Supplementary Material

A method for the efficient evaluation of substrate-based cholinesterase imaging probes for Alzheimer's disease

Sultan Darvesh^{1,2,3}, Scott Banfield¹, Maeve Dufour¹, Katrina L. Forrestall¹, Hillary Maillet¹, G. Andrew Reid¹, Dane Sands¹, Ian R. Pottie^{3,4}

¹Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada ²Department of Medicine (Geriatric Medicine & Neurology), Halifax, Nova Scotia, Canada ³Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia,

Canada

⁴Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada

Corresponding Author:

Sultan Darvesh Room 1308 Camp Hill Veterans' Memorial Building 5955 Veterans' Memorial Lane Halifax, Nova Scotia, Canada B3H 2E1 Telephone: (902) 473-2490 Fax: (902) 473-7133 Email: sultan.darvesh@dal.ca

Table of Contents:

A. Synthetic Procedures and Spectroscopic Data:

Aryl Thiocholine Derivatives

- (5) 2-[(*p*-Fluorobenzoyl)thio]-1-(trimethylammonio)ethane Iodide
- (6) 2-[(p-Iodobenzoyl)thio]-1-(trimethylammonio)ethane Iodide

Alkyl N-Methylpiperidinyl Derivatives

- (7) S-(1-Methylpiperid-4-yl) Ethanethioate Hydrochloride
- (8) 4-Acetoxy-1-methyl-1-piperidinium Chloride
- (9) S-(1-Methylpiperid-4-yl) Butanethioate Hydrochloride
- (10) 4-Butyroxy-1-methyl-1-piperidinium Chloride

Aryl N-Methylpiperidinyl Derivatives

- (11) (1-Methylpiperidin-4-yl) p-Iodobenzenecarbothioate Hydrochloride
- (12) 4-(p-Iodobenzoyloxy)-1-methyl-1-piperidinium Chloride
- (13) S-(1-Methylpiperidin-4-yl) p-Fluorobenzenecarbothioate Hydrochloride
- (14) 4-(p-Fluorobenzoyloxy)-1-methyl-1-piperidinium Chloride

Alkyl N-Methylpyrrolidinyl Derivatives

- (15) (3S)-S-(1-Methylpyrrolidin-3-yl) Ethanethioate
- (16) (3S)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride

- (17) (3R)-S-(1-Methylpyrrolidin-3-yl) Ethanethioate
- (18) (3R)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride
- (19) ((3S)-1-Methylpyrrolidin-3-yl) Butanethioate
- (20) (3S)-3-Butyroxy-1-methyl-1- pyrrolidinium Chloride
- (21) ((3R)-1-Methylpyrrolidin-3-yl) Butanethioate
- (22) (3R)-3-Butyroxy-1-methyl-1- pyrrolidinium Chloride

Aryl N-Methylpyrrolidinyl Derivatives

- (23) ((3S)-1-Methylpyrrolidin-3-yl) p-Iodobenzenecarbothioate Oxylate
- (24) (3S)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride
- (25) ((3S)-1-Methylpyrrolidin-3-yl) p-Fluorobenzenecarbothioate Oxylate
- (26) (3S)-3-(p-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride
- (27) ((3R)-1-Methylpyrrolidin-3-yl) p-Iodobenzenecarbothioate Oxylate
- (28) (3R)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride
- (29) ((3R)-1-Methylpyrrolidin-3-yl) p-Fluorobenzenecarbothioate Oxylate
- (30) (3R)-3-(p-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride

References

B. Figures for histochemistry

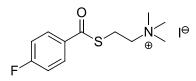
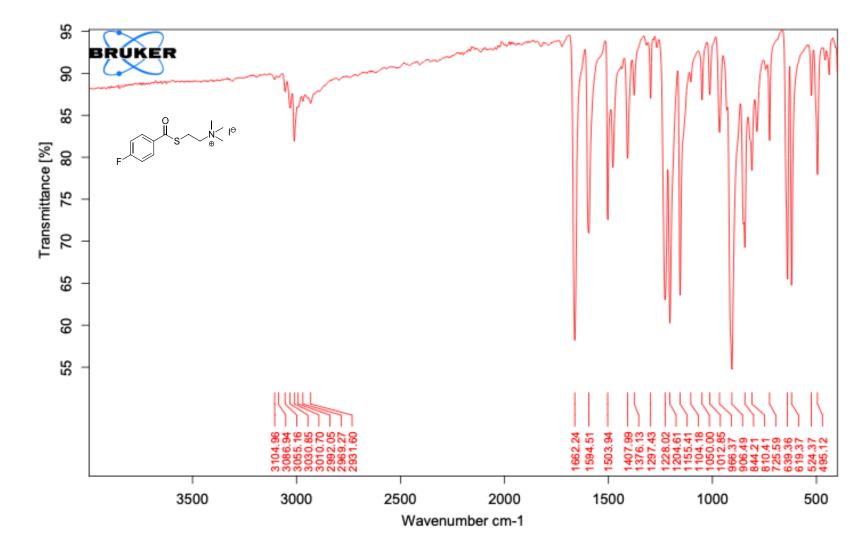

Figure S1. Human brain tissues.

Figure S2. Mouse brain tissues

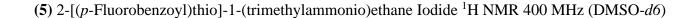
A. Synthetic Procedures and Spectroscopic Data:

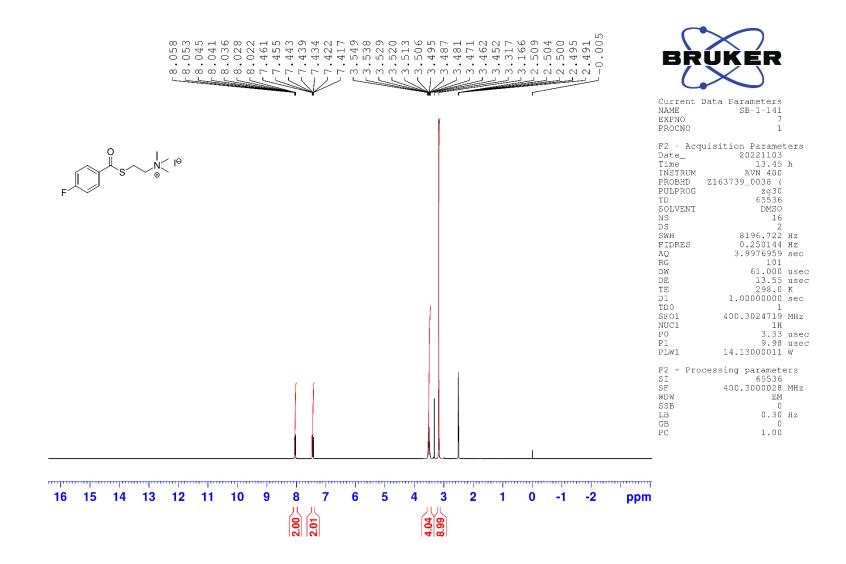
Aryl Thiocholine Derivatives

(5) 2-[(*p*-Fluorobenzoyl)thio]-1-(trimethylammonio)ethane Iodide:

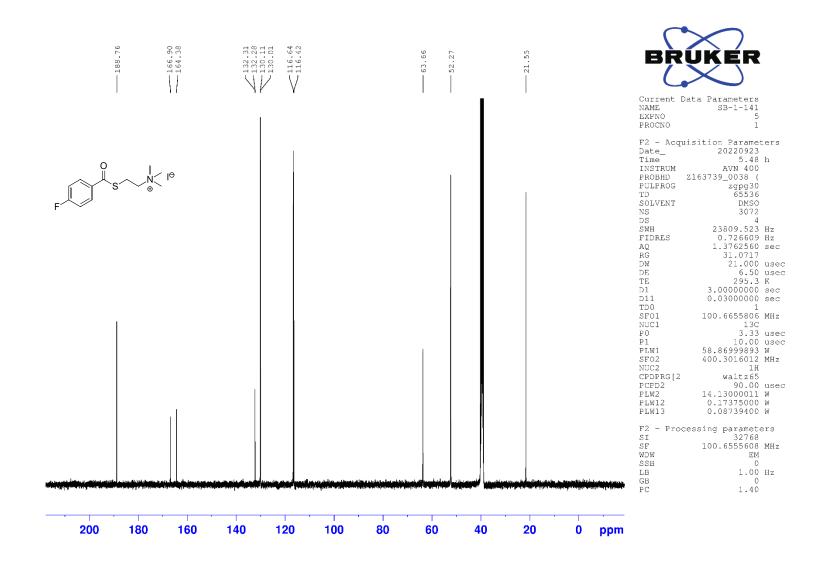

Synthesis:

2-[(p-Fluorobenzoyl)thio]-1-(trimethylammonio)ethane Iodide: 2-(Dimethylamino) ethanethiol hydrochloride (1.23 g, 8.66 mmol) was suspended in anhydrous dichloromethane (17 mL) and cooled in an ice bath. Triethylamine (3.0 mL, 21.7 mmol) was added dropwise; followed by 4-dimethylaminopyridine (0.106 g, 0.866 mmol) and 4-fluorobenzoyl chloride (1.2 mL, 10.4 mmol). The mixture was warmed to room temperature and stirred for 16 hrs where a white precipitate formed. After this stirring time, the reaction was gravity filtered to remove the precipitate, and the filter cake was washed with dichloromethane (2×10 mL). The filtrate was washed with 0.04 N HCl_(aq) (50 mL), saturated NaHCO_{3(aq)} (50 mL), and H₂O (50 mL). The organic layer was dried over Na₂SO₄, gravity filtered, and the filtrate was concentrated *in vacuo* to afford 1.58 g of an off-white solid. This material (1.51 g, 6.65 mmol) was used immediately without purification. It was dissolved in anhydrous THF (10 mL) and the reaction was cooled to 0°C using an ice bath. Iodomethane (0.50 mL, 7.98 mmol) was added dropwise to the above solution resulting in the formation of a white precipitate. The mixture was warmed to room temperature and stirred for 2 hrs at this temperature. The precipitate was then collected via suction filtration, and the filter cake was washed with Et₂O (100 mL). The filter cake was

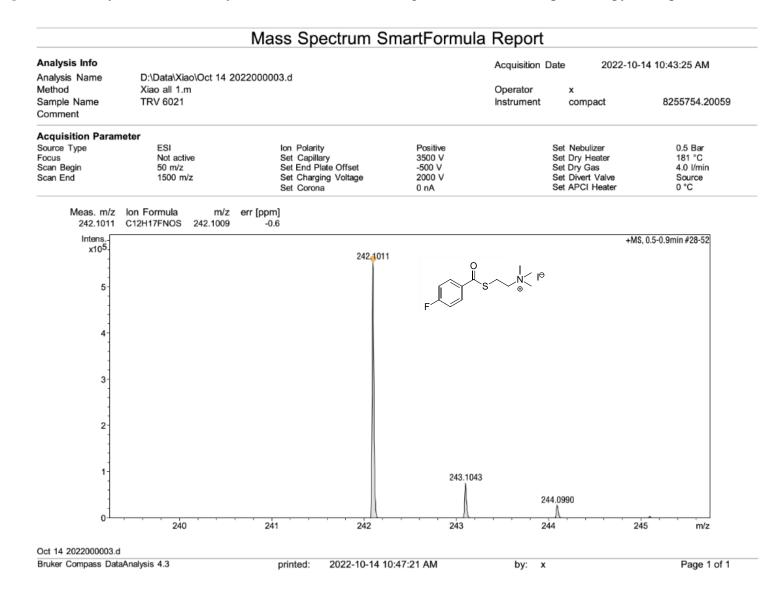

transferred to a round bottom flask and placed under a vacuum (1mm Hg) for 5 hrs to afford 2-[(*p*-fluorobenzoyl)thio]-1-(trimethylammonio)ethane iodide (1.92 g, 60% yield) as a white solid.


Spectroscopic data:

MP_(THF): 197–199°C; IR(ATR) 3105, 3087, 3011, 2969, 2932, 1662, 1595, 1205, 906 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ 8.06-8.02 (m, 2H), 7.46-7.42 (m, 2H), 3.55-3.45 (m, 4H), 3.17 (s, 9H); ¹³C NMR (100.7 MHz, DMSO-*d*6) δ 188.8 (0), 165.6 (d, ¹*J*_{*C,F*} = 253.5 Hz, 0), 132.3 (d, ⁴*J*_{*C,F*} = 2.8 Hz, 0), 130.1 (d, ³*J*_{*C,F*} = 9.7 Hz, 1), 116.5 (d, ²*J*_{*C,F*} = 22.3 Hz, 1), 63.7 (2), 52.3 (3), 21.6 (2); LRMS (ESI⁺): 242.1 (M⁺); ¹⁹F NMR (376.6 MHz, DMSO-*d*6) δ -103.8; HRMS (ESI⁺): calculated for C₁₂H₁₇FNOS⁺: 242.1009 amu; found for C₁₂H₁₇FNOS⁺: 242.1011 amu; HPLC purity at 230 nm (25% CH₃CN : 75% CH₃OH, retention time: 1.837 mins): 99%.

