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Supplementary Notes 
 
Supplementary Figure Legends 
 
Figure S1. Identification and characterization of CAST I-D, related to Figure 3 
(A) Locus architectures PmcCAST I-B2 and CAST I-D. Gray rectangles show predicted ends, 
light gray genes indicate predicted homing sites. Cargo areas are summarized by a dark gray 
rectangle. Cascade components are shown in purple; adaptation module and cas3d are shown in 
lighter purple. CRISPR arrays are shown by a dark gray vertical rectangle for repeats and dark 
purple diamonds for spacers. Contigs and coordinates are indicated for CAST I-D loci (the absence 
of one of locus ends and coordinates indicates the edge of the contig). NCBI accessions of Cas10d 
proteins are written below each cas10d gene. (B) Cas10d subtree restricted to CAST I-D and close 
relatives. Local alignment of the HD nuclease catalytic sites is shown on the right of the tree and 
the presence or absence of Tn7 components is indicated. Right, structural model of CyCAST 
Cas10d colored by domain architecture. The inset shows the detailed area of the catalytic pocket. 
(C) Weblogo representation of protospacer adjacent motif (PAM) of CyCAST. PAM was 
determined by targeting a pTarget library containing protospacer adjacent motif 1 (PSP1) flanked 
by a 6N motif upstream of the protospacer with a single CyCAST protein expression vector 
(pHelper). (D) CyCAST RNA-guided insertion positions and directionality identified by deep 
sequencing with four different primer pairs. (E) Docking predictions of CyCAST TnsC (coral) 
with TniQ (green) and TnsD (pink). Insets are zoom ins of two regions of interaction between 
TnsC with TniQ and TnsD. The C-terminal portion of the TniQ core region is disordered and 
truncated compared to the corresponding regions of CAST I-D TnsD and its relatives in CAST I-
B2, suggesting that the interaction between TniQ and Cascade I-D is unstable and that TniQ serves 
as a facilitator rather than an essential scaffold for the interaction between Cascade I-D and TnsC. 
(F) Protein-mediated insertion by CyCAST in the absence of TniQ at tRNA-leu gene on target 
plasmid, as identified by deep sequencing. 
 
Figure S2. Small TniQ are associated with additional target selectors, related to Figure 4. 
(A) Structural comparison of Tn7 TnsD and CAST TniQ/TnsD proteins. TniQ are involved in 
RNA-guided transposition and partner with the with the Cas effector for RNA-guided 
transposition, whereas TnsD are involved in protein-guided transposition. Hel1, ZF, and linker 
helix are conserved in all TniQ/TnsD and are colored using the same palette as in Figure 4.  Hel2 
(shown between the two dashed lines) has two distinct folds, one colored in rainbow by secondary 
structure, has structural similarity to XRE TF and is shared between Tn7 TnsD and CAST 
TniQ/TnsD from I-B and I-D (top row), the other colored in red is found in CAST I-F TniQ/TnsD 
(bottom row). The C-terminal regions of TniQ/TnsD are partially truncated for visualization in 
TniQ/TnsD harboring long extensions that are partially shown in pink. (B) Phylogenetic tree of 
the core region of TniQ/TnsD (see Methods). Rings around the tree show the presence of a 
particular gene or a feature in the neighborhood of tniQ/tnsD within the genomic contig. From 



inner to outer ring: TniQ/TnsD protein size is shown as a bar proportional to the length of 
TniQ/TnsD, presence of tnsE is shown in red, cas effectors and cas6 genes are shown in purple, 
the presence of a gene operonized with tniQ/tnsD is shown in light green. Various known 
transposons are annotated around the tree including known CAST systems. Red boxes highlight 
areas of interest, and gene architectures of these systems are shown in D. Dual tniQ-tnsD are 
highlighted via a colored connector, where closely related proteins originate and arrive within the 
same-colored region (see Methods) (C) Left. Protein size distribution of TniQ/TnsD in single 
TniQ/TnsD systems (2905 loci; in red) and dual TniQ-TnsD systems (1029 loci; in green). From 
the 4 peaks, we defined 4 groups (delineated by dashed lines): Group 1 encompasses proteins that 
are smaller than 220aa and are mainly seen in CAST V-K systems. The second group of proteins 
range from 220aa to 400aa and encode the TniQ core region with no or only a short C-terminal 
addition, which suggests they probably cannot recognize target sites alone and need a partner to 
perform target selection. The proteins from group 3, which are the most widespread, range from 
400aa to 550aa and encode a C-terminal extension that is likely long enough to recognize target 
sites. Finally, group 4 encompasses proteins larger than 550aa and which harbor very large C-
terminal regions, suggesting they bind longer target sites and/or encode additional functions. Right. 
Protein size comparison of TniQ/TnsD in dual TniQ-TnsD systems. Y axis indicates the protein 
size of the smaller of the TniQ/TnsD tandem; X axis indicates the size of the larger one. Solid lines 
segregate the different groups by protein size. Number of occurrences is indicated for each of the 
groups.  (D) Schematics of locus architecture for systems of interest (corresponding to systems 
boxed in red in B). One example of a system harboring divergent dual TniQ-TnsD in which the 
two proteins share less than 20% of sequence identity. Five examples of systems with conserved 
candidates (in green) operonized with a tniQ/tnsD. Below the first candidate is a docking 
prediction between the candidate (light green), TnsC (coral) and TniQ (dark green). TniQ is 
truncated for visualization purposes.  

