1 M aqueous HCl and filtered through Celite then washed with EtOAc. The aqueous layer was extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude mixture was purified by multiple recrystallizations with Hexane/EtOAc.

The mother liquor was further purified by flash chromatography (Hexane/EtOAc with 1% AcOH, v/v). The hydroxylated product **2d** was obtained as a white solid (12.4 g, 82%).

Pd(OAc)₂ (336 mg, 1.5 mmol, 2 mol%), **L4** (543 mg, 3 mmol, 2 mol%), carboxylic acid **1d** (15.3 g, 75 mmol), and K₂HPO₄ (19.7 g, 113 mmol, 1.5 equiv.) were weighed and placed in a 500 mL round bottom glass flask. Then, CH₃CN (200 mL) was added and stirred vigorously for 30 min and H₂O₂ (35% aq., 22.5 mL, 3.5 equiv.) was carefully added in several portions. The mixture was stirred at ambient temperature for 48 h. Upon completion, the reaction was carefully quenched with Na₂S₂O₃ aqueous solution until H₂O₂ was completely decomposed. The mixture was acidified with 1 M aqueous HCl and filtered through Celite then washed with EtOAc. The aqueous layer was extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude mixture was purified by flash chromatography (Hexane/EtOAc with 1% AcOH, v/v). The hydroxylated product **2d** was obtained as a yellow solid (12.6 g, 76%).

Pd(OAc)₂ (448 mg, 2 mmol, 2 mol%), L4 (724 mg, 4 mmol, 4 mol%), carboxylic acid 1d (12.2 g, 100 mmol), and K₂HPO₄ (26.0 g, 150 mmol, 1.5 equiv.) were weighed and placed in a 500 mL round bottom glass flask. Then, CH₃CN (250 mL) was added and stirred vigorously for 30 min and H₂O₂ (35% aq., 30 mL, 3.5 equiv.) was carefully added in several portions. The mixture was stirred at ambient temperature for 48 h. Upon completion, the reaction was carefully quenched with Na₂S₂O₃ aqueous solution until H₂O₂ was completely decomposed. The mixture was acidified with 1 M aqueous HCl and filtered through Celite then washed with EtOAc. The aqueous layer was extracted with ethyl acetate three times.

The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under vacuum. The crude mixture was purified by multiple recrystallizations. The hydroxylated product **2d** was obtained as a white solid (10.6 g, 77%).

3.2. Further Derivatizations of Phenolic Products

Pd(OAc)₂ (4.5 mg, 0.02 mmol, 2 mol%), L4 (7.3 mg, 0.04 mmol, 4 mol%), carboxylic acid 1d or 1a (1.0 mmol), and K₂HPO₄ (260.0 mg, 1.5 mmol, 1.5 equiv.) were weighed and placed in an 8 mL vial. Then, CH₃CN (3.0 mL) was added and stirred for 5 min, followed by the addition of H₂O₂ (35% aq., 300 uL, 3.5 equiv.). The vial was sealed with a screw cap and stirred at ambient temperature for 24 h. Upon completion, the reaction was quenched with aqueous Na₂SO₃ solution and acidified with 1 M aqueous HCl. The solution was filtered through a pad of Celite then washed with ethyl acetate. The aqueous layer was extracted with ethyl acetate three times and the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude mixture 2d or 2a was used in the next step without further purification.

To a 25 mL flask provided with Dean-Stark tramp and magnetic stirrer was added crude 2d or 2a in 15 mL of toluene and catalytic amounts of *p*-TsOH (0.1 mmol). The mixture was refluxed for overnight with removal of water and then the residual solvent was removed at reduced pressure. The crude mixture was purified by flash column chromatography (Hexane/EtOAc) to give the corresponding lactone products.

benzofuran-2(3H)-one (5a)

[CAS: 553-86-6] Yellow oil, 91.1 mg, 68%, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 2H), 7.17 – 7.09 (m, 2H), 3.74 (s, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 174.29, 154.87, 129.07, 124.81, 124.27, 123.21, 110.97, 33.17. The NMR data matches the reported data⁵.

