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1. Exact amounts of precursors for mechanochemical synthesis 

MAPbI3: 1.900 g of MAI (11.95 mmol) and 5.509 g of PbI2 (11.95 mmol) were milled for 50 min 

to prepare the black powder. 

MAPbI2Br1: 5.150 g MAPbI3 (8.35 mmol) and 2.000 g MAPbBr3 (4.18 mmol) were milled for 50 

min to prepare the black powder.

MAPbI1.5Br1.5: 0.867 g MAI (5.45 mmol), 0.610 g MABr (5.45 mmol), 2.512 g PbI2 (5.45 mmol) 

and 2.000 g PbBr2 (5.45 mmol) were milled for 80 min to prepare the black powder.

MAPbI1Br2: 1.733 g MAI (10.90 mmol) and 4.000 g PbBr2 (10.90 mmol) were milled for 80 min 

to prepare the red powder.

MAPbBr3: 1.525 g of MABr (13.62 mmol) and 5.000 g of PbBr2 (13.62 mmol) were milled for 

80 min to prepare the orange powder.

2. Additional PXRD data

Table S1. Experimental lattice constants for MAPbI3-xBrx (x= 0, 1, 1.5, 2, 3) extracted by refinements of the PXRD 
patterns depicted in Fig. 1a.

Lattice constant a / Å
MAPbI3 6.27 Modelled as pseudo-cubic
MAPbI2Br1 6.17
MAPbI1.5Br1.5 6.11
MAPbI1Br2 6.04
MAPbBr3 5.93

Figure S1. Experimental lattice constant a (cubic lattice) as a function of Br content x in MAPbI3-xBrx (blue dots) 
revealing a linear trend (red dotted line). The equation of the linear fit is given in the figure.
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3. Additional solid-state NMR spectroscopic data

3.1. 207Pb NMR spectroscopy

Figure S2. Experimental 207Pb MAS NMR spectra (blue), corresponding deconvolutions (red) using seven 
resonances corresponding to the different PbI6-xBrx environments (x=0, 1, …, 6: black) and the difference between 
experiment and deconvolution (grey) of MAPbI2Br1 (a), MAPbI1.5Br1.5 (b) and MAPbI1Br2 (c). The chemical shifts for 
the PbI6-xBrx and the corresponding populations resulting from the fit are summarized in Tab. S2 to S4. As literature 
data1–3 show CSA effects are minor and where therefore neglected for the fits.

As the refocusing time of 10 µs used for the 207Pb spin echo experiments (Fig 2 and Fig S2) is 
significantly shorter than the 207Pb spin spin (T2) relaxation determined for MAPbI3 of ~40 µs4 
or in MAPbBr3 (T2*=70 ms)5, we do not expect significant changes in the 207Pb NMR spectra 
due to T2 relaxation. Thus, we evaluate the 207Pb spectra as pseudo-quantitative and compare 
the experimental integrals of PbI6-xBrx environments (x=0, 1, …, 6) to the ones expected from 
the statistics for a random distribution of halides (Tab. S2-S4). This is supported by the fact 
that the halide composition obtained from XRD data matches those obtained from the NMR 
spectra for each halide composition.

Table S2. 207Pb chemical shift and resulting normalized integrals for each of the seven fitted PbI6-xBrx resonances 
in Fig. S2a, as well as the corresponding theoretical probabilities for the case of a random halide distribution 
(calculated using a binomial function) in MAPbI2Br1.

Site Shift / ppm Experimental 
integrals

Theoretical 
integrals for a 
random dist.

Difference

[PbI6] 1500 10 9 1
[PbI5Br1] 1370 25 27 -2
[PbI4Br2] 1180 31 33 -2
[PbI3Br3] 1010 23 22 1
[PbI2Br4] 860 7 8 -1
[PbI1Br5] 710 3 2 1
[PbBr6] 500 1 0 1
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Table S3. 207Pb chemical shift and resulting normalized integrals for each of the seven fitted PbI6-xBrx resonances 
in Fig. S2b, as well as the corresponding theoretical probabilities for the case of a random halide distribution 
(calculated using a binomial function) in MAPbI1.5Br1.5.

Site Shift / ppm Experimental 
integrals

Theoretical 
integrals for a 
random dist.