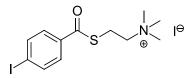


(5) 2-[(*p*-Fluorobenzoyl)thio]-1-(trimethylammonio)ethane Iodide IR(ATR)



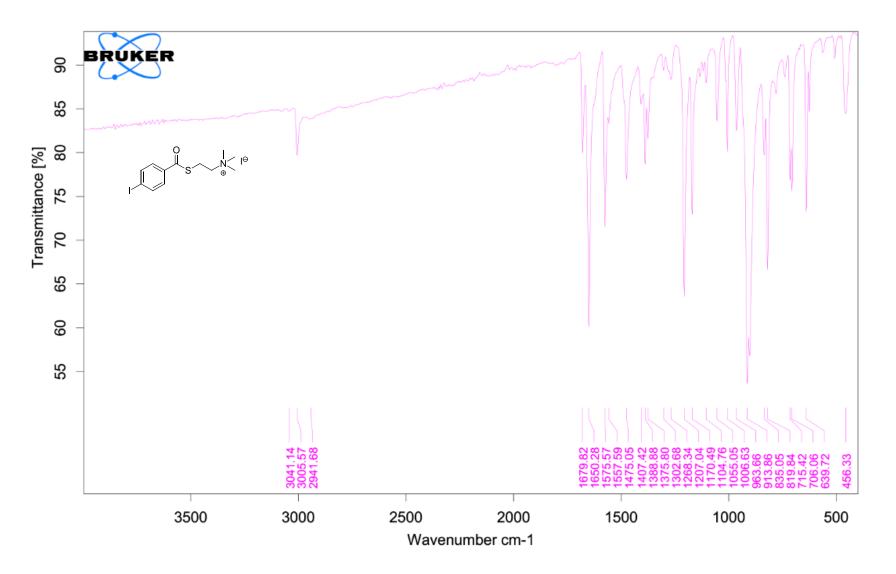
(5) 2-[(*p*-Fluorobenzoyl)thio]-1-(trimethylammonio)ethane Iodide ¹³C NMR 100 MHz (DMSO-*d6*)

8


(5) 2-[(*p*-Fluorobenzoyl)thio]-1-(trimethylammonio)ethane Iodide High Resolution Mass Spectroscopy (ESI, positive mode)

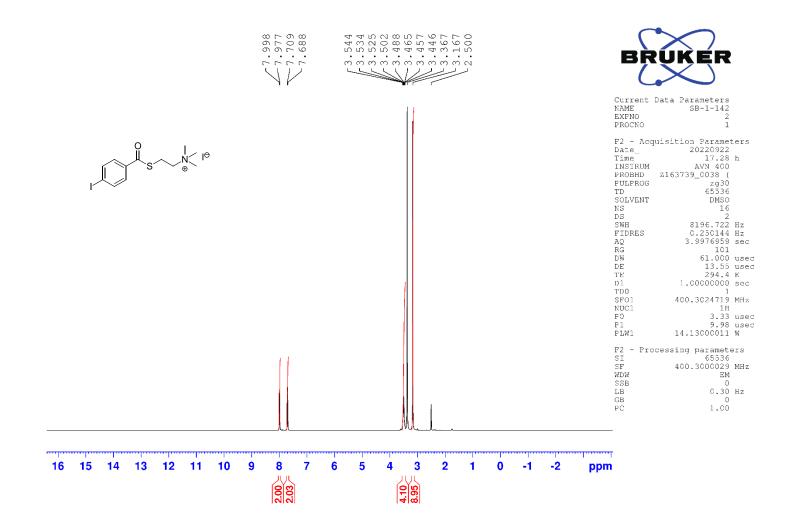
(5) 2-[(*p*-Fluorobenzoyl)thio]-1-(trimethylammonio)ethane Iodide HPLC Trace

(6) 2-[(*p*-Iodobenzoyl)thio]-1-(trimethylammonio)ethane Iodide:

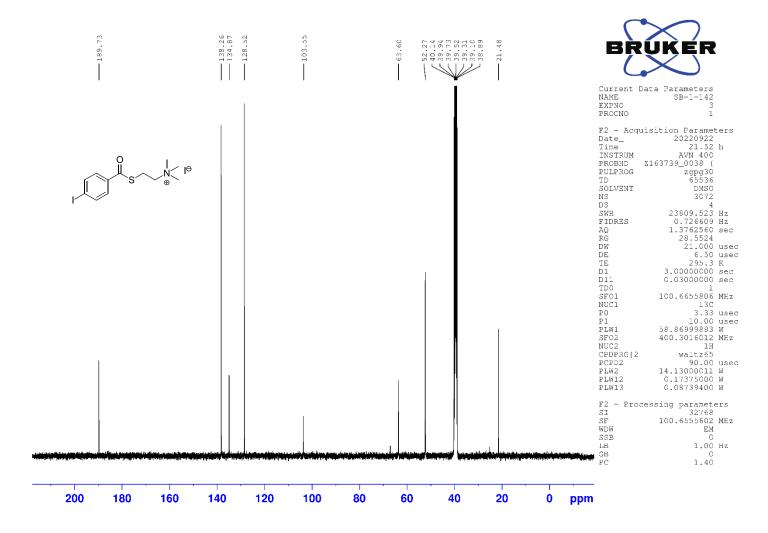


Synthesis:

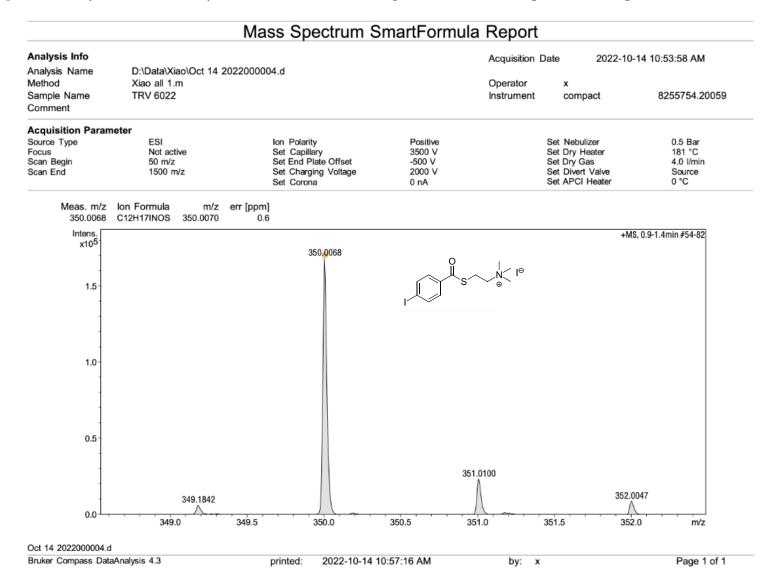
2-[(p-Iodobenzoyl)thio]-1-(trimethylammonio)ethane Iodide: 2-(Dimethylamino)ethanethiol hydrochloride (1.16 g, 8.20 mmol) was suspended in anhydrous dichloromethane (16 mL) and cooled in an ice bath. Triethylamine (2.9 mL, 20.8 mmol) was added dropwise; followed by 4dimethylaminopyridine (0.100 g, 0.82 mmol) and 4-iodobenzoyl chloride (2.62 mL, 9.84 mmol). The mixture was warmed to room temperature and stirred for 16 hrs where a white precipitate formed. After this, the reaction was gravity filtrated to remove the precipitate, and the filter cake was washed with dichloromethane (2×10 mL). The filtrate was washed with 0.04 N HCl_(aq) (50 mL), saturated NaHCO_{3(aq)} (50 mL), and H₂O (50 mL). The organic layer was dried over Na₂SO₄, gravity filtered, and the filtrate was concentrated in vacuo to afford 2.33 g of an offwhite solid. This material (2.33 g, 6.95 mmol) was used immediately without purification. It was dissolved in anhydrous THF (10 mL) and cooled in an ice bath. Iodomethane (0.52 mL, 8.34 mmol) was added dropwise to the above solution resulting in the formation of a white precipitate. The mixture was warmed to room temperature and stirred for 2 hrs at this temperature. The precipitate was then collected *via* suction filtration, and the filter cake was washed with Et₂O (100 mL). The filter cake was transferred to a round bottom flask and placed under a vacuum (1 mm Hg) for 5 hrs to afford 2-[(p-iodobenzoyl)thio]-1-(trimethylammonio)ethane iodide (3.21 g, 82% yield) as a white solid.

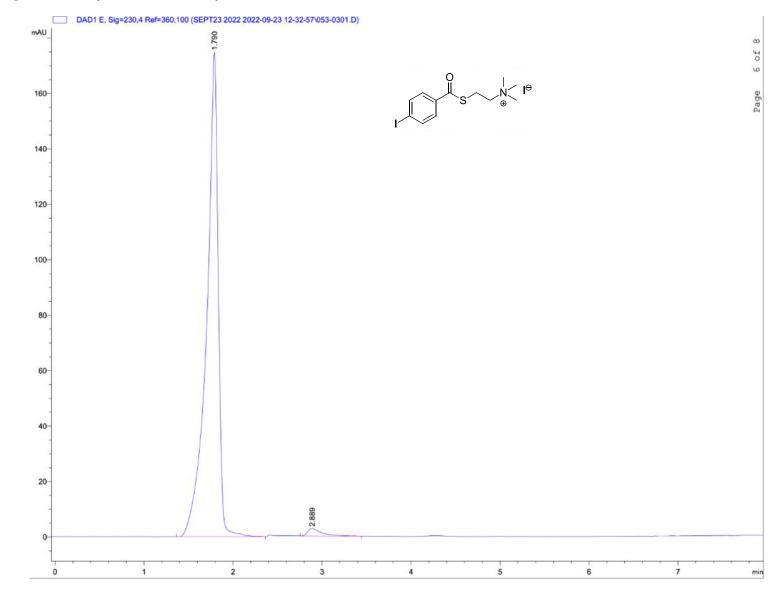

Spectroscopic data:

 $MP_{(THF)}: >250^{\circ}C; IR(ATR) 3041, 3006, 2942, 1680, 1650, 1576, 1207, 913, 835, 820 \text{ cm}^{-1}; {}^{1}\text{H} NMR (400 \text{ MHz}, DMSO-$ *d6* $) & 8.00-7.98 (m, 2H), 7.71-7.69 (m, 2H), 3.54-3.45 (m, 4H), 3.17 (s, 9H); {}^{13}\text{C} NMR (100.7 \text{ MHz}, DMSO-$ *d6* $) & 189.7 (0), 138.3 (1), 134.9 (0), 128.5 (1), 103.5 (0), 63.6 (2), 52.3 (3), 21.5 (2); LRMS (ESI⁺): 350.0 (M⁺); HRMS (ESI⁺): calculated for <math>C_{12}H_{17}INOS^{+}$: 350.0070 amu; found for $C_{12}H_{17}INOS^{+}$: 350.0068 amu; HPLC purity at 230 nm (25% CH₃CN : 75% CH₃OH, retention time: 1.790 mins): 98%.



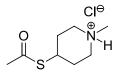
(6) 2-[(*p*-Iodobenzoyl)thio]-1-(trimethylammonio)ethane Iodide IR(ATR)


(6) 2-[(*p*-Iodobenzoyl)thio]-1-(trimethylammonio)ethane Iodide ¹H NMR 400 MHz (DMSO-*d6*)



(6) 2-[(*p*-Iodobenzoyl)thio]-1-(trimethylammonio)ethane Iodide ¹³C NMR 100 MHz (DMSO-*d*6)

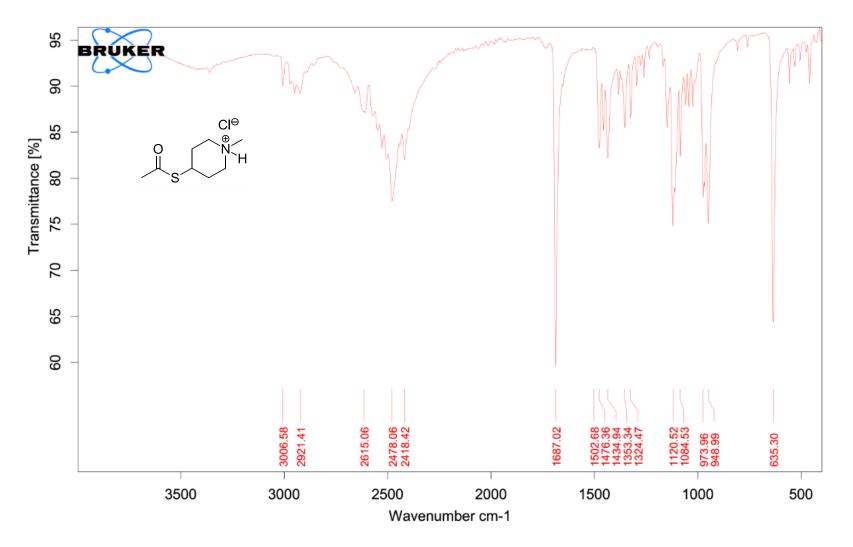
(6) 2-[(*p*-Iodobenzoyl)thio]-1-(trimethylammonio)ethane Iodide High Resolution Mass Spectrum (ESI, positive mode)



(6) 2-[(*p*-Iodobenzoyl)thio]-1-(trimethylammonio)ethane Iodide HPLC

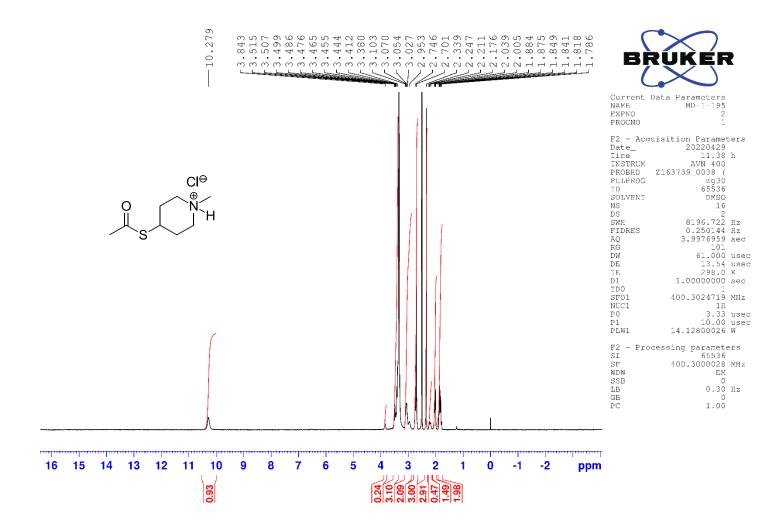
Alkyl N-Methylpiperidinyl Derivatives

(7) S-(1-Methylpiperid-4-yl) Ethanethioate Hydrochloride

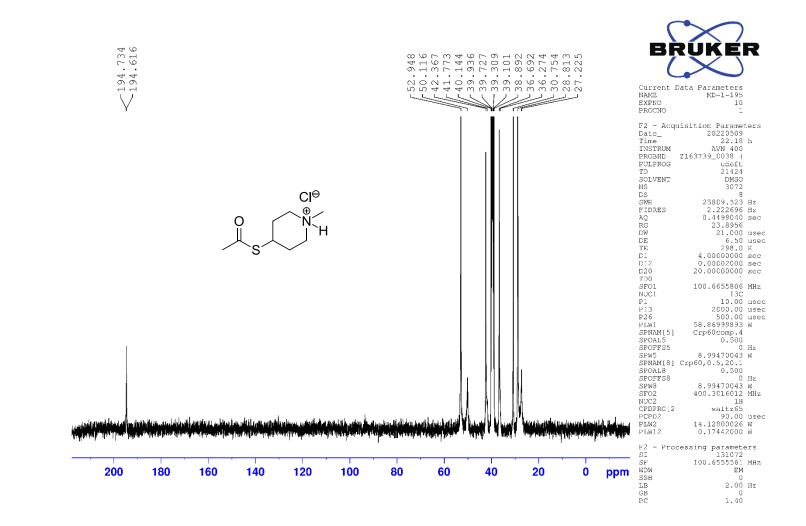


Synthesis:

S-(1-Methylpiperid-4-yl) Ethanethioate: *N*-Methyl-4-piperidinethiol (0.50 mL, 4.2 mmol) was dissolved in anhydrous dichloromethane (5 mL), cooled to 0°C with an ice bath and stirred under an argon atmosphere. Acetyl chloride (0.895 mL, 12.6 mmol) was added dropwise at 0°C. The ice bath was removed after 5 mins, and reaction was stirred for 2 hrs at room temperature. After this time, saturated NaHCO_{3(aq)} (10 mL) was added to the reaction and the layers were separated. The organic layer was extracted with dichloromethane (3 × 15 mL). The combined organic layers were dried over Na₂SO₄, gravity filtered and the filtrate was concentrated *in vacuo* to produce a clear colourless oil *S*-(1-methylpiperid-4-yl) ethanethioate (0.303 g, 42%). The analytical data was similar to previously published data.^[1]

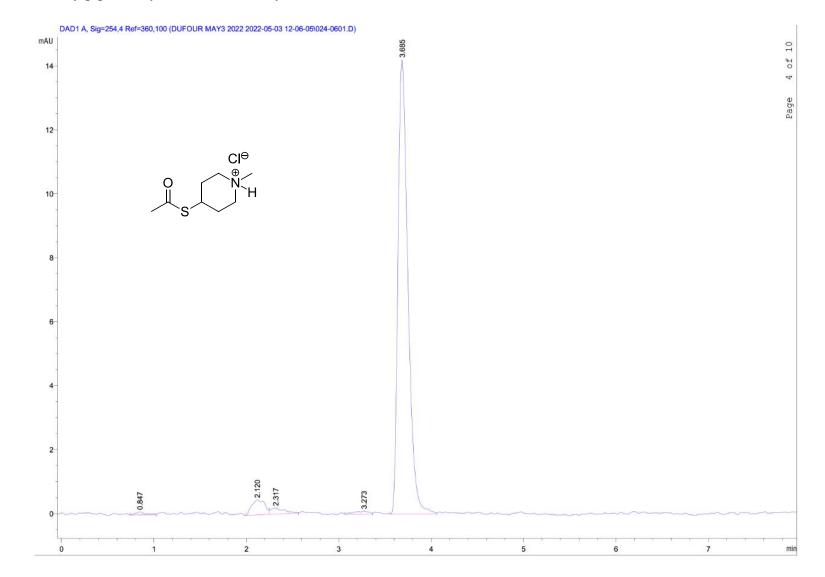

S-(1-Methylpiperid-4-yl) Ethanethioate Hydrochloride: *S*-(1-Methylpiperid-4-yl) ethanethioate (0.245 g, 2.78 mmol) was dissolved in anhydrous diethyl ether (28 mL) under an argon atmosphere. HCl in diethyl ether (1 N - 2.11 mL, 2.11 mmol) was added dropwise and stirred for 1 hr. The solvent was removed *in vacuo* resulting in a white solid. The compound was triturated with diethyl ether (3×20 mL). Residual diethyl ether was removed *in vacuo* to produce *S*-(1-methylpiperid-4-yl) ethanethioate hydrochloride (0.198 g, 67% yield) as a pair of isomers (25:75).

