
PNAS Template for Supporting Information1

This PNAS template for Supporting Information (SI) may be used to organize your supporting material. Once formatted,2

this first page should be deleted by removing the \instructionspage command. The template is intended to provide3

a clearly organized PDF file that will ensure readers can easily navigate to sections or specific figures and tables. Movie files or4

large datasets can be presented as separate files. Further information is available in the PNAS Author Center.5

Using the template6

Specify the title, author list, and corresponding authors with the \title, \author and \correspondingauthor commands.7

The cover page will be automatically generated with the relevant description of the SI, by the \maketitle command.8

Figures should be placed on separate pages with legends set immediately below each figure. Table titles should be set9

immediately above each table. Note that tables extending beyond the width of the page can be included in the PDF or provided10

as separate dataset files. Oversized/nonstandard page sizes are accepted as part of your SI Appendix file.11

References cited in the SI text should be included in a separate reference list at the end of this SI file: (? ) and (? ).12

Supporting information for Brief Reports is limited to extended methods, essential supporting datasets, and videos (no13

additional tables or figures). Supporting figures and tables are not allowed for Brief Reports.14

Submitting SI15

Delete this first page by removing the \instructionspage command, and then save your completed SI file as a PDF for16

submission. Further submission instructions are available here.17

https://www.pnas.org/authors/submitting-your-manuscript
https://www.pnas.org/page/authors/submission#preparation


18

Supporting Information for19

Supporting Information for Dynamic Gardner crossover in a simple glass20

Qinyi Liao, Ludovic Berthier, Hai-Jun Zhou and Ning Xu21

Qinyi Liao.22

E-mail: qinyi.liao.phy@gmail.com23

Ludovic Berthier.24

E-mail: ludovic.berthier@umontpellier.fr25

Hai-Jun Zhou.26

E-mail: zhouhj@itp.ac.cn27

Ning Xu.28

E-mail:ningxu@ustc.edu.cn29

This PDF file includes:30

Supporting text31

Figs. S1 to S732

Qinyi Liao, Ludovic Berthier, Hai-Jun Zhou and Ning Xu 1 of 10



Supporting Information Text33

State-following analysis for ultrastable glasses. We compare the results using the state-following protocol used in earlier work34

to the results in the main text for ultrastable glass states. Specifically the state-following protocol is used from the equilibrium35

states of ϕg = 0.860, and it is compared to the ultrastable states prepared at (ϕg = 0.860, Zs = 200, ts = 218 × 100) used in the36

main text. As shown in Fig. S1, the two protocols give consistent results. In both cases, the long-time limits of cage-relative37

MSD ∆ and mean-squared clone distances 〈∆ab〉 are roughly equal when Z < ZG ≈ 103 and deviate from one another upon38

increasing the pressure further.39

Therefore, the Gardner crossover using the protocols of ultrastable glass samples agrees well with the result obtained by the40

state-following protocol for corresponding metastable equilibrium glasses.41

Complex dynamics at high pressures. To better characterise the crossover to the complex dynamics in arbitrary protocols, we42

compute the evolution of the probability for the clone distance to be smaller than the typical cage size,43

F (∆ab ≤ 〈∆〉) =
∫ 〈∆〉

0
d∆ab P (∆ab). [1]44

Here the mean-squared cage size 〈∆〉 can be measured from the plateau value of ∆(tw, t), and it captures the averaged size45

of the basins at a given Z condition, and P (∆ab) is the probability distribution function of clone mean-squared distances.46

For simple glasses in the absence of aging relaxation, P (∆ab) is approximately Gaussian with the mean value ∆ab ≈ 〈∆〉,47

corresponding to F ≈ 0.5, as shown by the results for ultrastable glasses at Z = 200 and Z = 600 in Fig. S2(c). On the other48

hand, if the dynamics is dominated by aging diffusion dynamics, most of the clones jump out of the initial basin and explore49

different portions of the landscape. As a result, F (tw) decreases to a smaller value as more clone distances become larger. This50

occurs when following ordinary and marginal glasses at relatively low pressures, see Figs. S2(a, b). Upon compression, all three51

glasses to high enough pressures, the dynamics becomes slow, accompanying the emergence of a complex landscape, leading52

to the overall decrease of F (tw), as shown in Fig. S2. Meanwhile, as some clones cross some barriers and fall into the same53

more stable sub-basins, F (tw) grows for a long time. As shown by the results at high pressures in Fig. S2, the clone dynamics54

of ordinary glasses and marginal glasses is analogous to the case of ultrastable glasses, and can thus be used to determine a55

dynamic Gardner crossover.56

Robustness of Gardner physics. We study the dynamic Gardner crossover by compressing the ordinary glasses produced57

at shorter ts. As an example, we show the result of the glass prepared using the parameters of ϕg = 0.600, Zs = 100 and58

ts = 210 × 100. As shown in the main text, the dynamics of representative glass exhibits strong structural relaxations, and the59

plateau of the MSD ∆(t) is nearly observed indicating the formation of transient cages. We employ these highly unstable60

glasses as our samples and compress them at various pressures as in the main text. In Fig. S3(a), we plot the evolution of the61

probability distribution of mean-squared clone distances P (∆ab) at Z = 400, from which one can see that P (∆ab) develop a62

peak centered at 〈∆〉 with time. It suggests a dynamic Gardner crossover for this protocol. We then compute the cumulative63

probability F (tw) to determine threshold pressure. As shown by Fig. S3, when increasing Z larger than ZG ≈ 200, F (tw) turns64

to increase over time which is qualitatively similar to the results of more stable glasses in Fig. S2. We thus conclude that65