Difference

[PbI6] 1450 7 2 5
[PbI5Br1] 1320 11 9 2
[PbI4Br2] 1160 18 23 -5
[PbI3Br3] 1000 28 31 -3
[PbI2Br4] 850 20 23 -3
[PbI1Br5] 690 13 9 4
[PbBr6] 450 4 2 2

Table S4. 207Pb chemical shift and resulting normalized integrals for each of the seven fitted PbI6-xBrx resonances 
in Fig. S2c, as well as the corresponding theoretical probabilities for the case of a random halide distribution 
(calculated using a binomial function) in MAPbI1Br2.

Site Shift / ppm Experimental 
integrals

Theoretical 
integrals for a 
random dist.

Difference

[PbI6] 1400 2 0 2
[PbI5Br1] 1300 4 2 2
[PbI4Br2] 1120 8 9 -1
[PbI3Br3] 990 26 23 3
[PbI2Br4] 800 29 34 -5
[PbI1Br5] 650 16 27 -11
[PbBr6] 420 16 9 7
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3.2. 14N MAS NMR spectroscopy

Figure S3. Experimental 14N MAS NMR spectra (blue), corresponding deconvolutions (red) of MAPbI3 (a), 
MAPbI2Br1 (b), MAPbI1.5Br1.5 (c) and MAPbI1Br2 (d). The deconvolution was done using a quadrupolar line shape 
for a) with the values summarized in Tab. S5 and Czjzek6,7 distributions (compare Fig. S5) for the mixed halide 
samples in b-d). The difference between experiment and deconvolution is shown in black. 



6

Figure S4. Experimental 14N MAS NMR spectrum (blue) of MA0.15FA0.85PbI2.55Br0.45 and corresponding 
deconvolution using two Czjzek distributions with the values for MA (red) and FA (black) summarized in Tab. S5.

Figure S5. Czjzek distributions of the asymmetry paramter ηQ and quadrupolar coupling CQ used for the fits in 

Figs S3 and S4. From these distributions the average quadrupolar coupling over the probabilities are |𝐶̅𝑄|
extracted and summarized in Tab. S5.
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Table S5. Fitting parameters of the 14N quadrupolar line shape depicted in Fig. S3a and the average  from the |𝐶̅𝑄|
Czjzek distribution fits in Fig. S3 and Fig. S4.

 / kHz|𝐶̅𝑄| η
MAPbI3 55.6± 0.15 0.0
MA0.15FA0.85PbI2.55Br0.45 MA 83.5 (σ = 42) 

(FA: 244, σ = 123)
-

MAPbI2Br1 125.2 (σ = 63) -
MAPbI1.5Br1.5 136.7 (σ = 70) -
MAPbI1Br2 127.8 (σ = 65) -
MAPbBr3 0* -

* from literature ref. 8

3.3. 1H DQ NMR spectroscopic data

Figure S6. 1H MAS NMR spectra (recorded at 40 kHz MAS and 850 MHz Lamor frequency) of MAPbI3, MAPbI1.5Br1.5 
and MAPbBr3. The 1H chemical shift of the NH3

+-group shows a slight downfield shift with increasing Br content 
from 6.32 ppm for pure MAPbI3 to 6.46 ppm for pure MAPbBr3.

Table S6. Experimental average dipolar couplings of the mixed halide and parent perovskites and corresponding 
lattice constants. 

Experimental  / Hz

𝐷̅
2𝜋

Lattice const. / Å

MAPbI3 3232 ± 154 6.269
MA0.15FA0.85PbI2.55Br0.45* 3920 ± 290* 6.30*
MAPbI2Br1 4286 ± 199 6.168
MAPbI1.5Br1.5 4578 ± 279 6.111
MAPbI1Br2 4256 ± 260 6.041
MAPbBr3 3493 ± 111 5.927

* from Ref. 9
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4. First-principles CQ calculations

The time-averaged EFG is calculated from the MD trajectory for x = 1.5. The EFG is calculated 
from the self-consistent potential using the method of Petrilli et al.10 as implemented in VASP. 
The EFG tensor of each 14N is averaged over the MLFF-MD trajectory and, after this averaging, 
rotated onto its principal axes to obtain CQ and η, using the quadrupole moment from the 
Pyykkö compilation.11 The EFG tensors are calculated at intervals of 1 ps, in the 4 × 4 × 4 
supercell, requiring a total of 355 calculations. In order to keep the computational load 
manageable we use the PBE functional12 instead of the SCAN that was used for the ML 
potential. We used the PBE PAW potentials “Pb”, “I”, “Br”, “C”, “N”, “H” from the VASP 
database, so a Pb potential with only 4 unfrozen (valence) electrons. As we do not need to 
optimize structures and focus on the N electronic structure, this is a reasonable approximation.