MP_{(diethyl ether}): 157–159°C; IR(ATR) 3007, 2921, 2478, 2418, 1687, 1120, 973, 635 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d6*) δ isomer A: 10.29 (br s, 1H), 3.51-3.38 (m, 3H), 3.10-3.03 (m, 2H), 2.70 (s, 3H), 2.33 (s, 3H), 2.04-2.01 (m, 2H), 1.88-1.79 (m, 2H), isomer B: 10.29 (br s, 1H), 3.84 (br s, 1H), 3.41-3.38 (m, 2H), 2.98-2.92 (m, 2H), 2.75 (s, 3H), 2.33 (s, 3H), 2.25-2.18 (m, 2H), 1.88-1.79 (m, 2H); ¹³C NMR (100.7 MHz, DMSO-*d6*) δ isomer A: 194.6 (0), 52.9 (2), 42.4 (3), 36.7 (1), 30.7 (3), 28.8, isomer B: 194.7 (0), 50.1 (2), 41.8 (3), 36.3 (1), 28.8 (2), 27.2 (3); LRMS (ESI⁺): 174.1 (M⁺); HRMS (ESI⁺): calculated for C₈H₁₆NOS⁺: 174.0947 amu; found for C₈H₁₆NOS⁺: 174.0946 amu; HPLC purity at 254 nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 3.685 mins): 98.7%.

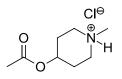


(7) *S*-(1-Methylpiperid-4-yl) Ethanethioate Hydrochloride IR(ATR)

(7) S-(1-Methylpiperid-4-yl) Ethanethioate Hydrochloride ¹H NMR 400 MHz (DMSO-d6)


21

(7) S-(1-Methylpiperid-4-yl) Ethanethioate Hydrochloride ¹³C NMR 100 MHz (DMSO-d6)

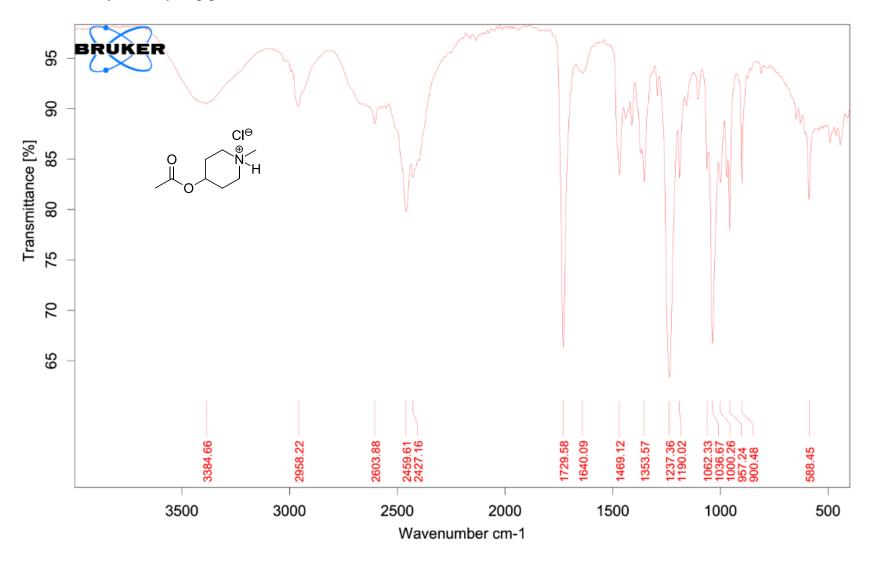

(7) S-(1-Methylpiperid-4-yl) Ethanethioate Hydrochloride High Resolution Mass Spectrum (ESI, positive mode)

Analysis Info			Acquisition Date 7/7/2022 9:07:46 AM					
Analysis Name Method Sample Name Comment	D:\Data\Xiao Xiao all 1.m TRV 6008 F	-	202200000	2.d	Operator Instrument	x compact	8255754.20059	
Acquisition Param Fource Type Focus	ESI Not active 50 m/z 1500 m/z		lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona		Positive 3500 V -500 V 2000 V 0 nA		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater	0.5 Bar 180 °C 4.0 l/min Source 0 °C
Meas. m/z 174.0946	lon Formula C8H16NOS	m/z 174.0947	err [ppm] 0.6					
Intens. x10 ⁵				174,0946		Cle		+MS, 0.0-1.3min #1-76
1.5-					°⊥s√	∕ [⊕] N H		
- 1.0- -								
0.5								
	2.0943				175.0977	17	6.0915 ∖	
0.0	2	173		174	175	17	6	177 m/z

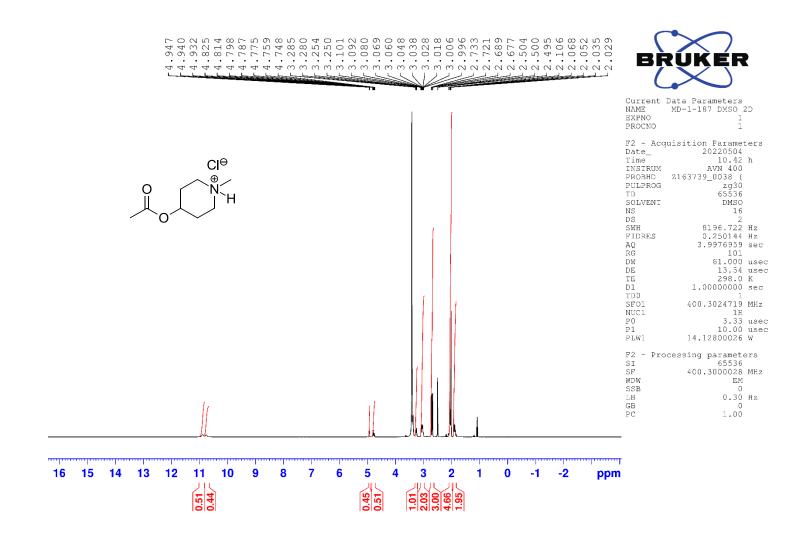
(7) S-(1-Methylpiperid-4-yl) Ethanethioate Hydrochloride HPLC

(8) 4-Acetoxy-1-methyl-1-piperidinium Chloride

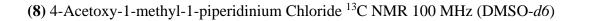
Synthesis:

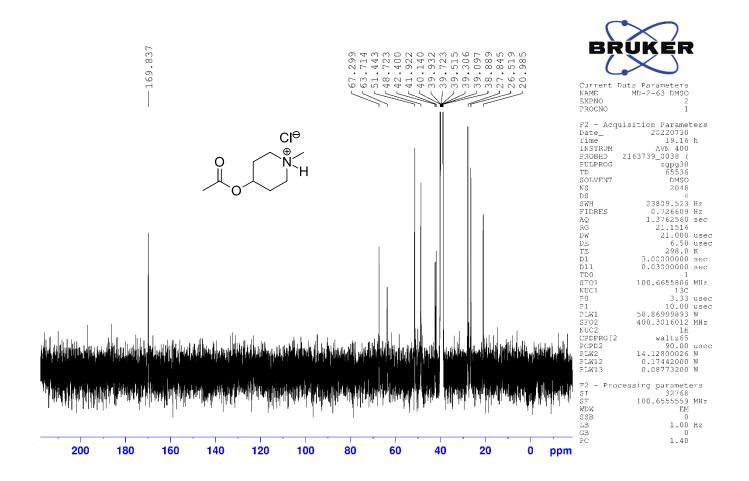

1-Methyl-4-piperidyl Acetate: A slightly modified procedure published by Bormans *et al.*^[2] was used to produce 1-methyl-4-piperidyl acetate. Briefly, *N*-methyl-4-piperidinol (1.52 g, 9.80 mmol) was dissolved in anhydrous dichloromethane (26 mL) and stirred under an argon atmosphere. Triethylamine (2.73 mL, 19.6 mmol) was added, and the reaction mixture was cooled to 0°C with an ice bath. Acetyl chloride (0.906 mL, 12.74 mmol) was added dropwise to the reaction mixture at 0°C. The ice bath was removed after 5 mins, and reaction was stirred for 2 hrs at room temperature. After this time, brine (20 mL) was added to the reaction and the layers were separated. The aqueous layer was extracted with dichloromethane (3 × 15 mL), and combined organic layers were dried over Na₂SO₃ then gravity filtered. The filtrate was concentrated *in vacuo* to produce an orange oil, 1-methyl-4-piperidyl acetate (1.54 g, 97%). The analytical data was similar to previously published data.^[2]

4-Acetoxy-1-methyl-1-piperidinium Chloride: To a flask charged with 1-methyl-4-piperidyl acetate (0.436 g, 2.78 mmol), anhydrous diethyl ether (55 mL) was added until complete dissolution under an argon atmosphere. HCl dissolved in diethyl ether (1 N - 4.16 mL, 4.16 mmol) was added dropwise to the 1-methyl-4-piperidyl acetate solution and stirred for 1h at room temperature. The solvent was removed *in vacuo* resulting in a white solid. The compound was triturated with diethyl ether (3 \times 20 mL). Residue diethyl ether was removed *in vacuo* to produce 4-acetoxy-1-methyl-1-piperidinium chloride (0.538 g, 99%) as a pair of isomers


(46:54).

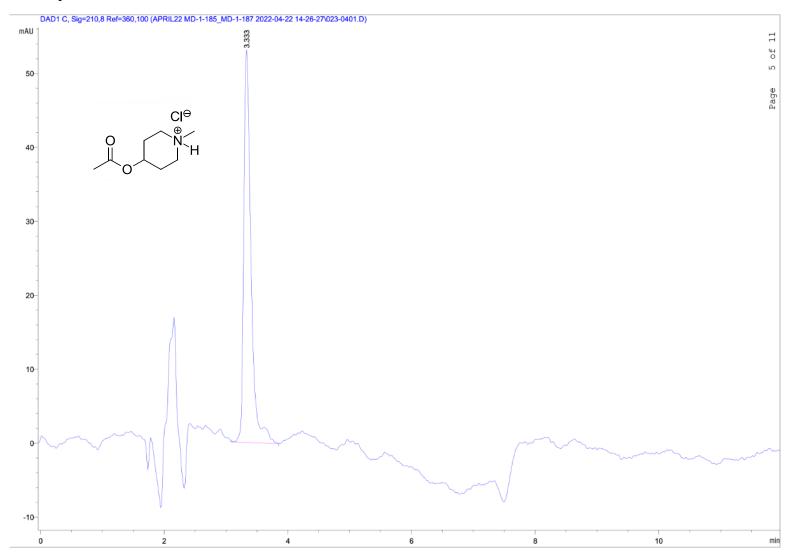
Spectroscopic data:

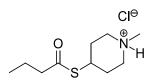

 $MP_{(diethyl ether)}$: 82-87°C; IR(ATR) 2958, 2603, 2460, 2427, 1730, 1237, 1037 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d6*) δ isomer A: 10.90 (br s, 1H), 4.83-4.75 (m, 1H), 3.45-3.43 (m, 1H), 3.28-3.25 (m, 1H), 3.10-3.00 (m, 2H), 2.68 (d, J = 4.8 Hz, 3H), 2.08-2.01 (m, 2H), 2.01 (s, 3H), 1.92-1.86 (m, 2H), isomer B: 10.77 (br s, 1H), 4.95-4.93 (m, 1H), 3.45-3.43 (m, 1H), 3.28-3.25 (m, 1H), 3.10-3.00 (m, 2H), 2.73 (d, J = 4.9 Hz, 3H), 2.08-2.01 (m, 2H), 2.05 (s, 3H), 1.92-1.86 (m, 2H); ¹³C NMR (100.7 MHz, DMSO-*d6*) δ isomer a: 169.8 (0), 67.3 (1), 48.7 (2), 41.9 (3), 27.8 (2), 21.0 (3), isomer B: 169.0 (0), 63.7 (1), 51.4 (2), 42.4 (3), 26.5 (2), 21.0 (3); LRMS (ESI⁺): 158.1 (M⁺); HRMS (ESI⁺): calculated for C₈H₁₆NO₂⁺: 158.1176 amu; found for C₈H₁₆NO₂⁺: 158.1176 amu; HPLC purity at 210 nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 3.333 mins): >99%. Product was confirmed through comparison of key peaks reported from ¹H NMR in the literature.^[3]



(8) 4-Acetoxy-1-methyl-1-piperidinium Chloride IR(ATR)

(8) 4-Acetoxy-1-methyl-1-piperidinium Chloride ¹H NMR 400 MHz (DMSO-*d6*)

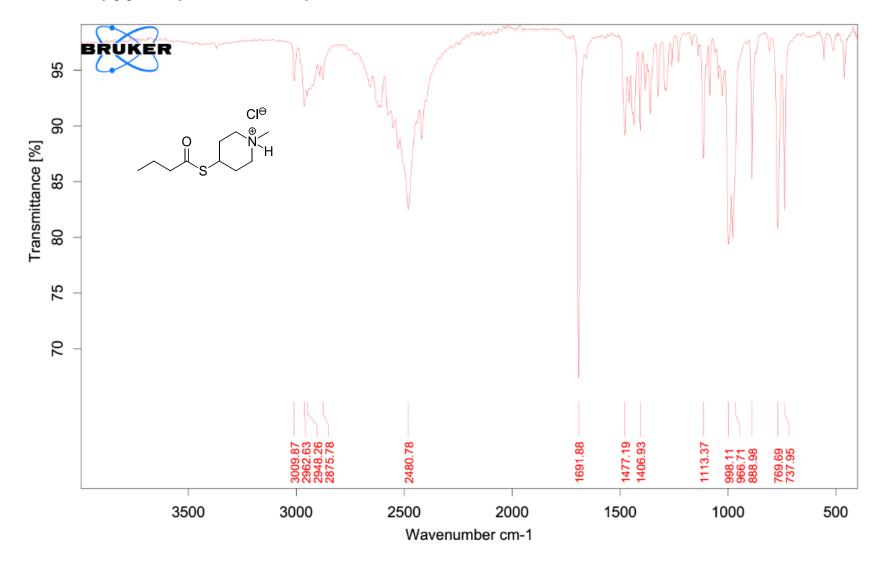



(8) 4-Acetoxy-1-methyl-1-piperidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)