 
Figure S3. TnsE likely targets replication forks of conjugative plasmids, related to Figure 4.  
(A) Phylogenetic tree of TnsC homologs and presence of TnsE (in red). The two distinct TnsE-
containing branches are represented by Tn7 E. coli (Tn7) and Tn6022. These two groups of 
transposons harbor distinct tnsEs distantly related and only detectable by profile profile 
comparison (hhpred probability >=90) (see Methods), suggesting an ancient origin of tnsE in the 
Tn7 family. (B) Locus architecture of Tn7 (top) and Tn6022 (bottom) encoding tnsE. Below each 
locus, the predicted domain architecture of their respective TnsE proteins is shown. Both TnsEs 
have two single strand DNA binding like domains (SSBa and SSBb) in the N-terminal region and 
a double strand DNA binding domain (DBD) in the C-terminal region that has been solved 
experimentally (PDB: 5D17). The SSBs are deduced from structural modeling and structural 
mining (C and D). (C) Structural modeling of TnsE Tn7 and Tn6022 indicates similar domain 
architecture despite their low sequence similarity (8% sequence identity). (D) Structural 
superimposition of TnsE N-terminal domains (pink and orange) with PriB (light and dark blue) for 



Tn7 TnsE (left) and Tn6022 TnsE (right), suggesting TnsE contains 2 SSB domains. The second 
domain is split into three regions separated by a linker (yellow) and a domain of unknown function.  
 
Figure S4. Characterization of TnsF, related to Figures 5 and 6. 
(A) Rationale for TnsF nomenclature, as part of the progression following the known proteins 
TnsA, TnsB, TnsC, TnsD, and TnsE. We note however that TnsF has been used once previously 
to describe a protein in Tn623069 (top); however, profile domain analysis (hhpred probabilities 
>90) showed that this protein is a TnsD, rather than a previously unnamed protein. We therefore 
named the target selector we found TnsF. We note however, that TnsF has been reported in the 
literature in a Tn602229, although it was annotated as orf3, reflecting its lack of characterization. 
(B) Comparison of predicted structures of the CB1, CB2, and pCAT domains of TnsF with the 
homodimer tyrosine recombinase (Yrec) XerH structure bound to DNA. Each Yrec monomer 
contains one CB and one CAT (monomers are circled in dashed red lines). The CB and CAT 
domains of the Yrec monomer bind the attachment site and dimerize with the corresponding 
domains of another Yrec monomer. Structural similarity between CB and CAT of Yrec and CB 
and pCAT of TnsF is shown via matching secondary structural colors. Gray colored regions are 
found only in Yrec and not in TnsF. (C) Nanopore long-read sequencing to characterize the 
structure of pInsert from Acinetobacter johnsonii Tn6022 (AjTn6022). Left: Nanopore sequencing 
reads mapped to the reference sequence of an AjTn6022 simple insertion on pTarget. Right: 
Nanopore sequencing reads mapped to the reference sequence of an AjTn6022 cointegrate on 
pTarget. See also Figure 5B. (D) Sanger sequencing chromatograms for RE and LE junctions of a 
simple insertion at AjTn6022 attachment site in comM 100 bp-fragment on pTarget. “CCCGC” is 
a target site duplication (TSD). See also Figure 5B. (E) Predicted domain architectures and 
structures of AjTnsF (Tn6022) (top) and ZooTnsF (Tsy) (bottom). ZooTnsF contains a complete 
catalytic domain (CAT in purple and orange). The position of the catalytic tyrosine residue (Y535) 
is annotated in ZooTnsF and in the structure. (F) Phylogenetic tree built from TnsF homologs 
extracted from the CLANS analysis (see Methods). Rings around the tree show the presence of a 
particular gene or a feature in the neighborhood of tnsF within the genomic contig. From inner to 
outer ring: presence of comM fragments in the vicinity of tnsF in dark purple, presence of a tyrosine 
recombinase gene (yrec) in light purple, presence of tniQ in green, and presence of gene encoding 
a GIY-YIG nuclease in light blue. TnsF protein size is shown in pink as a bar proportional to its 
length.  
 