6-(trifluoromethyl)benzofuran-2(3H)-one (5b)

Yellow solid, 123.2 mg, 61%, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.39 (m, 2H), 7.38 – 7.34 (m, 1H), 3.81 (s, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.85, 154.84, 131.78 (q, *J* = 33.1 Hz), 127.17, 123.60 (q, *J* = 272.4 Hz), 125.23, 121.31 (q, *J* = 4.0 Hz), 108.23 (q, *J* = 3.9 Hz), 32.94. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.22. HRMS (ESI-TOF) Calcd for C₉H₄F₃O₂ [M-H]⁻: 201.0169; found: 201.0168.

To a solution of crude **2d** or **2a** in THF (2.0 mL) was added lithium aluminum hydride solution (2.0 M in THF, 1.0 mL, 2 mmol) at 0 °C. The reaction mixture was warmed to ambient temperature and stirred for 6 h. Upon completion, the mixture was diluted with 10 mL Et₂O and carefully quenched with 1 M aqueous HCl at 0 °C until the solution becomes clear. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine then dried and evaporated under reduced pressure. The crude product was used in the next step without further purification.

To a solution of the crude alcohol in THF (2.0 mL) was added PPh₃ (314.4 mg, 1.2 mmol) and diisopropyl azodicarboxylate (303.3 mg, 1.5 mmol). The mixture was stirred at ambient

temperature until the diol was no longer apparent by TLC. Upon completion, the reaction was diluted with 20 mL diethyl ether and stirred for 30 min. The mixture was filtered through Celite and evaporated under reduced pressure. The crude product was purified by flash chromatography (Hexane/EtOAc = 10:1, v/v) to give the corresponding product.

2,3-dihydrobenzofuran (5c)

[CAS: 496-16-2] Colourless liquid, 87.6 mg, 73%, ¹H NMR (600 MHz, Chloroform-*d*) δ 7.20 (d, J = 7.2 Hz, 1H), 7.11 (t, J = 7.7 Hz, 1H), 6.84 (td, J = 7.4, 1.0 Hz, 1H), 6.79 (d, J = 7.7 Hz, 1H), 4.56 (t, J = 8.7 Hz, 2H), 3.21 (t, J = 8.6 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.14, 128.06, 127.00, 125.04, 120.46, 109.49, 71.14, 29.88. The NMR data matches the reported data⁶.

6-(trifluoromethyl)-2,3-dihydrobenzofuran (5d)

[CAS: 1391072-82-4] yellow liquid, 120.8 mg, 64%, ¹H NMR (600 MHz, Chloroform-*d*) δ 7.26 (d, *J* = 8.1 Hz, 1H), 7.11 (d, *J* = 7.7 Hz, 1H), 7.00 (s, 1H), 4.63 (t, *J* = 8.8 Hz, 2H), 3.25 (tt, *J* = 8.7, 1.3 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.47, 131.33, 131.71 (q, *J* = 32.2 Hz), 125.16, 124.28 (q, *J* = 272.1 Hz), 117.65 (q, *J* = 4.2 Hz), 106.47 (q, *J* = 3.8 Hz), 71.80, 29.65. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.91.The NMR data matches the reported data⁷.

To a solution of crude **2d** in PhCl (4.0 mL) was added **L**-*tert*-Leucinol (156 uL, 1.2 mmol) and activated 3A molecule sieve (200 mg). The reaction mixture was heated to 150 °C and

stirred for 24 h. After cooling down to room temperature, the reaction mixture was diluted with EtOAc, filtered, and evaporated under reduced pressure. The crude product was purified by flash chromatography (hexane/EtOAc = 4:1, v/v) to give product **5e** as a white solid (177.1 mg, 76%).