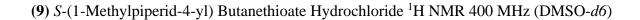
nalysis Info				Acquisition Date 7/7/2022 9:38:26 AM					
nalysis Name	D:\Data\Xiao\July 07 2	022000008.d		• • • • • • • • • • • • • • • • • • • •					
lethod	Xiao all 1.m				Operator	x			
ample Name omment	TRV 6014 HCI				Instrument	compact	8255754.20059		
cquisition Param									
ource Type ocus	ESI Not active	lon Po Set Ca		Positive 3500 V		Set Nebulizer Set Dry Heater	0.5 Bar 180 °C		
can Begin	50 m/z	Set En	d Plate Offset	-500 V		Set Dry Gas	4.0 l/min		
can End	1500 m/z	Set Ch Set Co	arging Voltage Irona	2000 V 0 nA		Set Divert Valve Set APCI Heater	Source 0 °C		
Meas. m/z 158.1176	lon Formula m/z C8H16NO2 158.1176	err [ppm] -0.3							
Intens x104-	ContoivO2 156.1170	-0.5					+MS, 0.0-0.4min #2-24		
			158,176		Cl⊖				
6-					→ [⊕] ∕				
-				O					
5-									
J.				- () ~				
-									
4-									
-									
3-									
-									
2-									
1									
-									
1-									
-				159.1209					
-									
-			11	A (L					
0	156	157	158	159	160	161	162 m/z		

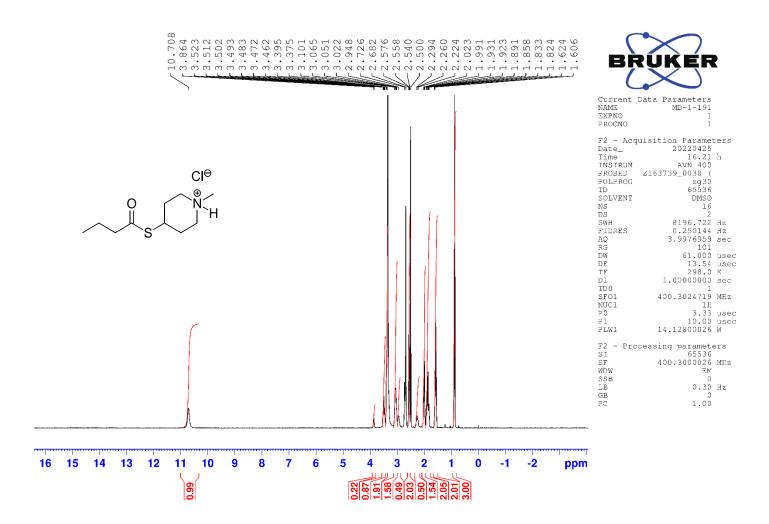
(8) 4-Acetoxy-1-methyl-1-piperidinium Chloride HPLC. Note: Noise from the injection has a retention time from 1.6 min until 2.5 min. The compound of interest has a retention time of 3.333 min.

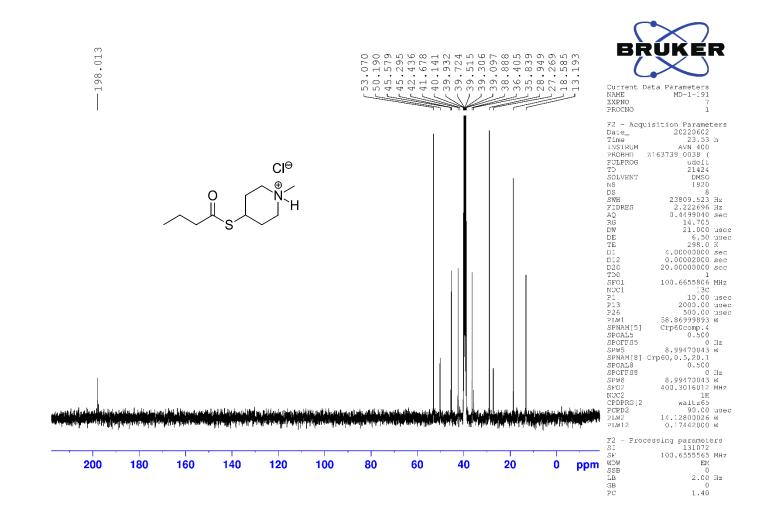
(9) S-(1-Methylpiperid-4-yl) Butanethioate Hydrochloride



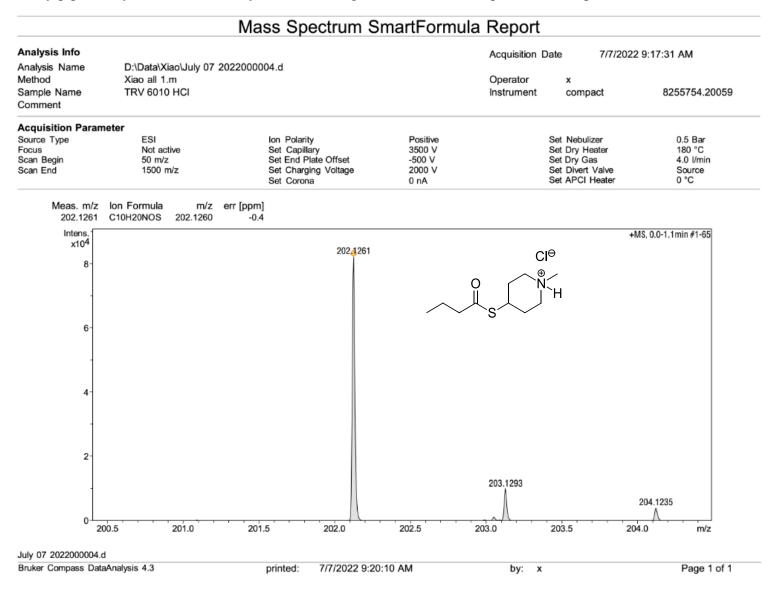
Synthesis: S-(1-Methylpiperid-4-yl) butanethioate: To a solution of *N*-methyl-4-piperidinethiol (0.50 mL, 4.2 mmol) in anhydrous dichloromethane (5 mL) cooled in an ice bath was added butyryl chloride (1.30 mL, 12.6 mmol) dropwise *via* syringe under an argon atmosphere. After 15 mins, the ice bath was removed and the mixture was allowed to stir for 16 hrs, until TLC indicated complete consumption of starting material. The mixture was diluted with dichloromethane (20 mL). The organic layer was washed with saturated NaHCO_{3(aq)}, water and dried over Na₂SO₄. The mixture was gravity filtered and the filtrate was concentrated *in vacuo* to afford 0.846 g of a colorless liquid. Purification *via* flash chromatography (5 % MeOH / DCM) afforded 0.5373 g (64% yield) of **10** as a translucent colorless oil. The analytical data was similar to previously published data.^[1]

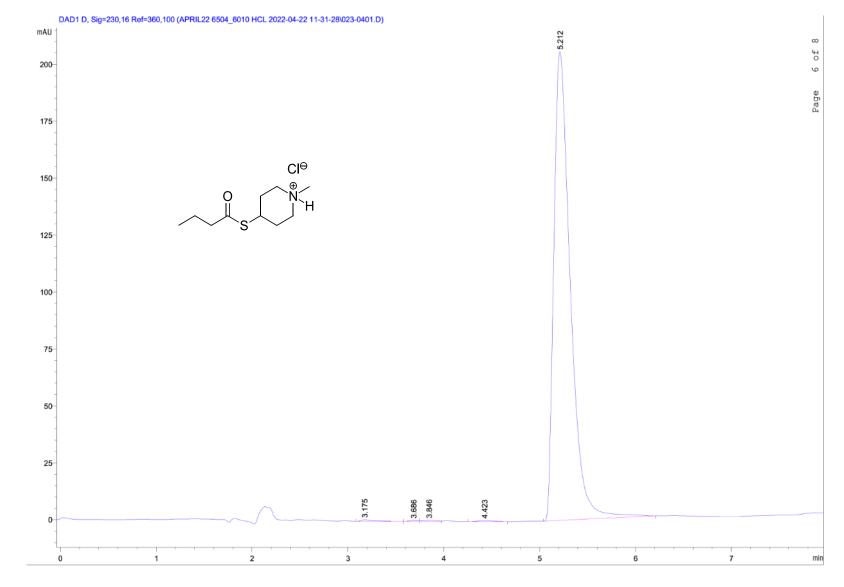

S-(1-Methylpiperid-4-yl) butanethioate, hydrochloride (10): *S*-(1-Methylpiperid-4-yl) butanethioate (0.172 g, 0.854 mmol) was dissolved in anhydrous diethyl ether (17 mL) under an argon atmosphere. To this solution, HCl dissolved in diethyl ether (1 N - 1.28 mL, 1.28 mmol) was added dropwise and stirred for 1 hr. The solvent was removed *in vacuo* resulting in a white solid. The compound was triturated with diethyl ether (20 mL), and solvent was removed from the solid with a pipet. The process was repeated twice. The compound was dried *in vacuo* to produce **10** (0.180 g, 89%) as a white solid.


Spectroscopic data: MP_{(diethyl ether}): 142–146°C; IR (ATR) 3010, 2963, 2948, 2481, 1691, 1113, 998, 770; ¹H NMR (400 MHz, DMSO-*d*6) d Isomer A: 10.71 (br s, 1H), 3.52-3.46 (m, 1H),

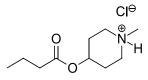

3.40-3.37 (m, 2H), 3.10-3.02 (m, 2H), 2.68 (s, 3H), 2.56 (t, J = 7.2 Hz, 2H), 2.02-1.99 (m, 2H), 1.93-1.82 (m, 2H), 1.58 (sext, J = 7.3 Hz, 2H), 0.88 (t, J = 7.4 Hz, 3H), isomer B: 10.71 (br s, 1H), 3.86 (app br s, 1H), 3.40-3.37 (m, 2H), 2.97-2.90 (m, 2H), 2.73 (s, 3H), 2.56 (t, J = 7.2 Hz, 2H), 2.29, 2.22 (m, 2H), 1.93-1.82 (m, 2H), 1.58 (sext, J = 7.3 Hz, 2H), 0.88 (t, J = 7.4 Hz, 3H); ¹³C NMR (100.7 MHz, DMSO-*d*6) d isomer A: 198.0 (0), 53.1 (2), 45.3 (2), 42.4 (3), 36.4 (1), 28.9 (2), 18.6 (2), 13.2 (3), isomer B: 198.0 (0), 50.2 (2), 45.6 (2), 41.7 (3), 35.8 (1), 27.3 (2), 18.6 (2), 13.2 (3); LRMS (ESI⁺): 202.1 (M+); HRMS (ESI⁺): calculated for C₁₀H₂₀NOS⁺: 202.1260; found for C₁₀H₂₀NOS⁺: 202.1261; HPLC purity at 254nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 5.212 mins): 99.1%.

(9) *S*-(1-Methylpiperid-4-yl) Butanethioate Hydrochloride IR(ATR)





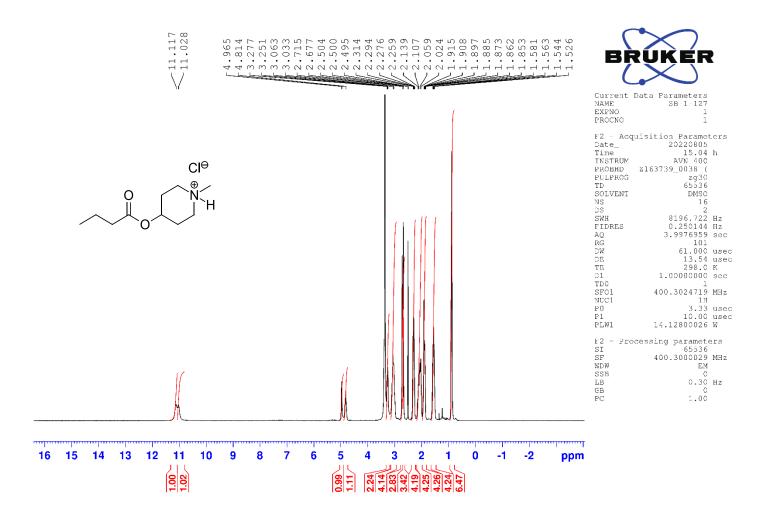
(9) S-(1-Methylpiperid-4-yl) Butanethioate Hydrochloride ¹³C NMR 100 MHz (DMSO-d6)


(9) S-(1-Methylpiperid-4-yl) Butanethioate Hydrochloride High Resolution Mass Spectrum (ESI, positive mode)

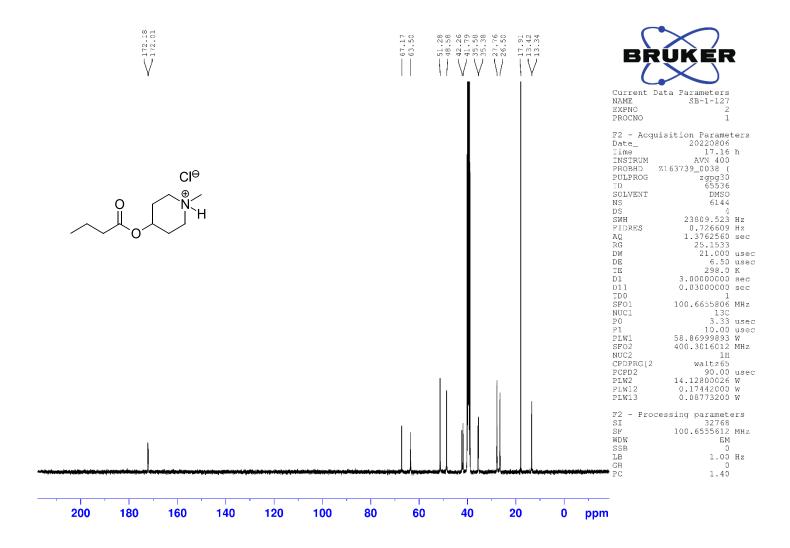
(9) S-(1-Methylpiperid-4-yl) Butanethioate Hydrochloride HPLC

(10) 4-Butyroxy-1-methyl-1-piperidinium Chloride

Synthesis:

