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Figure 1 (adapted from (1). Timeline showing some of the key steps that have progressively 

contributed to the development of a genetic and immunological theory of infectious 

diseases, prior to and after 1955, grouped into five main parallel fields, from top to bottom:  

1) Germ and genetic theories of infectious diseases (red). Following the establishment of the 

germ theory of disease between 1865 and 1870 (Louis Pasteur) (2), and its radical version 

with Koch’s postulates in 1882 (Robert Koch) (3), it became widely accepted that life-

threatening fevers in animals and humans were infectious. Chief among Koch’s postulates 

was the notion that a pathogen must be found in all patients with a given disease and not in 

healthy individuals. Once established, this postulate made it difficult to appreciate and 

understand the importance of the evidence of both latent (non-replicating, dormant germs 

in tissues of asymptomatic individuals; Clemens von Pirquet and followers) (4) and 

unapparent (replicating germs in tissues or bloodstream of asymptomatic individuals; Charles 

Nicolle) (5) silent infections. Human geneticists proposed a genetic solution to the problem 

of asymptomatic infection. Karl Pearson (6) and other population geneticists and 

biometricians, in parallel with Archibald Garrod (7) and other clinical and biochemical 

geneticists, proposed that the germline genetic background of the host influences or 

determines susceptibility or resistance to any given microbe. JBS Haldane proposed that 

infectious diseases had played a major role in natural selection (8). Various epidemiological 

and familial approaches were conducted in the first half of the 20th century, supporting this 

hypothesis. The most remarkable and convincing investigations were probably twin studies 

comparing monozygotic and dizygotic twins for concordance for a particular infectious 

phenotype, in particular for tuberculosis (TB) (9). Adoption studies, which compare the cause 



of death of patients with that of their biological and foster parents, which are equally 

powerful, were conducted later (10). Segregation analyses were conducted from the same 

period onward (11-15). 

2) Plant and animal genetic studies (blue). Plant biologists and geneticists also reported early 

in the 20th century that resistance or susceptibility to infection can be genetically determined 

(16, 17). From the 1920s onwards, other researchers approached the question of the host 

genetics of infectious diseases from the angle of animal models, including mice and rabbits. 

Their results led to a similar conclusion, as some strains were vulnerable to the infections 

tested, whereas others were not (18, 19). These were experimental, as opposed to natural, 

infections. The experiments were powerful. By the late 1930s, the stage was set for major 

progress and a transition to molecular genetics, building on multiple independent lines of 

thought and investigation. Molecular discoveries began in mice in 1986, with the 

identification, by molecular complementation, of the first monogenic infection susceptibility 

gene, Mx, mutations of which underlie influenza virus infections (20, 21, Annu Rev Virol 2018), 

followed by the discoveries, by positional cloning, of the Bcg (Nramp1) (22, 23), Cmv (Ly49h) 

(24), and Lps (TLR4) (25) loci. In parallel, superb studies unraveled the monogenic basis of 

various infections in various plant species (26, 27), including, in particular, the role of the Pto 

and RPM1 genes in resistance to Pseudomonas in tomato and Arabidopsis thaliana, 

respectively (28, 29). More recently, the genetic basis of immunity to infection has been 

studied in diverse species, including the Caenorhabditis elegans worm and the Drosophila 

melanogaster fly (30-34). Remarkably, germline deleterious mutations of some genes, such 

as antimicrobial peptides, seem to impair host defense of Drosophila to specific infections 

(30-32). 



3) Population-based human genetic studies (green). At the population level, the field of 

human genetics of infectious diseases began with the discovery, by Allison in 1954, that the 

sickle cell trait (HbS) provides significant protection against severe forms of P. falciparum 

malaria (35). Classical genetic epidemiology studies, particularly segregation analyses 

followed by genome-wide linkage studies, identified major loci for common infectious 

conditions, such as schistosomiasis and leprosy (12, 36-38). Very few candidate gene 

association studies were successful, and only a handful reported odds ratios (ORs) for 

developing the disease >2 that were replicated in independent populations; among the most 

remarkable is the association of some HLA class I alleles with AIDS progression, with hazard 

ratios for protection of about 0.3 (39). Finally, genome-wide association studies (GWAS) met 

with variable success, depending on the infectious disease, with many loci  identified in 

leprosy (40, 41) with ORs below 2, and, more recently, malaria (42), with ORs for protection 

above 0.5, except for the HBB locus. The most remarkable achievement of GWAS in infectious 

diseases was probably the identification, towards 2010, of IL28B variants (IL28B encodes the 

type III IFN-3) strongly associated with the clearance of hepatitis C virus (43) (OR for 

clearance ~6). More recently, GWAS in COVID-19 have identified several common variants 

associated with severe pneumonia, the most significant being located on chromosome 3 with 

an OR ~2 (44-46). 