(S)-2-((4-(tert-butyl)-4,5-dihydrooxazol-2-yl)methyl)phenol (5e)

[CAS: 1816267-52-3] ¹H NMR (600 MHz, Chloroform-*d*) δ 10.60 (br s, 1H), 7.19 (td, J = 7.7, 1.7 Hz, 1H), 7.05 (dd, J = 7.7, 1.7 Hz, 1H), 6.98 (dd, J = 8.1, 1.4 Hz, 1H), 6.83 (td, J = 7.4, 1.3 Hz, 1H), 4.25 (dd, J = 10.2, 8.8 Hz, 1H), 4.13 (t, J = 8.4 Hz, 1H), 3.89 (dd, J = 10.1, 8.0 Hz, 1H), 3.69 – 3.57 (m, 2H), 0.87 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.94, 156.60, 130.64, 129.16, 122.11, 120.25, 119.07, 74.93, 69.73, 33.65, 31.69, 25.72.The NMR data matches the reported data⁸.

To a solution of crude **2d** in 4M aqueous HCl (2.0 mL) was added *o*-Phenylenediamine (129 mg, 1.2 mmol). The reaction mixture was heated to 100 °C and stirred for 24 h. After cooling down to room temperature, a saturated aqueous NaHCO₃ solution (20 mL) was added and extracted with EtOAc three times. The combined organic layers were washed with brine then dried and evaporated under reduced pressure. The crude product was purified by flash chromatography (DCM-MeOH 20:1, v/v) to give product **5f** as a white solid (105.3 mg, 47%).

2-((1H-benzo[d]imidazol-2-yl)methyl)phenol (5f)

[CAS: 3416-07-7] ¹H NMR (600 MHz, Methanol- d_4) δ 7.50 – 7.44 (m, 2H), 7.18 – 7.13 (m, 2H), 7.12 – 7.05 (m, 2H), 6.83 (dd, J = 8.0, 1.2 Hz, 1H), 6.77 (td, J = 7.5, 1.2 Hz, 1H), 4.20 (s, 2H). ¹³C NMR (151 MHz, Methanol- d_4) δ 155.13, 154.26, 138.15, 129.97, 127.95, 123.21, 121.71, 119.36, 114.82, 114.00, 29.40. The NMR data matches the reported data⁹.

3.3. Synthesis of Coumestan and Ptercarpene Derivatives

Synthesis of compound 6

To a solution of **4** (1.044 g, 6 mmol) in THF (10.0 mL) was added lithium aluminum hydride solution (2.0 M in THF, 4.5 mL, 9 mmol) at 0 °C. The reaction mixture was heated to 50 °C and stirred for 6 h. After cooling down to room temperature, the mixture was diluted with 20 mL of Et_2O and carefully quenched with 1 M aqueous HCl at 0 °C until the solution becomes clear. The aqueous layer was extracted with Et_2O . The combined organic layers were washed with brine then dried and evaporated under reduced pressure. The crude product was used in the next step without further purification.

To a solution of crude alcohol in DCM (20 mL) was added Pyridinium chlorochromate (1.293 mg, 6 mmol, 1.0 equiv.) and Celite (1 g). The mixture was stirred at room temperature for 2 h. Upon completion, the mixture was filtered and directly purified by flash chromatography (Hexane/EtOAc = 10:1 as eluent) to give compound **6** as a colorless oil (This compound is extremely volatile).

Synthesis of compound 7

To a solution of **2i** (170 mg, 1 mmol) and **6** (190 mg, 1.2 mmol) in AcOH (4.0 mL) was added NaOAc (410 mg, 5 mmol) and Ac₂O (227 uL, 2.4 mmol). The reaction mixture was heated to 110 °C and stirred for 20 h. After cooling down to room temperature, a saturated aqueous NaHCO₃ solution (20 mL) was added and extracted with EtOAc three times. The combined organic layers were washed with brine then dried and evaporated under reduced pressure. The crude product was purified by flash chromatography (Hexane/EtOAc = 5:1, v/v) to give product **7a** as a white solid (201.5 mg, 69%).