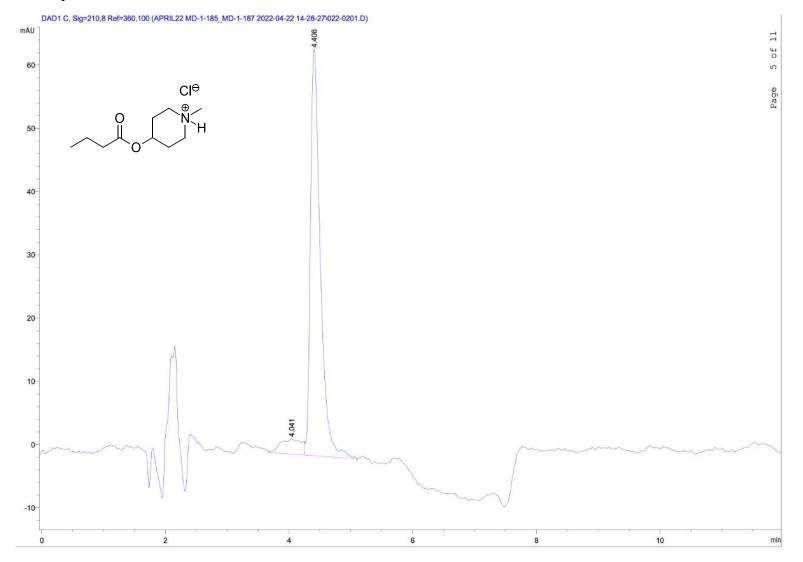

N-Methylpiperidin-4-yl Butyrate: *N*-Methyl-4-piperidinol (0.803 g, 5.18 mmol) was dissolved in anhydrous dichloromethane (10 mL) and stirred under an argon atmosphere. Triethylamine (1.44 mL, 10.4 mmol) was added, and the reaction was cooled to 0°C with an ice bath. Butyryl chloride (0.699 mL, 6.73 mmol) was added dropwise at 0°C. The ice bath was removed after 5 mins, and reaction was stirred for 3 hrs. The reaction was quenched with brine (20 mL), extracted with dichloromethane (3×15 mL) and dried over Na₂SO₃. The solvent was removed *in vacuo* to produce a yellow oil. The crude mixture was purified by silica gel column chromatography (5% MeOH/DCM) to produce a yellow oil, *N*-methylpiperidin-4-yl butyrate (0.954 g, 99%). The analytical data was similar to previously published data.^[4]

4-Butyroxy-1-methyl-1-piperidinium chloride (9): To a flask charged with *N*-methylpiperidin-4-yl butyrate (0.48 g, 2.59 mmol) anhydrous diethyl ether was added until complete dissolution (52 mL) under an argon atmosphere. HCl in diethyl ether (1 N - 3.88 mL, 3.88 mmol) was added dropwise and stirred for 1 hr. The solvent was removed *in vacuo* resulting in a white solid. The compound was triturated with diethyl ether (20 mL), and solvent was removed from the solid with a pipet. This process was repeated two more times. The compound was dried *in vacuo* to produce 4-butyroxy-1-methyl-1-piperidinium chloride (0.583 g, 90%) as a white solid as a pair of isomers (46:54). *Spectroscopic data:* MP_(diethyl ether): 110–113°C; IR(ATR) 2957, 2437, 1724, 1244, 1195, 963 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d6*) δ isomer A: 11.12 (br s, 1H), 4.98-4.95 (m, 1H), 3.41-3.77 (m, 2H), 3.10-3.00 (m, 2H), 2.72 (s, 3H), 2.33-2.26 (m, 2H), 2.14-2.06 (m, 2H), 1.92-1.85 (m, 2H), 1.60-1.51 (m, 2H), 0.89-0.86 (m, 3H) isomer B: 11.03 (br s, 1H), 4.84-4.79 (m, 1H), 3.27-3.25 (m, 2H), 3.10-3.00 (m, 2H), 2.68 (s, 3H), 2.33-2.26 (m, 2H), 2.06-2.2.02 (m, 2H), 1.92-1.85 (m, 2H), 1.60-1.51 (m, 2H), 0.89-0.86 (m, 3H); ¹³C NMR (100.7 MHz, DMSO-*d6*) δ isomer a: 172.0 (0), 63.5(1), 48.6 (2), 42.3 (3), 35.6 (2), 26.5 (2), 17.9 (2), 13.4 (3), isomer B: 172.2 (0), 67.2 (1), 51.3 (2), 41.8 (3), 35.4 (2), 27.8 (2), 17.9 (2), 13.3 (3); LRMS (ESI⁺): 186.1 (M⁺); HRMS (ESI⁺): calculated for C₁₀H₂₀NO₂⁺: 186.1488 amu; found for C₁₀H₂₀NO₂⁺: 186.1492 amu; HPLC purity at 210 nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 4.406 mins): >99%.

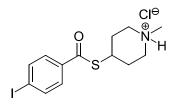

KER 80 Cl⊖ Ð '/ `H Ö Transmittance [%] 60 40 20 2956.76 -1723.50 -2437.16 1473.87 83 1285. 195 2500 2000 3500 3000 1500 500 1000 Wavenumber cm-1

(10) 4-Butyroxy-1-methyl-1-piperidinium Chloride IR(ATR)

(10) 4-Butyroxy-1-methyl-1-piperidinium Chloride ¹H NMR 400 MHz (DMSO-*d6*)



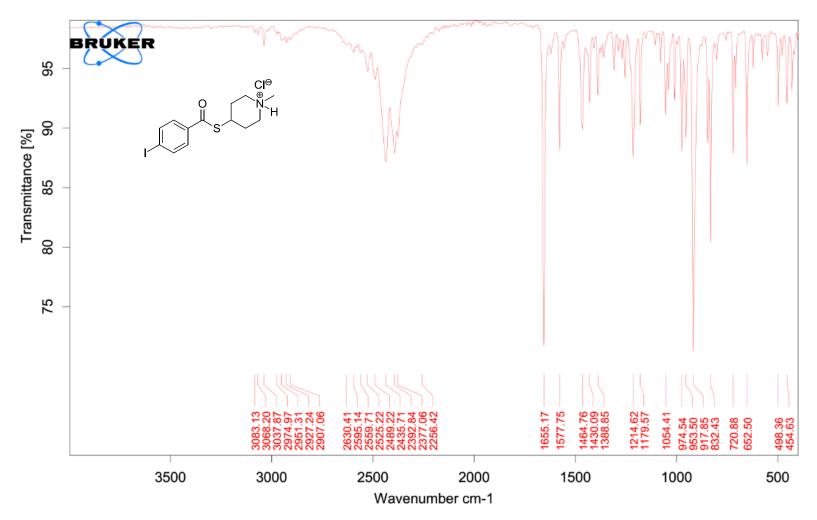
(10) 4-Butyroxy-1-methyl-1-piperidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)


Analysis Info				Acquisition Date 7/7/2022 9:25:32 AM				
Analysis Name Aethod Sample Name Comment	D:\Data\Xiao\July 07_202200006.d Xiao all 1.m TRV 6013 HCI			Operator x Instrument comp				
Acquisition Paran	neter							
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1500 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 3500 V -500 V 2000 V 0 nA	Set Nebul Set Dry H Set Dry G Set Divert Set APCI	eater 180 °C as 4.0 l/min Valve Source			
Meas. m/z 186.1492	lon Formula m/z C10H20NO2 186.1489	err [ppm] -2.0						
Intens x10 ⁵					+MS, 0.0-1.2min #1-72			
×10 ⁻		186,1492		Cl $_{\Theta}$				
1			0	₩ N N				
0.8-								
0.6-								
-								
0.4-								
0.2-								
-			187.1525	188.0897				
0.0	185	186		188				

(10) 4-Butyroxy-1-methyl-1-piperidinium Chloride HPLC. Note: Noise from the injection has a retention time from 1.6 min until 2.5 min. The compound of interest has a retention time of 4.406 min.

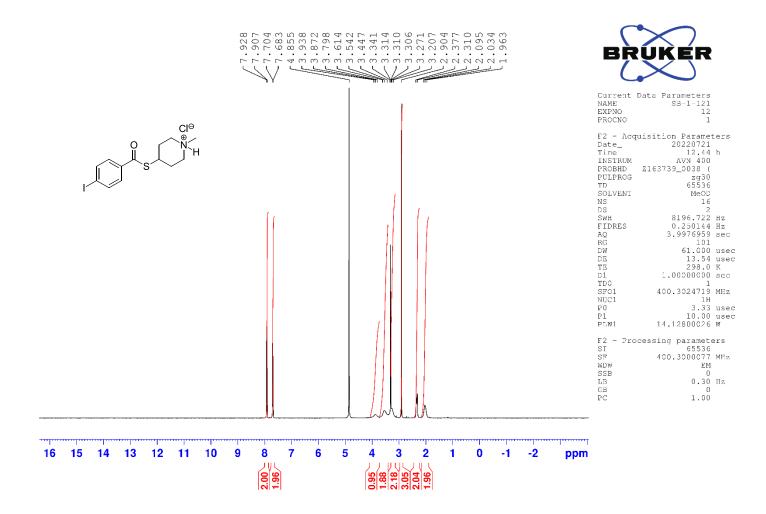
Aryl N-Methylpiperidinyl Derivatives

(11) (1-Methylpiperidin-4-yl) p-Iodobenzenecarbothioate Hydrochloride

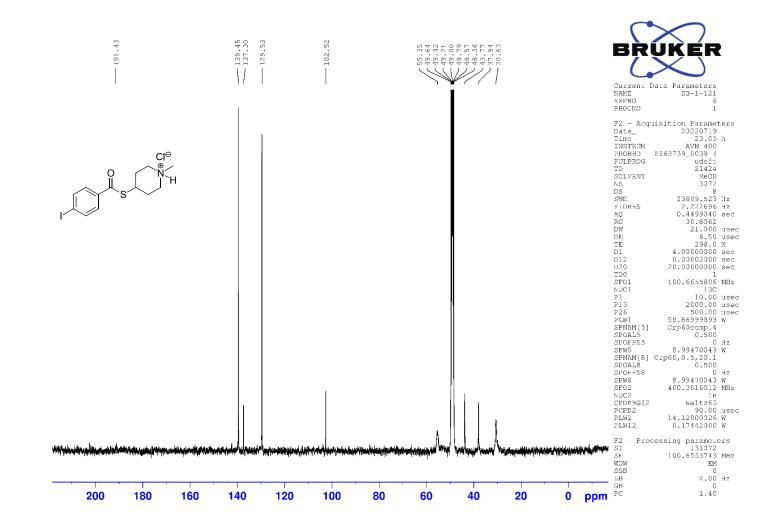

Synthesis: (1-Methylpiperidin-4-yl) *p*-iodobenzenecarbothioate: *N*-methyl-4-piperidinethiol (0.538 g, 4.1 mmol) and triethylamine (0.90 mL, 6.2 mmol) were dissolved in anhydrous dichloromethane (10 mL) under an argon atmosphere. 4-Iodobenzoyl chloride (1.31 g, 4.9 mmol) was added at 0°C. The ice bath was removed after 5 mins and the reaction was stirred for 16 hrs at room temperature. The reaction was quenched with brine (20 mL), extracted with dichloromethane (3×15 mL), and the combined organic layers were dried over Na₂SO₃. After gravity filtration, the solvent was removed *in vacuo* to produce 1.49 g of a brown solid. The crude mixture was purified by silica gel column chromatography (step gradient: 5% MeOH/DCM to 10 % MeOH/DCM) to produce a white solid, (1-methylpiperidin-4-yl) *p*-iodobenzenecarbothioate (0.644 g, 43% yield). The analytical data was similar to previously published data.^[1]

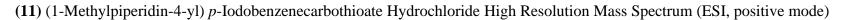
(1-Methylpiperidin-4-yl) p-iodobenzenecarbothioate hydrochloride (12):

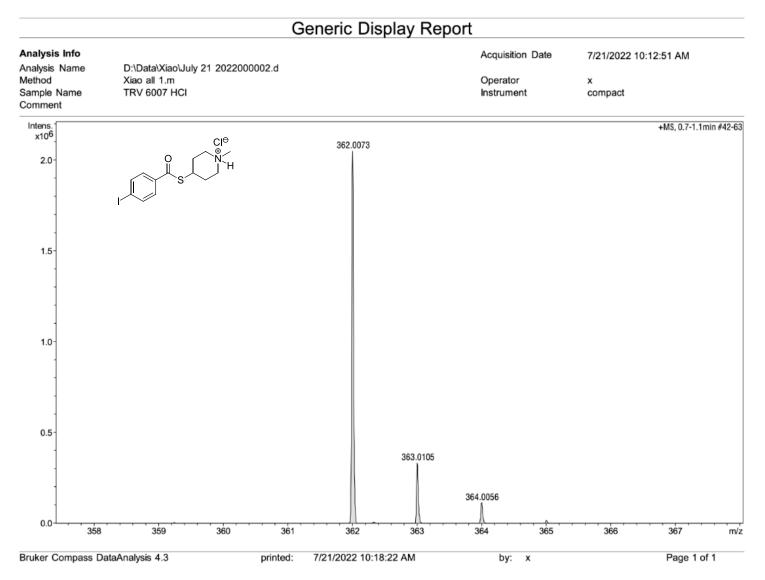
(1-methylpiperidin-4-yl) *p*-iodobenzenecarbothioate (0.47 g, 1.3 mmol) was dissolved in anhydrous diethyl ether (86 mL) under an argon atmosphere. HCl in diethyl ether (1 N solution, 2.0 mL, 2.0 mmol) was added dropwise resulting in the immediate formation of a white precipitate. The reaction was stirred for an additional 60 mins. The white solid was collected *via*

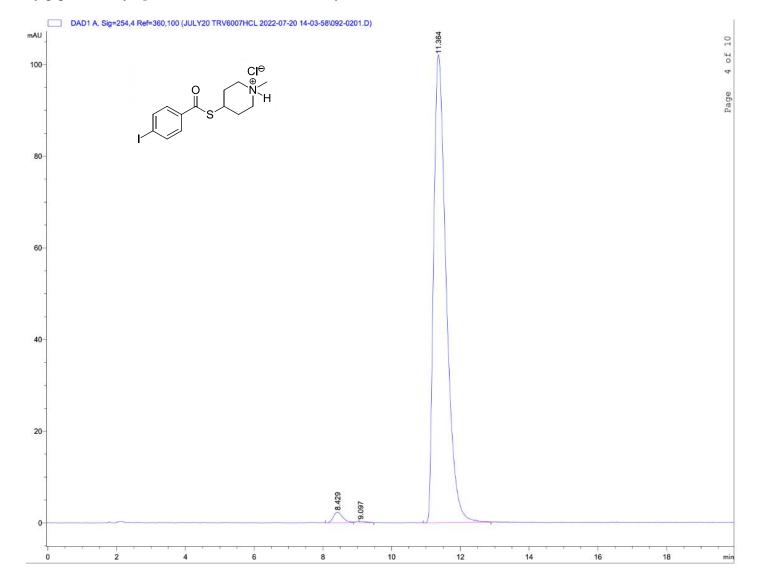

suction filtration, washed with Et₂O (2×30 mL), to afford (1-methylpiperidin-4-yl) *p*-iodobenzenecarbothioate hydrochloride, (0.450 g, 87% yield) as a white solid.

Spectroscopic data: MP_{(diethyl ether}): >250°C; IR(ATR) 3083, 3068, 3038, 2975, 2951, 2436, 2393, 1655, 1578, 1465, 918; ¹H NMR (400 MHz, CD₃OD) δ 7.93-7.91 (m, 2H), 7.70-7.68 (m, 2H), 3.94-3.80 (m, 1H), 3.62-3.47 (m, 2H), 3.34-3.18 (m, 2H), 2.90 (s, 3H), 2.34-2.31 (m, 2H), 2.09-1.98 (m, 2H); ¹³C NMR (100.7 MHz, CD₃OD) δ 191.4, 139.5, 137.3, 129.5, 102.5, 55.4, 43.8, 37.9, 30.6; LRMS (ESI⁺): 362.0 (M⁺); HRMS (ESI⁺): calculated for C₁₃H₁₇INOS⁺: 362.0070 amu; found for C₁₃H₁₇INOS⁺: 362.0073 amu; HPLC purity at 254nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 11.364 mins): 98.2 %.