Gardner physics is considerably robust against structural relaxation in hard disk glasses.66

Evidence for hierarchical dynamics. In this section, we analyze the correspondence between sampling the glass landscape67

and aging dynamics for ordinary glasses by focusing on individual samples. We study representative samples prepared from68

compressing independent configurations at φg = 0.600 to Zs = 100 for ts = 218 × 100, using Nc = 100 clones for each sample.69

The dynamic Gardner crossover for such ordinary glasses is estimated at ZG ≈ 300. For the system size N = 1024, we70

observe strong sample-to-sample fluctuations. The aging behaviors are roughly classified into three categories within the time71

window ∼ 3× 107, as illustrated in Fig. S4. The overall amplitude of the aging dynamics varies from one sample to another,72

corresponding to distinct evolution of the distribution of clone displacement P (∆ab).73

To better reveal the hierarchical structure of the landscape, we indicate the three characteristic mean-squared cage sizes74

〈∆〉 for the protocols at Z = Zs = 100, Z = ZG = 300, and Z = 800. As seen in Fig. S4(d), P (∆ab) for the first sample75

develops a bimodal structure with increasing tw, with two peaks centered at 〈∆〉(Z = 800) and 〈∆〉(Z = 300). This suggests76

the emergency of smaller clusters of clones, where the typical distance between within each cluster is 〈∆〉(Z = 800), while the77

average distance between clusters is 〈∆〉(Z = 300).78

As shown in the main text, P (∆ab) for the second sample develops a tail up to 〈∆〉(Z = 100), meaning that the whole basin79

selected by the initial state at Zs = 100 remains dynamically accessible. Correspondingly, this sample shows stronger aging80

dynamics, compare to Figs. S4(a, b).81

The third sample, shown in Figs. S4(c, f) exhibits the strongest aging dynamics among the three cases, and the clone82

distances can significantly exceed 〈∆〉(Z = 102), implying the existence of structural relaxation beyond the initial basin. Note83

that this classification is empirical since the simulation duration is limited. When tw is long enough, all samples should resemble84

the third example. Nevertheless, there are growing peaks at the small distances near 〈∆〉(Z = 800) at long times in all cases,85

indicating that some clones remain close to one another, which is indicative of Gardner physics.86

We next visualise the topological structure of the landscape detected by the clones for the three samples at Z = 800. We87

plot the heat maps of clone distances ∆ab for the states in Fig. S4 in Fig. S5. The choice of clone ordering is irrelevant to the88
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structure of the data and is only useful for illustrative purposes. The current choice is based the clustering order. In the first89

sample, two major clusters form at intermediate time scales, and one of them shrinks at longer tw as clones eventually end in90

the more stable sub-basin. This is similar to the situation seen when compressing the ultrastable glasses at Z > ZG.91

By contrast, the situation for the second and third samples is more complicated, since the time scales of aging events in92

different glass basins are close. The heatmap reveals the presence of independent basins (explored via aging relaxation) in93

which a hierarchical Gardner structure emerges, see Figs. S5(b, c). These hierarchical heat maps reveal the intricate structure94

underlying the broad distributions in Figs. S4(e, f).95

Susceptibility analysis for stable states. We consider the glass states prepared by compressing the equilibrium glasses of96

ϕg = 0.820 > ϕMCT ≈ 0.795 at ts = 218 × 100 and different Zs = 105, 104, 103, 300 and 102. The Gardner crossover is found97

to occur near ZG(ϕg = 0.820) ≈ 200 when using the standard state-following scheme. Thus, the glasses produced at Zs ≥ 20098

are marginally stable.99

When we make clones at the pressure of Z = Zs, as in the main text, the corresponding susceptibility has the behaviour100

shown in Fig. S6(c). For Z = 102 < ZG, χAB(tw) reaches a small value χ∗AB ∼ 3 after a time scale tw ∼ 104. By contrast, the101

susceptibility for marginal glasses of Z ≥ ZG grows over the entire time window, owing to the slow dynamics in the presence102

of small barriers. We conclude that the susceptibility analysis presented in the main text provides results consistent with103

the state-following analysis used in previous studies when the latter can be used. In Fig. S6(a), we report the long-time104

distributions P (∆ab) for the same data. In line with the behavior of χAB , P (∆ab) is Gaussian at Z = 102. Upon compressing105

to Z ≥ ZG, there are activated events in the Gardner region. As a result, P (∆ab) extends to larger ∆ab with respect to the106