5,7-difluoro-3-(4-fluoro-2-hydroxyphenyl)-2*H*-chromen-2-one (7a)

¹H NMR (600 MHz, Acetone- d_6) δ 9.15 (s, 1H), 8.05 (s, 1H), 7.44 (dd, J = 8.5, 6.7 Hz, 1H), 7.15 – 7.06 (m, 2H), 6.78 – 6.68 (m, 2H). ¹³C NMR (151 MHz, Acetone- d_6) δ 164.85 (dd, J = 251.6, 14.8 Hz), 164.52 (d, J = 245.7 Hz), 159.90 (dd, J = 254.9, 15.4 Hz), 159.54, 157.54 (d, J = 11.6 Hz), 155.98 (dd, J = 15.6, 7.6 Hz), 134.76, 133.34 (d, J = 15.1 Hz), 125.49, 119.36 (d, J = 3.8 Hz), 107.39 (dd, J = 19.3, 3.3 Hz), 107.06 (d, J = 21.7 Hz), 104.01 (d, J = 15.1 Hz), 125.49 24.3 Hz), 101.06 (dd, J = 26.0, 4.4 Hz), 100.72 (dd, J = 27.3, 24.3 Hz). ¹⁹F NMR (376 MHz, Acetone- d_6) δ -105.29 (d, J = 7.8 Hz), -112.73, -117.22 (d, J = 7.8 Hz). HRMS (ESI-TOF) Calcd for C₁₅H₈F₃O₃ [M+H]⁺: 293.0426; found: 293.0429.

To a solution of **7a** (0.69 mmol) in toluene (8.0 mL) was added DDQ (317.8 mg, 1.4 mmol). The reaction mixture was heated to 120 °C and stirred for 12 h. After cooling down to room temperature, the mixture was filtered through Celite and evaporated under reduced pressure. The crude product was purified by flash chromatography (Hexane/EtOAc = 10:1, v/v) to give product **7** as a white solid (152.1 mg, 76%).

1,3,9-trifluoro-6*H*-benzofuro[3,2-*c*]chromen-6-one (7)

¹H NMR (600 MHz, Chloroform-*d*) δ 8.06 (dd, J = 8.6, 5.3 Hz, 1H), 7.44 (dd, J = 8.3, 2.2 Hz, 1H), 7.28 – 7.22 (m, 1H), 7.08 (dt, J = 8.9, 2.0 Hz, 1H), 6.94 (ddd, J = 9.9, 8.8, 2.3 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.25 (dd, J = 255.3, 13.7 Hz), 162.23 (d, J = 247.8 Hz), 157.88 (dd, J = 260.0, 15.0 Hz), 157.60, 156.85, 155.93 (d, J = 14.0 Hz), 154.77 (dd, J = 15.1, 7.7 Hz), 122.45 (d, J = 10.1 Hz), 118.91, 114.13 (d, J = 23.9 Hz), 105.39, 101.75 (dd, J = 26.1, 4.5 Hz), 101.42 (dd, J = 26.9, 23.0 Hz), 100.56 (d, J = 21.3 Hz) 100.42 (d, J = 27.6 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.46 (d, J = 8.5 Hz), -112.27 (d, J = 8.4 Hz), -114.33. HRMS (ESI-TOF) Calcd for C₁₅H₆F₃O₃ [M+H]⁺: 291.0269; found: 291.0268.

Synthesis of compound 8

To a solution of **7** (0.2 mmol) in THF (1.0 mL) was added lithium aluminum hydride solution (2.0 M in THF, 0.2 mL, 0.4 mmol) at 0 °C. The reaction mixture was heated to 50 °C and stirred for 6 h. After cooling down to room temperature, the mixture was diluted with 10 mL THF and carefully quenched with 1 M aqueous HCl at 0 °C until the solution becomes clear. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine then dried and evaporated under reduced pressure. The crude product was used in the next step without further purification.

To a solution of **8a**, imidazole (40.8 mg, 0.6 mmol) and PPh₃ (104.8 mg, 0.4 mmol) in CH₃CN/Et₂O (1.0/1.0 mL) was added I₂ (101.6 mg, 0.4 mmol) at 0 °C. The mixture was stirred at ambient temperature for 12 h. Upon completion, the reaction mixture was diluted with saturated aqueous NH₄Cl solution and extracted with EtOAc three times. The combined organic layers were washed with brine then dried and evaporated under reduced pressure. The crude product was purified by flash chromatography (Hexane/EtOAc = 20:1, v/v) to give product **8** as a white solid (30.0 mg, 54% yield in two steps).