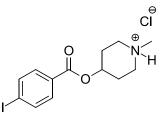



(11) (1-Methylpiperidin-4-yl) *p*-Iodobenzenecarbothioate Hydrochloride IR(ATR)

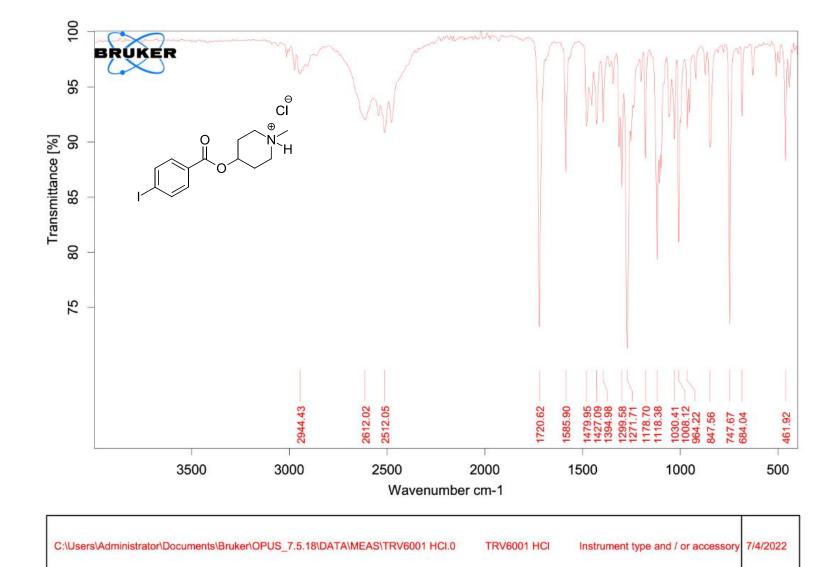

(11) (1-Methylpiperidin-4-yl) *p*-Iodobenzenecarbothioate Hydrochloride ¹H NMR 400 MHz (CD₃OD-*d*4)



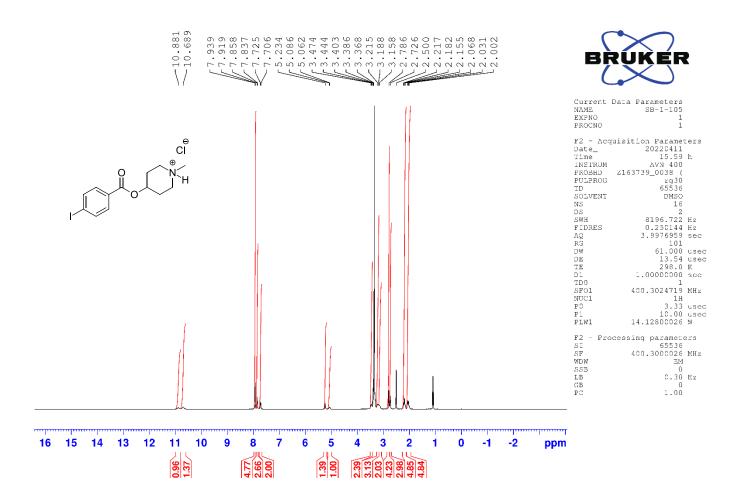
(11) (1-Methylpiperidin-4-yl) *p*-Iodobenzenecarbothioate Hydrochloride ¹³C NMR 100 MHz (CD₃OD-*d*4)

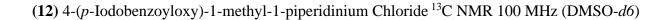


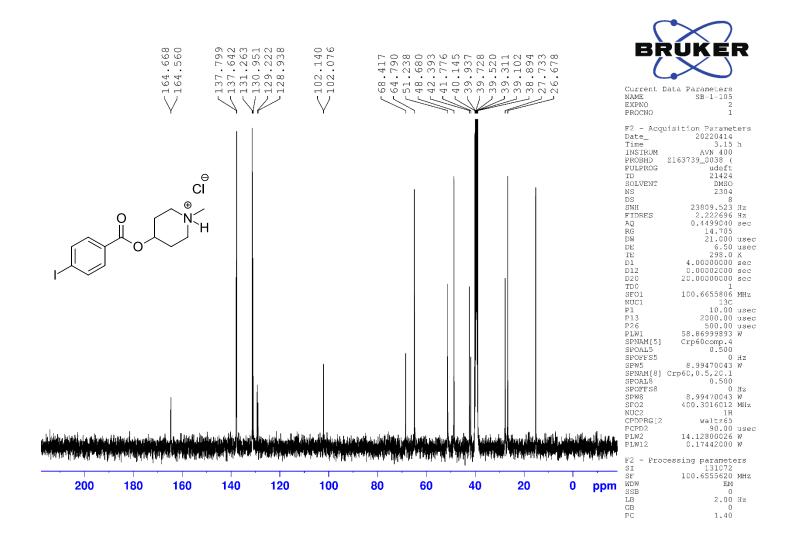
(11) (1-Methylpiperidin-4-yl) *p*-Iodobenzenecarbothioate Hydrochloride HPLC


(12) 4-(*p*-Iodobenzoyloxy)-1-methyl-1-piperidinium Chloride

Synthesis: **1-Methylpiperidin-4-yl 4-iodobenzoate**: A sample from a previous study was obtained from our lab and the analytical data was similar to previously published data.^[1]

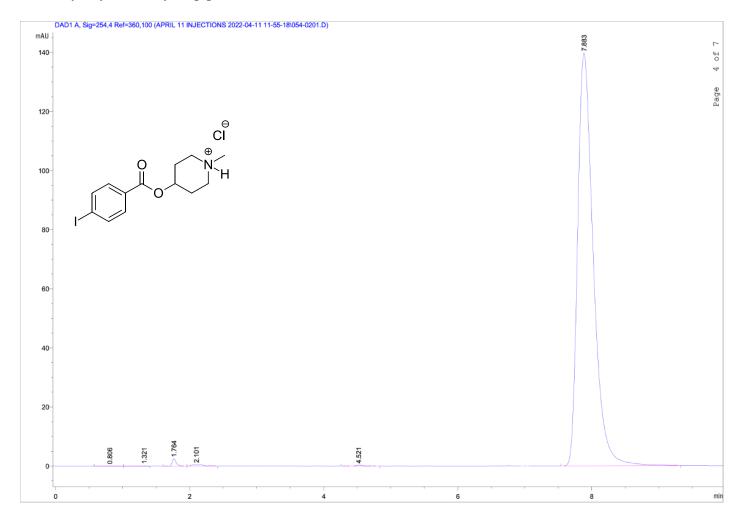

4-(*p***-Iodobenzoyloxy)-1-methyl-1-piperidinium chloride** (**11**): *N*-methylpiperidin-4-yl 4iodobenzoate (0.4032 g, 1.2 mmol) was dissolved in anhydrous diethyl ether (39 mL) under an argon atmosphere. HCl in diethyl ether (1 N solution, 1.8 mL, 1.8 mmol) was added dropwise resulting in the immediate formation of a white precipitate. The reaction was stirred for an additional 60 mins. The precipitate was collected via suction filtration, washed with Et₂O (2 x 15 mL), to afford 4-(*p*-iodobenzoyloxy)-1-methyl-1-piperidinium chloride (0.200 mg, 44 % yield) as a white solid and a mixture of isomers (59:41).


Spectroscopic data: MP_(diethyl ether): >250°C(Lit MP_(acetone/EtOH/H2O):267-268.5°C);^[5] IR(ATR) 3014, 3003, 2944, 2612, 2512, 1721, 1586, 1272, 1118, 1008, 748; ¹H NMR (400 MHz, DMSO*d*6) δ isomer A: 10.88 (br s, 1H), 7.94-7.92 (m, 2H), 7.73-7.71 (m, 2H), 5.11-5.02 (m, 1H), 3.33-3.30 (m, 2H), 3.17-3.07 (m, 2H), 2.73 (s, 3H), 2.21-2.15 (m, 2H), 2.06-2.00 (m, 2H), isomer B: 10.69 (br s, 1H), 7.94-7.92 (m, 2H), 7.86-784 (m, 2H), 5.23 (app br s, 1H), 3.47-3.44 (m, 2H), 3.25-3.17 (m, 2H), 2.79 (s, 3H), 2.21-2.15 (m, 2H), 2.06-2.00 (m, 2H); ¹³C NMR (100.7 MHz, DMSO-*d*6) δ isomer A: 164.7 (0), 137.8 (1), 131.0 (1), 128.9 (0), 102.14 (0), 68.4 (1), 51.2 (2), 41.8 (3), 27.7 (2), isomer B: 164.6 (0), 137.6 (1), 131.3 (1), 129.2 (0), 102.07 (0), 64.8 (1), 48.7 (2), 42.4 (3), 26.7 (2); LRMS (ESI⁺): 346.0 (M⁺); HRMS (ESI⁺): calculated for C₁₃H₁₇INO₂⁺: 346.0298; found for $C_{13}H_{17}INO_2^+$: 346.0296; HPLC purity at 254nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 7.883 mins): 99.3%.



(12) 4-(*p*-Iodobenzoyloxy)-1-methyl-1-piperidinium Chloride IR(ATR)

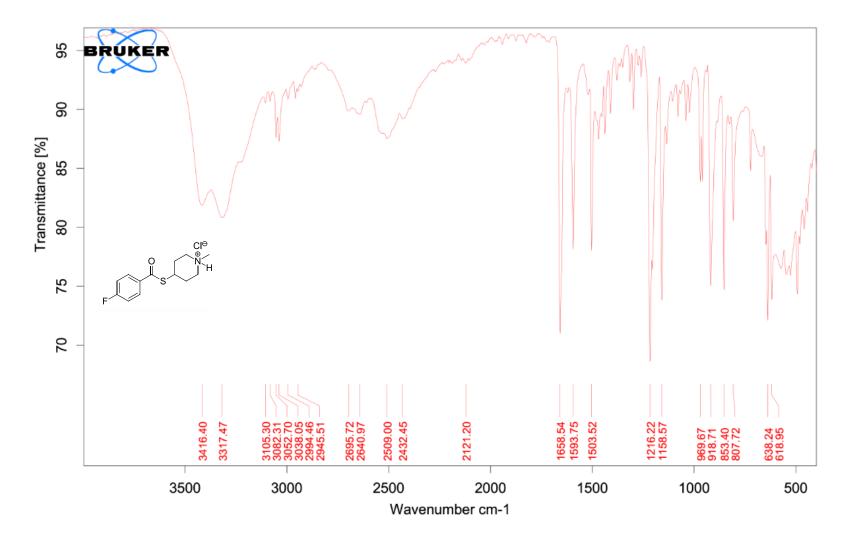
(12) 4-(*p*-Iodobenzoyloxy)-1-methyl-1-piperidinium Chloride ¹H NMR 400 MHz (DMSO-*d*6)



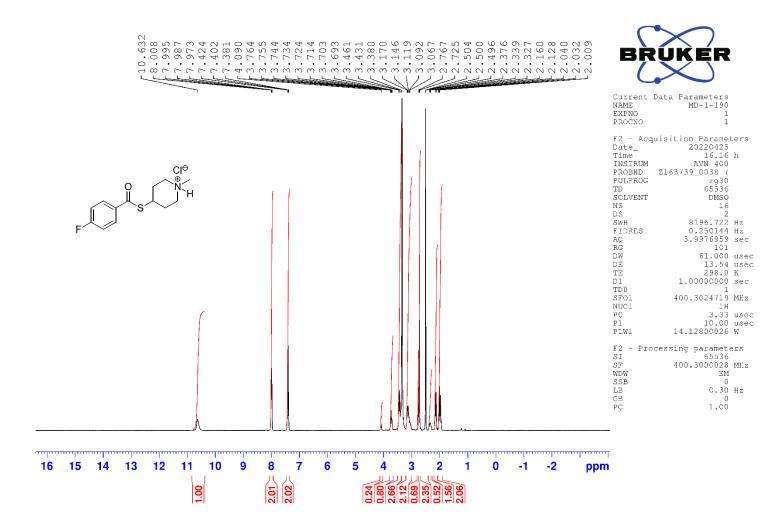

(12) 4-(*p*-Iodobenzoyloxy)-1-methyl-1-piperidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)

nalysis Info			Acquisition Date 7/6/2022 2:44:43 PM					
nalysis Name	D:\Data\Xiao\July 06 202200008.d							
lethod	Xiao all 1.m				Operator	x		
Sample Name Comment	TRV 6001 HCI				Instrument	compact	8255754.20059	
cquisition Param								
ource Type	ESI Not active	Ion Polarit Set Capill	У	Positive 3500 V		Set Nebulizer Set Dry Heater	0.5 Bar 181 °C	
ocus Scan Begin	50 m/z		ary late Offset	-500 V		Set Dry Gas	4.0 l/min	
can End	1500 m/z	Set Charg	ing Voltage	2000 V		Set Divert Valve	Source	
		Set Coron	а	0 nA		Set APCI Heater	0°C	
Meas. m/z 346.0296	lon Formula m/z er C13H17INO2 346.0299	r [ppm] 0.8						
Intens.	01011111102 040.0200	0.0				+/	/IS, 0.0-1.1min #2-64	
x10 ⁶		Θ	346.0296					
1		CĬ						
4-		Ð						
•	0	\overline{N}						
-	Ĭ	' `H						
-		\sim						
3-								
]	1 ~							
-								
2-								
-								
-								
1								
1								
1]					347.0316			
					A			
					Λ			
				346.3558	Д	348.0350		
0				10.0000		0 1010000	I	

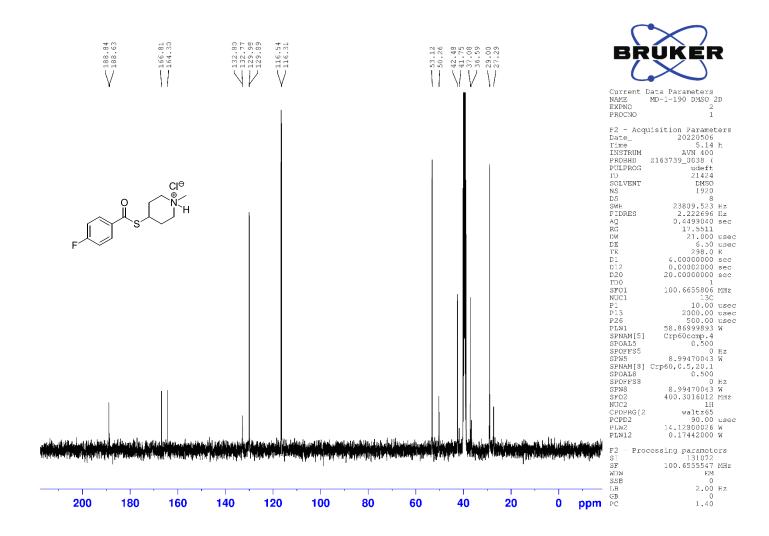
(12) 4-(*p*-Iodobenzoyloxy)-1-methyl-1-piperidinium Chloride HPLC