Averaging over the 64 14N in the supercell, we obtain: , , 𝑃̅2
𝑄 = 161 𝑘𝐻𝑧 𝐶̅𝑄 = 44 𝑘𝐻𝑧

, . The effect of time-averaging over the trajectory is considerable: for a |𝐶̅𝑄| = 146 𝑘𝐻𝑧 𝜂̅ = 0.55

purely static, i.e., single time, configuration we observe , . In Figure 𝐶̅𝑄 = 441 𝑘𝐻𝑧 |𝐶̅𝑄| = 763 𝑘𝐻𝑧

S7 the distribution of  is plotted, together with a Czjzek13,14 distribution with the same |𝐶𝑄|

average  of 146 kHz. The agreement is very reasonable, given that we only have a sample |𝐶̅𝑄|
of 64 nuclei. For an ideal Czjzek distribution one should have  and . The 𝐶̅𝑄 = 0 𝑘𝐻𝑧 𝜂̅ = 0.610

statistical quality of our simulation data does not allow to discriminate between the Czjzek 
distribution and possible subtle deviations thereof.

Figure S7. Distribution of CQ (blue) obtained from time-averaged EFG calculations on the MLFF-MD trajectories 

compared to a Czjzek distribution (red) with the same .|𝐶̅𝑄| = 146 𝑘𝐻𝑧
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5. Machine Learning Force Field Method
5.1 MLFF: MAPbI3-xBrx supercells

The MD simulations have been performed on 4x4x4 supercells containing 64 formula units as 
shown in Figures S8 and S9. Only the halide ordered systems are shown. The random systems 
have been generated out of the pure iodine systems, by randomly replacing iodine ions with 
bromine ions unit the desired fraction x is reached. 

Figure S8. The pure halide x=0 (left) and x=3 (right) supercells.

Figure S9. The halide ordered x=1.5 supercells: structure A (left) and B (right).

5.2 MLFF: Calculation of average dipolar coupling and it’s relation to second moment

We follow the approach as presented by Goc et. al. to numerically calculate the van Vleck 
second moment for the dipolar interactions of the protons. Experimentally the average dipolar 
interaction  is extracted from double-quantum built-up curves following the approach by 𝐷̅

Saalwächter. The van Vleck second moment is defined as [ref. 15 page 112]:

𝑀2 =
3
4(𝜇0

4𝜋)2𝛾4
𝑙ℏ2𝐼(𝐼 + 1)∑

𝑘

(1 ‒ 3cos2 𝜃𝑗𝑘)2

𝑟 6
𝑗𝑘

For a spin I=1/2 and taking the average value of 4/5 for the factor   in a powder, (1 ‒ 3cos2 𝜃𝑗𝑘)2

we get:

𝑀2 =
9

20(𝜇0

4𝜋)2𝛾4
𝑙ℏ2∑

𝑘

1

𝑟 6
𝑗𝑘

=
9

20
𝐷2
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As our second moment calculations include both powder averaging and averaging over the 
dynamics in the MD trajectory, we get  from the calculated :𝐷̅ 𝑀2

𝐷 =  
20
9

𝑀2

5.3 MLFF: Fitting Dintra and Dinter 

We have fitted the function  for each of the seven systems as function of 𝐷𝑖𝑛𝑡𝑟𝑎 = (𝛼(1/𝑡)1/𝑛 + 𝛽)
simulation time (t) by a root-mean-square fit. Weight factors have been applied that are linear 
proportionate to the simulation time length. 

x α / Hz*ps^n β / Hz n
A_ordered 2.45 *105 211.0 3.38
B_segragated 3.62 *105 7910 1.46
0.000 3.79 *105 1.70 *10-5 2.41
1.125 2.03 *105 1.183 3.79
1.500 4.98 *105 3857 1.47
1.875 7.26 *105 4541 1.09
3.000 3.19 *105 1.44 *10-2 2.08

We have fitted the function  for each of the seven systems in the same 𝐷𝑖𝑛𝑡𝑒𝑟 = (𝛼(1/𝑡)1/𝑛 + 𝛽)
manner as described for .𝐷𝑖𝑛𝑡𝑟𝑎

x α / Hz*ps β / Hz n
A_ordered 5.89 *104 3628 1.0
B_segregated 6.05 *104 3763 1.0
0.000 7.28 *104 3334 1.0
1.125 4.08 *104 3522 1.0
1.500 6.69 *104 3558 1.0
1.875 4.19 *104 3655 1.0
3.000 5.04 *104 3930 1.0

5.5 Local halide cage description and order parameter

Figure S10. The number of iodines in each of the three planes is used to characterize the local ‘cage’.