1,3,9-trifluoro-6*H*-benzofuro[3,2-*c*]chromene (8)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.33 – 7.27 (m, 2H), 7.04 (ddd, J = 9.4, 8.6, 2.3 Hz, 1H), 6.54 – 6.46 (m, 2H), 5.58 (s, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 163.14 (dd, J = 249.3, 14.8 Hz), 161.10 (d, J = 243.9 Hz), 157.28 (dd, J = 253.2, 15.1 Hz), 155.86 (dd, J = 14.8, 6.6 Hz), 155.81 (dd, J = 15.4 Hz), 145.13, 121.12, 119.03 (d, J = 9.8 Hz), 111.98 (d, J = 24.2 Hz), 107.74, 102.44 (dd, J = 17.7, 3.9 Hz), 100.96 (dd, J = 25.8, 3.8 Hz), 100.08 (d, J = 27.0 Hz), 98.06 (dd, J = 26.4, 24.8 Hz), 65.70. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 107.59 (d, J = 6.5 Hz), -114.64 (d, J = 6.4 Hz), -115.60. HRMS (ESI-TOF) Calcd for C₁₅H₈F₃O₂ [M+H]⁺: 277.0476; found: 277.0472.

4. Mechanistic Studies

4.1. Deuterium-Labeling Experiments

Pd(OAc)₂ (4.5 mg, 0.02 mmol, 2 mol%), **Ligand** (4 mol%), carboxylic acid **1d** (1.0 mmol), and K₂HPO₄ (260.0 mg, 1.5 mmol, 1.5 equiv.) were weighed and placed in an 8 mL vial. Then, CH₃CN (3.0 mL) was added and stirred for 5 min, followed by the addition of D₂O (300 uL). The vial was sealed with a screw cap and stirred at ambient temperature for 24 h. Upon completion, the reaction mixture was diluted with EtOAc and acidified with formic acid. The mixture was filtered through Celite and evaporated under reduced pressure. The ratio of deuterium was analyzed by ¹H NMR with the corresponding pure compound.

Fig. S2. ¹H NMR of H/D exchange experiment using L4

Fig. S3. ¹H NMR of H/D exchange experiment using L8

Fig. S4. ¹H NMR of H/D exchange experiment using L1

26% D 40% D

Pd(OAc)₂ (4.5 mg, 0.02 mmol, 2 mol%), L4 (7.3 mg, 0.04 mmol, 4 mol%), carboxylic acid 1d (1.0 mmol), and K₂HPO₄ (260.0 mg, 1.5 mmol, 1.5 equiv.) were weighed and placed in an 8 mL vial. Then, CH₃CN (3.0 mL) was added and stirred for 5 min, followed by the addition of H₂O₂ (35% aq., 300 uL, 3.0 equiv.) and D₂O (300 uL). The vial was sealed with a screw cap and stirred at ambient temperature for 24 h. Upon completion, the reaction was quenched with saturated Na₂SO₃ solution. The mixture was diluted with EtOAc and acidified with formic acid. The solution was filtered through Celite, and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The ratios of deuterium were analyzed by ¹H NMR with the corresponding pure compounds.

Fig. S6. ¹H NMR of C–H hydroxylation in the presence of D₂O

 $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 2 mol%), L4 (7.3 mg, 0.04 mmol, 4 mol%), carboxylic acid 1d-*d*5 (1.0 mmol), and K₂HPO₄ (260.0 mg, 1.5 mmol, 1.5 equiv.) were weighed and placed in an 8 mL vial. Then, CH₃CN (3.0 mL) was added and stirred for 5 min, followed by the addition of H₂O₂ (35% aq., 300 uL, 3.0 equiv.). The vial was sealed with a screw cap and stirred at ambient temperature for 24 h. Upon completion, the reaction was quenched with saturated Na₂SO₃ solution. The reaction mixture was diluted with EtOAc and acidified with formic acid. The solution was filtered through Celite, and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The ratios of deuterium were analyzed by ¹H NMR with the corresponding pure compounds.