(13) S-(1-Methylpiperidin-4-yl) p-Fluorobenzenecarbothioate Hydrochloride

Synthesis: S-(1-Methylpiperidin-4-yl) *p*-fluorobenzenecarbothioate: To a solution of *N*methyl-4-piperidinethiol (0.4987 g, 3.8 mmol) and triethylamine (0.80 mL, 5.7 mmol) in anhydrous dichloromethane (20 mL) was added 4-florobenzoyl chloride (0.55 mL, 4.6 mmol) dropwise via syringe under an argon atmosphere. The mixture was heated to reflux for 3 hrs until TLC indicated complete consumption of starting material. Upon cooling to room temperature, the mixture was diluted with DCM (20 mL). The organic layer was washed with saturated NaHCO_{3(aq)} (20 mL), water (20 mL) and dried over Na₂SO₄. The mixture was gravity filtered and concentrated to afford the crude material. Purification *via* flash chromatography (5 % MeOH / DCM) afforded *S*-(1-methylpiperidin-4-yl) *p*-fluorobenzenecarbothioate (0.448 g, 47 % yield) as an off-white solid. The analytical data was similar to previously published data.^[1]

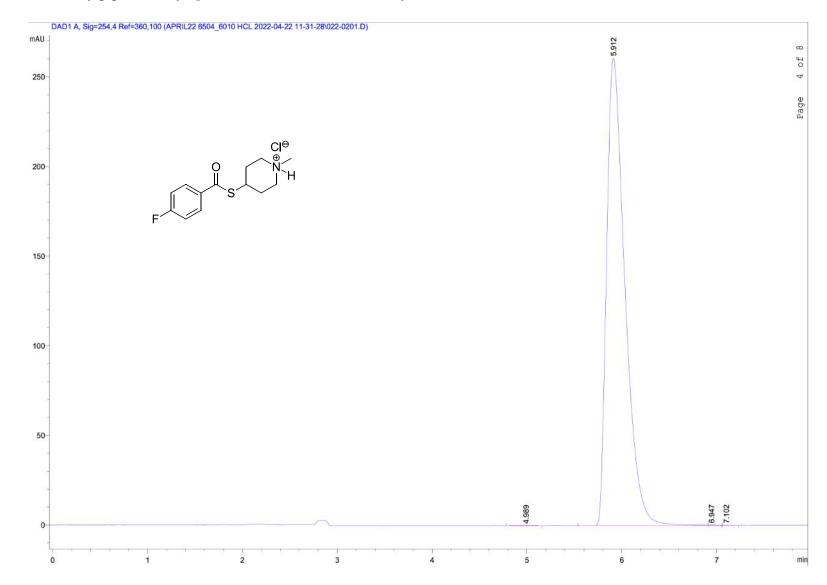

S-(1-Methylpiperidin-4-yl) *p*-fluorobenzenecarbothioate hydrochloride (14): To a flask charged with *S*-(1-methylpiperidin-4-yl) *p*-fluorobenzenecarbothioate (0.206 g, 0.815 mmol) anhydrous diethyl ether was added until complete dissolution (16 mL) under an argon atmosphere. HCl in diethyl ether 1 N - 1.22 mL, 1.22 mmol) was added dropwise and stirred for 1hr. The solvent was removed *in vacuo* resulting in a white solid. The product was triturated three times with diethyl ether (20 mL), solvent was removed with a pipet and compound was dried to produce *S*-(1-methylpiperidin-4-yl) *p*-fluorobenzenecarbothioate hydrochloride (0.230 g, 97%).

Spectroscopic data: MP_{(diethyl ether}): 209-211°C, IR(ATR): 3416, 3317, 3105, 3082, 2994, 2946, 2696, 2509, 2432, 1659, 1594, 1504, 1216, 919, 638 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ isomer A: 10.63 (br s, 1H), 8.01-7.97 (m, 2H), 7.42-7.38 (m, 2H), 4.09 (br s, 1H), 3.40-3.38 (m, 2H), 3.09-3.07 (m, 2H), 2.77 (s, 3H), 2.38-2.33 (m, 2H), 2.04-1.94 (m, 2H); isomer B: 10.63 (br s, 1H), 8.01-7.97 (m, 2H), 7.42-7.38 (m, 2H), 3.76-3.69 (m, 1H), 3.46-3.43 (m, 2H), 3.17-3.10 (m, 2H), 2.73 (s, 3H), 2.17-2.13 (m, 2H), 2.04-1.94 (m, 2H); ¹³C NMR (100.7 MHz, DMSO-*d*6) δ isomer A: 188.6, 164.3 (d, ¹J_{C,F} = 252.9 Hz), 132.9 (d, ⁴J_{C,F} = 2.7 Hz), 129.9 (d, ³J_{C,F} = 9.7 Hz), 116.4 (d, ²J_{C,F} = 2.4 Hz), 50.3, 41.7, 36.6, 27.3, isomer B: 188.8, 166.8 (d, ¹J_{C,F} = 252.9 Hz), 132.9 (d, ⁴J_{C,F} = 2.7 Hz), 129.9 (d, ³J_{C,F} = 9.7 Hz), 129.0; LRMS (ESI⁺): 254.1 (M⁺); HRMS (ESI⁺): calculated for C₁₃H₁₇FNOS⁺: 254.1010 amu; found for C₁₃H₁₇FNOS⁺: 254.1010 amu; HPLC purity at 254nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 5.912 mins): 98.9 %.

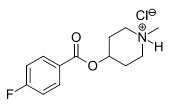


(13) S-(1-Methylpiperidin-4-yl) p-Fluorobenzenecarbothioate Hydrochloride IR(ATR)

(13) S-(1-Methylpiperidin-4-yl) p-Fluorobenzenecarbothioate Hydrochloride ¹H NMR 400 MHz (DMSO-d6)

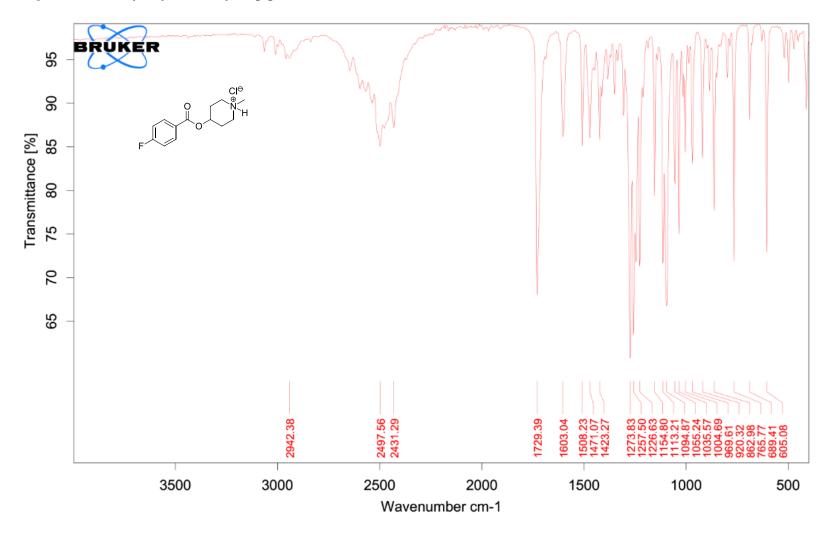


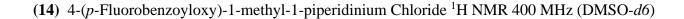
(13) S-(1-Methylpiperidin-4-yl) p-Fluorobenzenecarbothioate Hydrochloride ¹³C NMR 100 MHz (DMSO-d6)

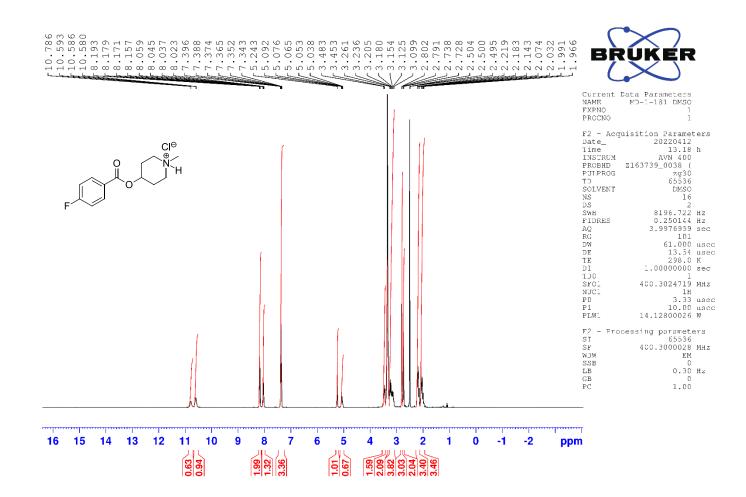

(13) S-(1-Methylpiperidin-4-yl) p-Fluorobenzenecarbothioate Hydrochloride High Resolution Mass Spectrum (ESI, positive mode)

nalysis Info					Acquisition D	Acquisition Date 7/7/2022 10:12:10 AM		
nalysis Name	D:\Data\Xiao\July 07 2022000015.d							
lethod	Xiao all 1.m				Operator	x		
ample Name Comment	TRV 6504 HCI				Instrument	compact	8255754.200	
cquisition Param								
ource Type	ESI Not active	Ion Pola Set Cap	rity	Positive 3500 V		Set Nebulizer Set Dry Heater	0.5 Bar 180 °C	
ican Begin	50 m/z		Plate Offset	-500 V		Set Dry Gas	4.0 l/min	
can End	1500 m/z	Set Cha	rging Voltage	2000 V		Set Divert Valve	Source	
		Set Core	ona	0 nA		Set APCI Heater	0° 0	
Meas. m/z 254.1010	lon Formula m/z C13H17FNOS 254.1009	err [ppm] -0.3						
Intens.							⊦MS, 0.0-1.3min #1-78	
x10 ⁵⁻ 1.50-			254,1010		Cl€)		
1			I		Q N	/		
-				~		н		
1.25-				Í	Y S ~			
				F C				
-								
4.00								
1.00-								
1								
-								
0.75-								
-								
1								
0.50-								
1								
-								
I					2	55.1042		
0.25-						Λ		
0.25						N .		
0.25							1	
0.25						1		

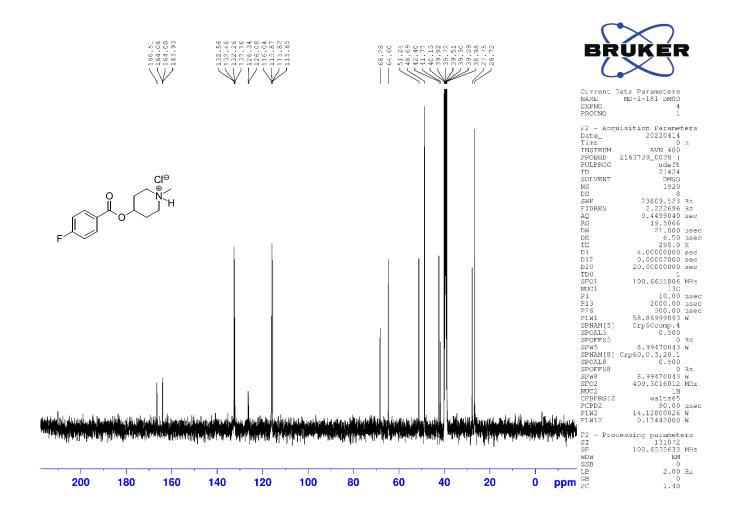
(13) S-(1-Methylpiperidin-4-yl) p-Fluorobenzenecarbothioate Hydrochloride HPLC


(14) 4-(*p*-Fluorobenzoyloxy)-1-methyl-1-piperidinium Chloride

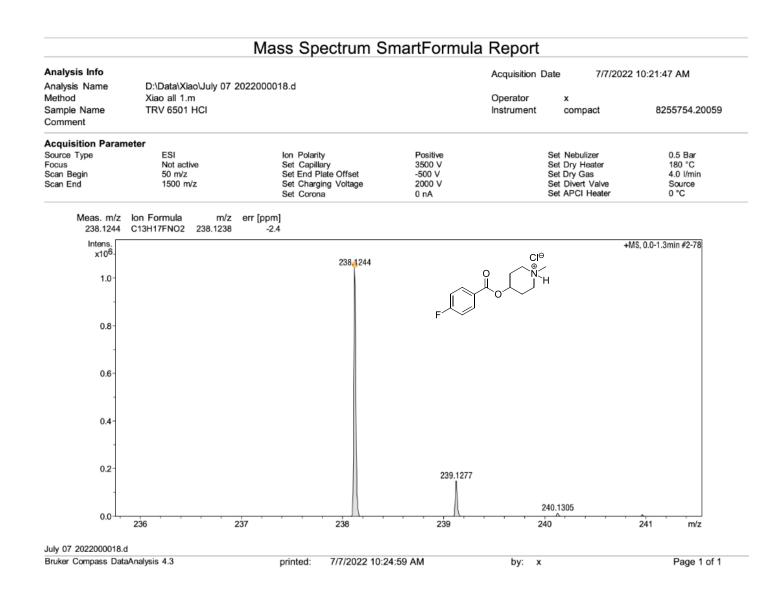

Synthesis: N-Methylpiperidin-4-yl 4-fluorobenzoate: 4-fluorobenzoyl chloride (0.76 mL, 6.3 mmol), triethylamine (2.2 mL, 15.8 mmol) and DMAP (0.138 g, 1.13 mmol) were dissolved in anhydrous dichloromethane (32 mL) under an argon atmosphere. *N*-Methyl-4-piperidinol (0.979 g, 6.3 mmol) was added to the stirred solution in one portion. The reaction mixture was stirred for 3 hrs at room temperature. After this time, the reaction was quenched with brine (30 mL) and extracted with dichloromethane (3×15 mL). The combined organic layers were dried over Na₂SO₃, gravity filtered, and the filtrate was concentrated *in vacuo* to produce a clear colourless oil. The crude mixture was purified by silica gel column chromatography (4% MeOH/DCM) to produce a clear colourless oil, *N*-Methylpiperidin-4-yl 4-fluorobenzoate (1.47 g, 98%). The analytical data was similar to previously published data.^[1]

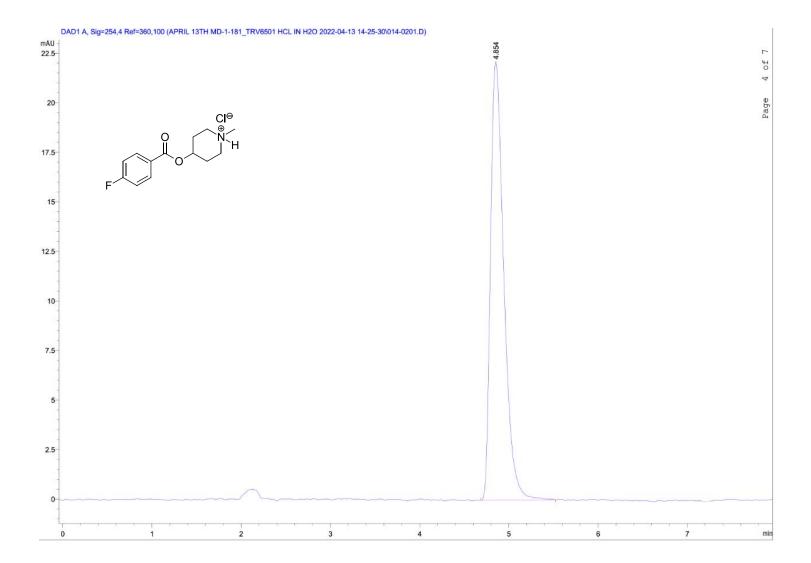

4-(*p***-Fluorobenzoyloxy)-1-methyl-1-piperidinium chloride (13):** To a flask charged with *N*-methylpiperidin-4-yl 4-fluorobenzoate (0.748 g, 3.15 mmol) anhydrous diethyl ether was added until complete dissolution (63 mL) under an argon atmosphere. HCl in diethyl ether 1N (4.73 mL, 4.73 mmol) was added dropwise and stirred for 1 hr at room temperature. The solvent was removed *in vacuo* resulting in a white solid. The compound was triturated with diethyl ether (20 mL) and solvent was removed with a pipet. This process was repeated two more times. The material was dried *in vacuo* to produce 4-(*p*-fluorobenzoyloxy)-1-methyl-1-piperidinium chloride (**13**, 0.773 g, 90%, 2:3 mixture of isomers) as a white solid.