In an attempt to characterize the halide distributions over these cages with just a few numbers, 
we introduce an order parameter O=[Nxy,Nxz,Nyz], containing the number of iodine ions 
(N=0...4) in each of the three cartesian planes through the center of the cage as defined in 
Figure 4c. This order parameter has been added to each of the 64 environments shown in 
Figures S13-S17. We further calculate the standard deviation  of its three components, thus 𝜎𝑆𝐵

expressing the inhomogeneity and asymmetry of the halide coordination of a MA molecule in 
just a single number. We observe that in general the distributions corresponding to 
configurations that have a large   (like [124]) show strongly preferred orientations, whereas 𝜎𝑆𝐵
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configurations with a zero  (like [222]) show a close to flat distribution of the C-N axis 𝜎𝑆𝐵

orientation, i.e., there is hardly any preferential orientation of the MA cations in such 
environments. Figs. S16-S18 explore these findings in more detail. They assess the correlation 
between  and the corrugation of the polar distribution .𝜎𝑆𝐵 𝜎𝑃

Figure S11. Average variance of the order parameter observed in the infinitely large supercell computed 
numerically. The entropy of mixing of a binary gas is a good approximate of this function.

We have numerically calculated the function  in the limit of very large supercell sizes and 𝜎𝑆𝐵(𝑥)
plotted the result in Figure S11. Here, we applied the following (Python) routine:

numx=100 
num=10000 
x=np.linspace(0,1,numx) 
XYZstd=np.zeros(numx) 
for k in range(frac.shape[0]): 
  for l in range(num): 
    XYZ=np.zeros(3) 
    for m in range(3): 
      for n in range(4): 
        p=rnd.uniform(0,1) 
        if p<=x[k]: 
          XYZ[m]=XYZ[m]+1 
    XYZstd[k]=XYZstd[k]+np.std(XYZ) 
XYZstd=XYZstd/num

For every x we generate 10,000 random environments [XYZ], calculate the variance of their 
order parameter and average them. As shown in the figure, the mixing entropy of a binary gas 

 multiplied by 1.045 is a good approximate of this numerical ‒ 𝑚1(𝑥ln (𝑥) + (1 ‒ 𝑥)ln (1 ‒ 𝑥))

result. Note that for the mixing entropy formula the fraction expressed in the range x=[0..1] is 
used.

5.6 MLFF: Polar distributions of MA molecules

The orientation of each of the 64 molecules in the supercell is extracted as function of MD 
simulation time. Figure S12 illustrates the  reference frame in which the orientation is {𝜃,𝜙}
expressed. 
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Figure S12. The cartesian reference frame is aligned along the Pb-X-Pb bonds of the (pseudo)-cubic perovskite 
framework. The direction of the C-N axis (p) is expressed in polar coordinates .{𝜃,𝜙}

The polar distribution plots presented in the main paper as well as in this document are a 2D 
histogram of the  as they occur during the MD trajectory. These distributions are {𝜃,𝜙}
normalized and the color scale is set consistent throughout all plots. 

Figures S13-S17 show the distribution of each molecules in the:

 Ordered x=1.5 structure A trajectory
 Ordered x=1.5 structure B trajectory
 Random x=1.125 trajectory
 Random x=1.500 trajectory
 Random x=1.875 trajectory

In general, we observe that the MA molecules in the ordered structures show more highly 
preferred orientations as compared to the randomly distributed halide structures. This means 
that the molecules in these systems will rotate less isotropically and will therefore result in a 
higher Dintra contribution to the 1H-1H dipolar coupling as compared to the random structures.

Note that the 64 distributions are ranked based on the level of anisotropy of the local cage that 
the particular molecule is in. This level is calculated by the standard deviation of the order 
parameter. For example, Figure S15 starts with a [333] environment with  =0 and running 𝜎𝑆𝐵

up to [404] with  =1.89.𝜎𝑆𝐵
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Figure S13. Polar distributions and order parameters of the ordered x=1.5 structure A trajectory.

Figure S14. Polar distributions and order parameters of the ordered x=1.5 structure B trajectory.
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Figure S15. Polar distributions and order parameters of the random x=1.125 structure trajectory.