Fig. S7. ¹H NMR of C–H hydroxylation of 1d-d₅

4.2. KIE Experiments

Pd(OAc)₂ (4.5 mg, 0.02 mmol, 2 mol%), L4 (7.3 mg, 0.04 mmol, 4 mol%), carboxylic acid 1d (1.0 mmol) or 1d-d5 (1.0 mmol), and K₂HPO₄ (260.0 mg, 1.5 mmol, 1.5 equiv.) were weighed and placed in an 8 mL vial. Then, CH₃CN (3.0 mL) was added and stirred for 5 min, followed by the addition of H₂O₂ (35% aq., 300 uL, 3.0 equiv.) and CH₃NO₂ (54 uL, 1 mmol). The reaction mixture was stirred at ambient temperature. A 40 uL reaction mixture was taken at 10 min, 20 min, 30 min, 40 min, 50 min, 60 min, 70 min, 80 min and immediately diluted with formic acid (10 uL) in Methanol- d_4 (500 uL). The obtained yields were plotted as concentration vs. time (Table **S8-9**) and the following initial rates were calculated.

t (min)	2d (X10 ⁻³ mmol/mL)	2d- <i>d</i> (X10 ⁻³ mmol/mL)
10	6.67	5
20	13.33	13.33
30	23.33	23.33
40	33.33	31.67
50	40	38.33
60	48.33	43.33
70	55	55
80	66.67	60
k	0.8453	0.7857

Table S8. Reaction rate of hydroxylation of 2d

Fig. S8. Reaction rate of hydroxylation of 2d

Fig. S9. Reaction rate of hydroxylation of 2d-d4

4.3. Stoichiometric Reaction

Complex 9^{10} (33.7 mg, 0.1 mmol, based on Pd), KHCO₃ (10 mg, 1.0 equiv) and L4 (18.1 mg, 1.0 equiv) or without ligand were placed in an 8 mL vial. Then, DMA (0.5 mL) was added and stirred for 10 min, followed by the addition of H₂O₂ (35% aq., 30 uL, 3.5 equiv.). The reaction was stirred at ambient temperature. The aliquots were taken at 7 min, 14 min, 21min, 60 min and quenched with formic acid. The progress was monitored by ¹H NMR. After 24 hr, the reaction was cooled down to 0 °C and quenched with formic acid (50 uL) and diluted with EtOAc. The solution was filtered through a pad of Celite then concentrated under vacuum. The yield of hydroxylated product was analyzed by ¹H NMR (Figure S10).

Fig. S10. Hydroxylation reaction of complex 9

4.4. Hydrogen Peroxide Decomposition Experiments

(a) Reaction measuring equipment

 \rightarrow H₂O + ¹/₂O₂

(b) Reaction vials with or w/o ligand after 30 min at r.t.

Fig. S11. Reaction equipment

The reactions were carried out in 25 mL Schlenk tubes under the corresponding conditions, Pd(OAc)₂ (4.5 mg, 0.02 mmol, 2 mol%), **L1** or **L4** (0.04 mmol, 4 mol%), K₂HPO₄ (261 mg, 1.5 mmol, 1.5 equiv.), Phenylacetic acid (S) (136 mg, 1 mmol), DMA (3 mL).

Each reaction mixture solution was stirred for 10 min before H_2O_2 (35% aq., 0.3 mL, 3.5 mmol, 3.5 equiv.) was added and stirred at r.t or 90 °C. The volume of oxygen was measured by gas volume measuring equipment (Fig. **S11**) and calibrated by standard volume using syringe. The amount of H_2O_2 (n) was calculated based on the volume of oxygen evolved ($PV_{O2} = nRT$, T = 298 K). The obtained average n for two trials were plotted as n vs. time (Fig. **S12-S14**).