Gaussian distributions of short time vibrations. We also display the organization of the clones for (Z = 103, tw = 218 × 100) for107

a representative sample of (Zs = 103) in Fig. S6(b).108

In summary, the analysis of marginal glasses following the analysis proposed in the main text leads to qualitatively similar109

findings as for ordinary glasses, even though the structural relaxation is highly suppressed for the marginal states.110

Susceptibilities upon approaching jamming. In the main text, we show that the susceptibility χAB extracted from the evolution111

of ordinary glasses at Z = Zs grows with increasing pressure. Here we report the dependence of χAB(tw) on the density for112

ordinary glasses prepared at fixed (ϕg = 0.600, Zs = 102). When rapidly compressing these fluid states to Zs > ZMCT , the113

system falls out of equilibrium and undergoes evident densification at long times. Hence ts controls the density of ordinary114

glasses. In Fig. S7, we show the evolution of χAB(tw) for the initial states generated at ts = 0 − 221 × 100. One can see115

that χAB(tw) takes small values for short ts. With increasing the time ts, the stability, and density increase, the structural116

relaxations are less pronounced, and the long-time susceptibility becomes larger.117
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Fig. S1. The long-time cage-relative MSD ∆ for tw = t = 217 × 100 (blue) and the cage-relative mean-squared clone distances 〈∆ab〉(tw = 217 × 100) (black) as a
function of pressure. The points are measured from the protocols described in the main for ultrastable glasses with (ϕg = 0.860, Zs = 200, ts = 218 × 100), and the lines
are the corresponding data for state-following equilibrium glasses with ϕg = 0.860.
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Fig. S2. Probability that the clone distance is smaller than the mean-squared cage size as the function of waiting time. The protocols are the same as in the main text where
the systems are prepared by compressing equilibrium states at ϕg = 0.600 in (a), 0.820 in (b) and 0.860 in (c) to Zs = 200 for a time ts = 218 × 100), resulting in
ordinary, marginal and ultrastable glasses. In all cases, F increases with tw at high enough pressures, corresponding to falling into sub-basins. The crossovers to these
dynamics are estimated at ZG ≈ 500, 400, and 103.
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Fig. S3. (a) Evolution of the distributions of mean-squared cage-relative distances between clones P (∆ab) at Z = 400 for the less stable samples compressed from the
equilibrium states of φg = 0.600 on the condition of (Zs = 102, ts = 210 × 100) shown in the main text. (b) The cumulative probability for the clone distance being smaller
than the cage size as the function of waiting time. The states are respectively generated at Z = 100, 150, 200, 300 and 400 using the samples. The crossover is estimated at
ZG ≈ 200.
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Fig. S4. (a-c) The cage-relative MSDs ∆(tw, t)s for the protocols of following three individual ordinary glass samples of (ϕg = 0.600, Zs = 100, ts = 218 × 100)
at a intermediate pressure higher than the crossover pressure Z = 800 > ZG ≈ 300. Nc = 100 clones are used for each of the three samples. (d-f) The related
probability distributions of clone displacement P (∆ab)s. Here the results shown in the same column correspond to the same protocol. The values of mean-squared cage sizes
∆EA(Z = 800) ≈ 2.5× 10−4, ∆EA(Z = 300) ≈ 7× 10−4 and ∆EA(Z = 100) ≈ 2× 10−3 are denoted with the vertical dashed lines.
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Fig. S5. Heat maps constructed with Nc = 100 clones for ∆ab between clones copied from different ordinary glass samples taken at (ϕg = 0.600, Zs = 102, ts =
218 × 100) are shown in different rows. Here the following pressure is Z = 800 as in Fig. S4. For each column, the waiting time after crunches is fixed and varies from
28 × 100 to 218 × 100 as indicated by labels. For each sub-graph, the axes and the color represent the clone indexes and ∆ab respectively.
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Fig. S6. (a) Probability distributions of mean-squared clone distances P (∆ab) for the protocol of various Z = Zs using ts = 218 × 100 and (Ns = 100, Nc = 10) at
tw = 218 × 100. From left to right, the pressures are Z = Zs = 105, 104, 103, 300 and 102. The short-time vibration behaviors are conveyed by dotted curves acting as
references. At Zs = 105, tw = 218 × 100 is not long enough to form the well-defined cages. We thus are not able to present the Gaussian-like reference for Zs = 105. (b)
Heat map for a representative sample with (ϕg = 0.820, Zs = 103, ts = 218 × 100) at Z = Zs and tw = 218 × 100. (c) Evolution of the corresponding susceptibility
χAB(tw) for the same protocols in (a).
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Fig. S7. Evolution of susceptibility χAB(tw) for (ϕg = 0.600, Z = Zs = 102) at different preparation times ts. The corresponding packing fractions are ϕs ≈
0.8081, 0.8320, 0.8346, 0.8355 and 0.8361 at ts = 27 × 100, 210 × 100, 213 × 100, 218 × 100 and 221 × 100 respectively. With the densification at longer ts,
ordinary glasses become more stable and show larger χ∗

AB .
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