Figure S16. Polar distributions and order parameters of the random x=1.5 structure trajectory.
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Figure S17. Polar distributions and order parameters of the random x=1.875 structure trajectory.

5.7 MLFF: Dependence of the corrugation of the polar distributions on the order 
parameter

We will now assume that a large part of the symmetry and corrugation of the polar distribution 
corresponding to a particular molecule can be related to its local environment of the 12 nearest 
surrounding halides. We propose the following two physical parameters to model the 
corrugation level of the polar distribution:

i) Local concentration of the number of Iodines over Bromines [0..1]
ii) Anisotropy level of the local cage [0..3.5]

We have tested the correlation between these two parameters and the variance of the polar 
distribution. This variance is a direct measure for the corrugation of the polar distribution. As a 
correlation test the Pearson correlation coefficient is calculated. The resulting coefficients are 
summarized in Table S7. A value of –1 or 1 would indicate perfect (anti-)correlation. A 
coefficient of zero indicates no correlation, as in the case of two random sets of numbers. What 
the coefficients in Table S7 show is that the local concentration does not correlate with the 
level of corrugation. For the three different supercells different signs of the Pearson coefficients 
are observed. However, the level of anisotropy does correlate with the level of corrugation, and 
shows positive Pearson coefficients that increase with the global Bromide fraction. Note that 
these correlation coefficients are small, but statistically significant. It illustrates that the 
composition of the local cage is important, but the level of anisotropy is not fully sufficient to 
predict the polar distribution of a molecule. 
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Table S7. Pearson correlation coefficients describing the level of correlation between the corrugation of the polar 
distribution of individual molecules with the i) concentration of Iodine x and ii) the level of anisotropy in the local 
surrounding halide cage.

x in MAPbI3-xBrx Local concentration x Level of Anisotropy
1.125 -0.110 0.073
1.500 0.065 0.274
1.875 -0.147 0.387

Figure S18. Variance of the polar distributions versus i) local concentration (blue) and ii) variance of the order 
parameters   (red) of the random x=1.125 structure trajectory.(𝜎𝑆𝐵)

Figure S19. Variance of the polar distributions versus i) local concentration (blue) and ii) variance of the order 
parameters  (red) of the random x=1.5 structure trajectory.(𝜎𝑆𝐵)

Figure S20. Variance of the polar distributions versus i) local concentration (blue) and ii) variance of the order 
parameters  (red) of the random x=1.875 structure trajectory.(𝜎𝑆𝐵)
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The least-mean-square fitted red linear curve in Figures S18-S20 clearly shows that there is a 
correlation between the corrugation, and therefore the level of non-isotropy, of the polar 
distribution of the molecule depending on the local environment that it is in. Therefore, it is a 
legitimate descriptor to model the level of non-isotropy of the polar distribution. As expected, 
we also see that this simple descriptor (the local order parameter O) is not perfect. There is a 
large spread in the level of corrugation of polar distributions assigned to environments that 
have the same  value. Note that O does not describe how the I and Br ions are distributed 𝜎𝑆𝐵

in the cartesian planes, nor does not take into account the type of the nearest neighbour 
environments. Of course, all these effects could be included, but it will greatly increase the 
complexity of the order parameter.

5.8 MLFF: Reorientation dynamics of MA molecules

The autocorrelation functions of the molecular orientations p(t) as sketched in Figure S12 are 
calculated for all molecules in the random structures. This is done in the same manner as 
explained in Ref. 16. The autocorrelation functions (blue lines) are shown in Figures S22-S24 
and fitted with a double exponential (orange lines). The fit is very good for all molecules in the 
x=1.125 and 1.5 random systems, and sufficient in the x=1.875 system. Distributions of all fit 
parameters are shown in Figure S21. In all cases we observe a fast ‘thermal’ decorrelation 
process of between 0.5-3 ps and a slow ‘flipping’ decorrelation process of between 3-30 ps.

Figure S21. Distributions of parameters obtained from fitting each of the 64 autocorrelation functions corresponding 
to the molecules in in the x=1.125, 1.500 and 1.875 randomly mixed halides structures.
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Figure S22. Autocorrelation functions (blue) and their fits (orange) of each of the 64 molecules in the x=1.125 
randomly mixed halides structure.

Figure S23. Autocorrelation functions (blue) and their fits (orange) of each of the 64 molecules in the x=1.5 randomly 
mixed halides structure.
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Figure S24. Autocorrelation functions (blue) and their fits (orange) of each of the 64 molecules in the x=1.875 
randomly mixed halides structure.
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