Fig. S12. H_2O_2 decomposition experiments with L1 (Condition: Pd + K₂HPO₄ + L1 +S)

Fig. S13. H₂O₂ decomposition at 90 °C

Condition (i): K_2HPO_4 Condition (ii): $Pd + K_2HPO_4 + L1$ Condition (iii): $Pd + K_2HPO_4 + L4$ Condition (iv): $Pd + K_2HPO_4 + S$

5. References:

- 1. Schiefer, I. T. *et al.* Inhibition of Amyloidogenesis by Nonsteroidal Antiinflammatory Drugs and Their Hybrid Nitrates. *J. Med. Chem.* **54**, 2293-2306 (2011).
- Wang, H. F. *et al.* Nickel-Catalyzed Reductive Csp²–Csp³ Cross Coupling Using Phosphonium Salts. *Org. Lett.* 23, 8183-8188 (2021).
- Jin, M., Ren, W., Qian, D. W. & Yang, S. D. Direct Allylic C(sp³)–H Alkylation with 2-Naphthols via Cooperative Palladium and Copper Catalysis: Construction of Cyclohexadienones with Quaternary Carbon Centers. *Org. Lett.* 20, 7015-7019 (2018).
- Cheng, X. F. *et al.* Pd(II)–Catalyzed Enantioselective C–H Activation/C-O Bond Formation: Synthesis of Chiral Benzofuranones. *J. Am. Chem. Soc.* 135, 1236-1239 (2013).
- Ameen, D. & Snape, T. J. Developing the Scope of O–C Aryl Migrations: Exploring Amide Substrates as Potential Precursors for Asymmetric Reactions. *Eur. J. Org. Chem.* 2014, 1925-1934 (2014).
- 6. Asai, S., Kato, M., Monguchi, Y., Sajiki, H. & Sawama, Y. Cyclic ether synthesis from diols using trimethyl phosphate. *Chem. Commun.* **53**, 4787-4790 (2017).
- Liu, J. H. *et al.* Copper-Catalyzed Reductive Cross-Coupling of Nonactivated Alkyl Tosylates and Mesylates with Alkyl and Aryl Bromides. *Chem.-Eur. J.* 20, 15334-15338 (2014).
- Biosca, M., Magre, M., Coll, M., Pamies, O. & Dieguez, M. Alternatives to Phosphinooxazoline (t-BuPHOX) Ligands in the Metal-Catalyzed Hydrogenation of Minimally Functionalized Olefins and Cyclic beta-Enamides. *Adv. Synth. Catal.* 359, 2801-2814 (2017).
- Wahlgren, C. G. & Addison, A. W. Synthesis of Some Benzimidazole-Derived Pyridine-Derived and Imidazole-Derived Chelating-Agents. *J. Heterocyclic. Chem.* 26, 541-543 (1989).

 Giri, R. & Yu, J. Q. Synthesis of 1,2-and 1,3-Dicarboxylic Acids via Pd(II)-Catalyzed Carboxylation of Aryl and Vinyl C–H Bonds. J. Am. Chem. Soc. 130, 14082-14083 (2008).

NMR Spectra of 1al

NMR Spectra of 2a

lz-4-89-6-f.1.fid

NMR Spectra of 2d

NMR Spectra of 2h

lz-4-89-8-f.1.fid

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -2: r1 (ppm)

NMR Spectra of 21

NMR Spectra of 2m

NMR Spectra of 2n

NMR Spectra of $\mathbf{2q}$

NMR Spectra of 2t

NMR Spectra of 2u

NMR Spectra of 2y

NMR Spectra of 2aa

NMR Spectra of 2ab'

NMR Spectra of 2ae

NMR Spectra of 2af

NMR Spectra of 2ag

lz-4-82-19-f1.2.fid

	I

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -25 f1 (ppm)

NMR Spectra of 2aj

NMR Spectra of 2ak

NMR Spectra of 2al

S106

S107

NMR Spectra of 4g

NMR Spectra of 4h

S111

S112

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 f1 (ppm) NMR Spectra of **40**

S124

S125

NMR Spectra of 4s

NMR Spectra of 4v

S131

NMR Spectra of 5c

NMR Spectra of 5d

NMR Spectra of 5d

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

NMR Spectra of 7a

1z-5-40-1.2.fid

1z-5-47-f22