Figure S5. Characterization of ZooTsy transposition, related to Figure 6. 
(A) ZooTsy transposition assay. Left top: Schematic of the ZooTsy donor and target comM 
fragment for transposition assay in E. coli. Left bottom: Representative PCR amplicon gel images 
for upstream-end1, downstream-end2, and circularized intermediate (CI) junction products. 
pHelper contains all Tsy components (YRec, HTH, TnsF, and GIY-YIG). Right top row: 
Schematic of the Tsy CI isolation assay with a lacZɑ backbone pDonor. E. coli was transformed 
with pHelper and lacZɑ donor. 24 hours later, plasmids were prepped and used for re-



transformation. The resulting transformants were plated on blue/white selection plates. Right 
middle row: left, Representative images of E. coli colonies on blue/white selection plates; middle, 
representative gel image showing the original lacZɑ donor and isolated CI after linearization by 
NruI restriction enzyme; right, structure of the CI as characterized by nanopore long-read 
sequencing. Right bottom row: Sanger sequencing chromatograms for end1 and end2 junctions of 
the CI. (B) Schematic of transposition assay with R6K origin pDonor to isolate pInsert for 
nanopore long-read sequencing. (C) Schematic of nanopore sequencing reads analysis pipeline. 
(D) Structure of pInsert as characterized by nanopore long-read sequencing. (E) Top: Determinants 
of donor end1 for ZooTsy transposition. Representative gel images of PCR amplicons from the 
upstream-end1 (u-end1), downstream-end2 (d-end2), and CI junctions. Six donor constructs with 
different end1 lengths (hom1:12 bp, end1:135-85 bp, end2: 39 bp, hom2: 12 bp) were tested. 
Bottom: Determinants of donor end2 for ZooTsy transposition. Representative gel images of PCR 
amplicons from the u-end1, d-end2, and CI junctions. Seven donor constructs with different end2 
lengths (hom1:12 bp, end1:135 bp, end2: 39-0 bp, hom2: 12 bp) were tested. (F) Donor sequence 
determinants for ZooTsy transposition. Top: Schematic of ZooTsy donor. Bottom: Representative 
gel images showing PCR amplicons from the u-end1, d-end2, and CI junctions. Sixteen donor 
constructs with systematic combinations of four elements (hom1, end1, end2 and hom2) were 
tested. (G) Representative gel images showing PCR amplicons from the u-end1, d-end2, and CI 
junctions (see Figure 6B). (H) Requirements of tyrosine recombinase activities of YRec and TnsF 
for ZooTsy transposition activity. Quantification of u-end1 junction formation by ddPCR. 
Experiments were performed with three biological replicates. All data points are shown with an 
error bar showing standard deviation, and statistical significance was assessed by t-test; **** 
p<0.0001. 
 
Figure S6. Analysis of AjTn6022 and ZooTsy insertions, related to Figures 5 and 6. 
(A and B) Tagmentation-based tag integration site sequencing (TTISS) analysis in the absence of 
TnsF and/or presence of the pTarget for AjTn6022 (A) and ZooTsy (B). Filtered reads are mapped 
on CP011113.2 (Strain RR1, HB101 RecA+), complete genome for HB101-derived Endura 
competent cells and pTarget(AjTn6022) and pTarget(ZooTsy) sequence. (C) Insertion frequency 
of AjTn6022 into each comM gene fragment on pTarget. Twelve different comM fragments were 
tested. Ux indicates the number (x) of upstream bp in the fragment; Dy indicates the number (y) 
of downstream bp in the fragment. U0D0 has no comM fragment. (D) Insertion frequency of 
ZooTsy into each comM gene fragment on pTarget. Twenty-two different comM fragments were 
tested. Ux indicates the number (x) of upstream bp in the fragment; Dy indicates the number (y) 
of downstream bp in the fragment. U0D0 has no comM fragment. Experiments were performed 
with three biological replicates. All data points are shown with an error bar showing standard 
deviation, and statistical significance was assessed by t-test. ***, p<0.001; ****, p<0.0001; n.s., 
not significant. 
 
Figure S7. Analysis of the TnsF binding motif, related to Figure 6. 



(A) Electrophoretic mobility shift assay to assess purified AjTnsF binding to a 200-bp AjcomM 
fragment containing either the wildtype WT or mutated (various 10-bp mutation constructs) 
predicted TnsF binding motif region. (B) Electrophoretic mobility shift assay to assess purified 
ZooTnsF_Y584F binding to a 200-bp ZoocomM fragment containing either the WT or mutated 
(various 10-bp mutation constructs) predicted TnsF binding motif region. (C) Insertion frequency 
of AjTn6022 into pTarget with a 200-bp fragment of AjcomM harboring the indicated 10-bp- 
mutation in the TnsF binding motif. (D) Insertion frequency of ZooTsy into pTarget with a 200-
bp fragment of Zoo comM harboring the indicated 10-bp mutations in the TnsF binding motif. 
Experiments were performed with three biological replicates. All data points are shown with an 
error bar showing standard deviation, and statistical significance was assessed by t-test. ****, 
p<0.0001.
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