4) Patient-based human genetic studies (orange). In the early 1950s, pediatricians and 

clinical geneticists described the first inborn errors of immunity (IEIs) — then referred to as 

primary immunodeficiencies (PIDs) — as rare, Mendelian, early-onset conditions underlying 

both multiple, recurrent, and opportunistic infections, and overt, or at least detectable, 

immunological abnormalities. The blueprint for conventional IEI is widely agreed to be the 

description of Bruton’s X-linked recessive (XR) agammaglobulinemia in 1952 (47). Severe 



congenital neutropenia had, however, been described earlier, in 1950, in children with severe 

staphylococcal and other bacterial infections and congenital neutropenia, two phenotypes 

that co-segregated as an autosomal recessive (AR) trait (48, 49). The first IEI conferring 

predisposition to a single infectious agent was, however, reported even earlier, in 1946, when 

Wilhelm Lutz described epidermodysplasia verruciformis (EV) as an AR predisposition to skin-

tropic viruses (50) identified in 1978 by Gérard Orth to be weakly virulent human 

papillomaviruses (HPV) (51). Immunologists did not consider EV to be an IEI, because of the 

lack of a detectable leukocyte abnormality, until the discovery of EV-causing genes from 2002 

onward led to the gradual recognition that keratinocytes contribute to host defense (52, 53). 

Defects of the membrane attack complex of complement (underlying infections with 

Neisseria), and X-linked lymphoproliferation (XLP, Epstein-Barr virus) were described later, 

from different angles, as XLP, like EV, was described as a Mendelian and unexplained 

(idiopathic) infection (54, 55), whereas complement defects were found serendipitously in 

sporadic cases of Neisseria disease (56, 57). X-linked recessive deficiency of properdin and the 

alternative pathway of complement activation was first described in 1982 (58). Mendelian 

resistance to infectious agents was first detected in the 1970s, with the Duffy antigen 

receptor for chemokines (DARC) and P. vivax malaria (59), the genetic basis of which was 

elucidated in 1995 (60). It was followed, in the mid-1990s, by the discovery of the link 

between C-C chemokine receptor 5 (CCR5) variants and resistance to human 

immunodeficiency virus-1 (HIV-1) (61, 62, 63, Science). The first mutated gene underlying a 

conventional IEI, ADA, was reported in patients with severe combined immunodeficiency in 

1985 (64). The first mutated gene underlying an isolated infection, IFNGR1, was identified in 

patients with MSMD in 1996 (65, 66). Since 2007, some rare and sporadic infectious diseases 

(e.g. HSE) have been shown to be caused by rare monogenic defects, with incomplete 



penetrance (67, 68). Since 2001, rare monogenic defects have also been shown to underlie 

some common infectious diseases in rare patients (e.g. TB in 2001 (69) and COVID-19 in 2020 

(70)). Since 2018, monogenic causes of infection have been found in a greater proportion of 

patients with TB (due to homozygosity for a common TYK2 allele) (71-73) or COVID-19 (due 

to hemizygosity for various rare TLR7 alleles) (67, 74).  

 

5) Patient- and population-based immunological studies (magenta). Acquired 

immunodeficiency and ensuing infections, due to chemotherapy for malignancies or 

immunosuppression for organ transplant or autoimmune conditions became widely 

documented from the 1960s onward (35, 75, 76, Immunopharmacology 2020). Another step 

was taken from the 1980s onward, with the human immunodeficiency virus pandemic (77). 

Auto-Abs against four cytokines (type I and II IFNs, IL-6, and IL-17A/F) have been shown to 

underlie infectious phenocopies of the corresponding inborn errors of cytokines or their 

response pathways (78, 79). The best characterized are probably auto-Abs neutralizing type 

II IFN, which underlie a phenocopy of MSMD and, more rarely, TB (79, 80). Auto-Abs 

neutralizing type I IFNs, first described in the early 1980s, were long thought to be clinically 

silent, except for a 77-year-old woman with disseminated zoster studied by Ion Gresser (81, 

82). They were found in almost all patients with autoimmune polyendocrine syndrome type 

1 (APS-1) (83, 84). Since 2020, they have been shown to be strong determinants of at least 

15% of cases of life-threatening COVID-19 pneumonia (85-87) and a third of adverse reactions 

to the live-attenuated yellow fever vaccine (88). More recently, they have also been shown 

to account for ~20% of hypoxemic breakthrough COVID-19 cases in fully vaccinated subjects 

(89), and ~5% of cases of severe influenza pneumonia in patients younger than 70 years (90).  
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