Spectroscopic data: MP_{(diethyl ether}): 219-221°C (Lit MP_{(acetone/ethanol}): 227-228°C); IR (ATR) 2942, 2498, 2431, 1729, 1274, 1257, 766, 605 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ isomer A: 10.78 (br s, 1H), 8.06-8.02 (m, 2H), 7.40-7.34 (m, 2H), 5.10-5.03 (m, 1H), 3.40-3.37 (m, 2H), 3.18-3.10 (m, 2H), 2.73 (d, J = 4.0 Hz, 3H), 2.22-2.14 (m, 2H), 2.07-1.96 (m, 2H); isomer B: 10.59 (br s, 1H), 8.19-8.16 (m, 2H), 7.40-7.34 (m, 2H), 5.26-5.23 (m, 1H), 3.48-3.45 (m, 2H), 3.26-3.18 (m, 2H), 2.80 (d, J = 4.5 Hz, 3H), 2.22-2.14 (m, 2H), 2.07-1.96 (m, 2H); ¹³C NMR (100.7 MHz, CD₃OD) δ isomer A: 165.3 (d, ¹J_{C,F} = 246.4 Hz), 163.9, 132.2 (d, ³J_{C,F} = 9.7 Hz), 126.0, 115.9 (d, ²J_{C,F} = 22.5 Hz), 68.3, 51.2, 41.8, 27.7; isomer B: 165.3 (d, ¹J_{C,F} = 246.4 Hz), 164.0, 132.5 (d, ³J_{C,F} = 9.6 Hz), 126.3, 115.8 (d, ²J_{C,F} = 21.9 Hz), 64.6, 48.7, 42.4, 26.7; LRMS (ESI⁺): 238.1 (M⁺); HRMS (ESI⁺): calculated for C₁₃H₁₇FNO₂⁺: 238.1238 amu; found for C₁₃H₁₇FNO₂⁺: 238.1244 amu; HPLC purity at 254nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 4.854 mins): 100 %.^[6]



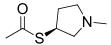
(14) 4-(*p*-Fluorobenzoyloxy)-1-methyl-1-piperidinium Chloride IR(ATR)





(14) 4-(*p*-Fluorobenzoyloxy)-1-methyl-1-piperidinium Chloride ¹³C NMR 100 MHz (DMSO-*d6*)

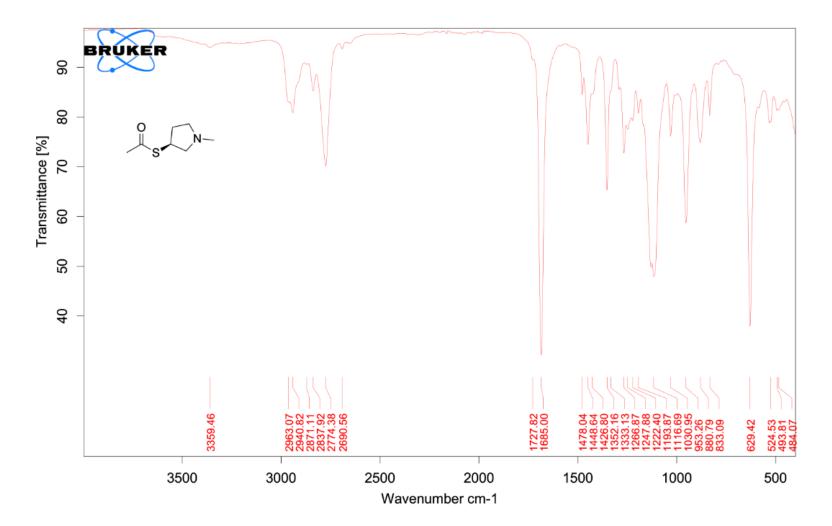
(14) 4-(*p*-Fluorobenzoyloxy)-1-methyl-1-piperidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)



(14) 4-(*p*-Fluorobenzoyloxy)-1-methyl-1-piperidinium Chloride HPLC

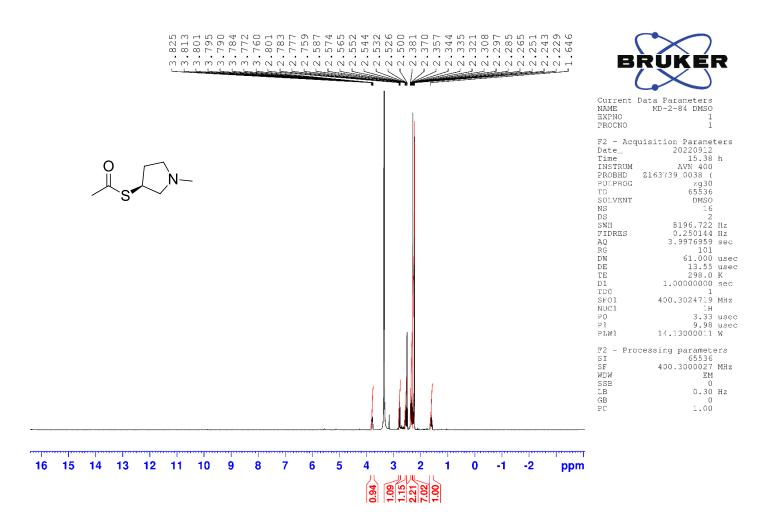
Alkyl N-Methylpyrrolidinyl Derivatives

(15) (3S)-S-(1-Methylpyrrolidin-3-yl) Ethanethioate

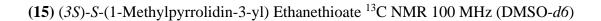

Synthesis: (**3***R*)-**3**-(**Mesyloxy**)-**1**-methylpyrrolidine: (3*R*)-(-)-1-Methyl-3-pyrrolidinol (5.00 mL, 45.5 mmol) and triethylamine (9.52 mL, 68.3 mmol) were dissolved in anhydrous dichloromethane (152 mL) and cooled to 0°C with an ice bath. Methanesulfonyl chloride (5.22 mL, 52.4 mmol) was added dropwise at 0°C. The ice bath was removed after 5 mins, and the reaction was stirred overnight. The reaction was quenched with brine (50 mL), extracted with dichloromethane (3×15 mL). The combined organic layers were dried over Na₂SO₃, gravity filtered, and the filtrate was concentrated *in vacuo* to produce a viscous yellow liquid (4.14 g, 51%). Product confirmed by ¹H NMR and immediately carried through to next step.

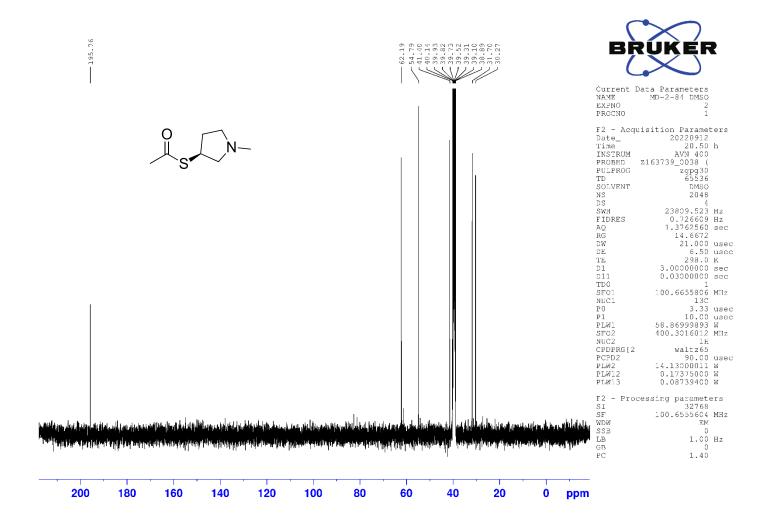
Spectroscopic data: IR(ATR): 3026, 2942, 2784, 1346, 1166, 521 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) d 5.23-5.19 (m, 1H), 3.01 (s, 3H), 2.90 (dd, J = 11.3, 2.2 Hz, 1H), 2.87-2.83 (m, 1H), 2.72 (dd, J = 11.3, 5.7 Hz, 1H), 2.39-2.28 (m, 2H), 2.38 (s, 3H), 2.14-2.06 (m, 1H); ¹³C NMR (100.7 MHz, CDCl₃) δ 80.6 (1), 62.4 (2), 54.6(2), 41.9 (3), 38.7 (3), 33.1 (2); HRMS (ESI⁺): calculated for C₆H₁₄NO₃S⁺: 180.0689 amu; found for C₆H₁₄NO₃S⁺: 180.0689 amu.

(*3S*)-S-(1-Methylpyrrolidin-3-yl) ethanethioate: (*3R*)-3-(Mesyloxy)-1-methylpyrrolidine (2.35 g, 13.1 mmol) was dissolved in anhydrous DMF (44 mL) under an argon atmosphere. Potassium thioacetate (4.50 g, 39.4 mmol) was added in 3 portions, allowing the salt to dissolve before adding more. After the potassium thioacetate addition and dissolution, the reaction was heated to

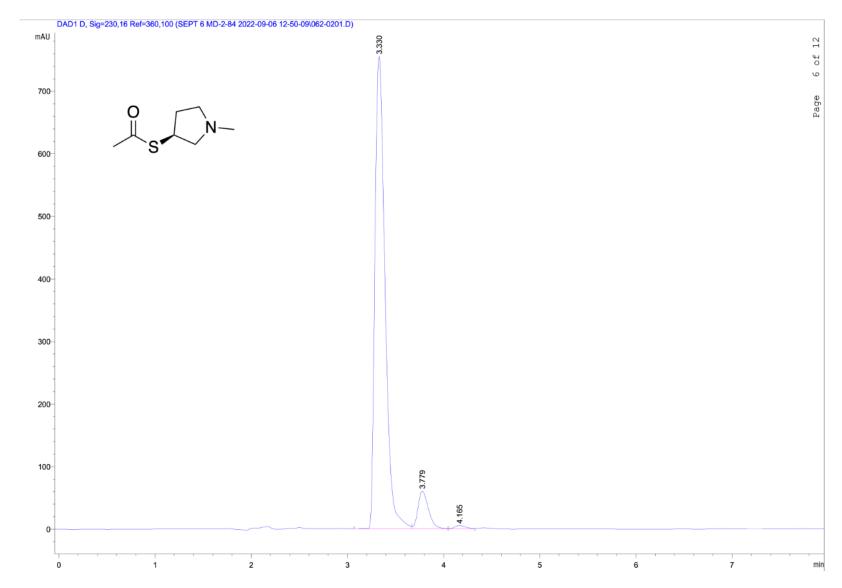

 30° C for 1hr. After this time, the reaction was cooled to room temperature, diluted with water (50 mL) and extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with water (5 × 20 mL), dried over Na₂SO₃, and gravity filtered. The filtrate was concentrated *in vacuo* to afford a viscous red liquid (1.88 g). A portion of this material (0.462 g) was purified using flash column chromatography through silica gel (5% MeOH/DCM) to produce a viscous red liquid (0.3183 g, 40% yield).

Spectroscopic Data: IR(ATR): 2963, 2940, 2774, 1685, 1116, 953, 629 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ 3.82-3.76 (m, 1H), 2.78 (dd, J = 9.7, 7.3 Hz, 1H), 2.58-2.53 (m, 1H), 2.38-2.32 (m, 2H), 2.30-2.23 (m, 1H), 2.28 (s, 3H), 2.23 (s, 3H), 1.64-1.57 (m,1H); ¹³C NMR (100.7 MHz, DMSO-*d*6) δ 195.8 (0), 62.2 (2), 54.8 (2), 41.4 (3), 39.8 (1), 31.7 (2), 30.3 (3); HRMS (ESI⁺): calculated for C₇H₁₄NOS⁺: 160.0791 amu; found for C₇H₁₄NOS⁺: 160.0793 amu; HPLC purity at 230nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 3.330 mins): 91.5 %.




(15) (3S)-S-(1-Methylpyrrolidin-3-yl) Ethanethioate IR(ATR)

(15) (3S)-S-(1-Methylpyrrolidin-3-yl) Ethanethioate ¹H NMR 400 MHz (DMSO-d6)

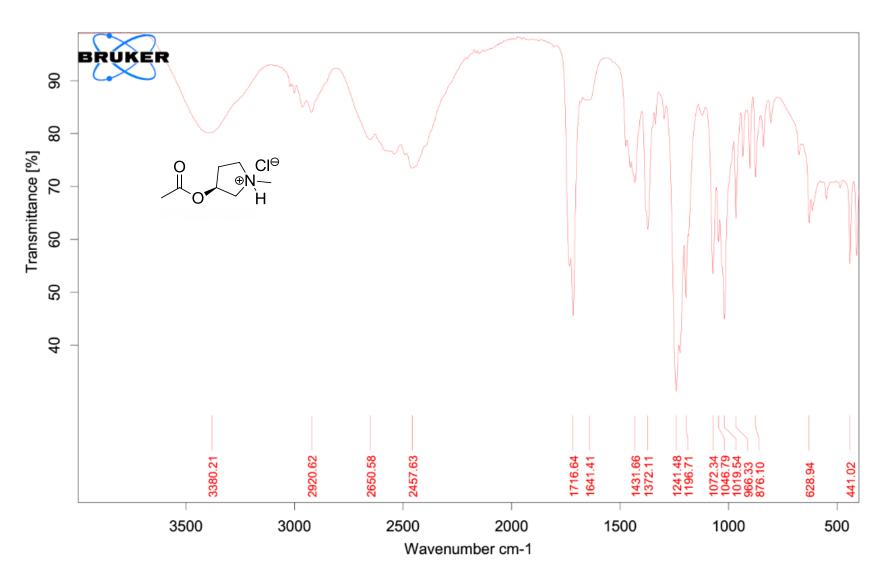

77

(15) (*3S*)-*S*-(1-Methylpyrrolidin-3-yl) Ethanethioate High Resolution Mass Spectrum (ESI, positive mode)

Analysis Info		Acquis	Acquisition Date 2022-08-11 3:24:25 PM			
Analysis Name Method Sample Name Comment	D:\Data\Xiao\Aug 11 2022000018.d Xiao all 1.m TRV-6019				or x nent compact	8255754.2005
Acquisition Parar	neter					
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Set Charging Set Corona	Offset -50	itive 0 V 0 V 0 V A	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater	
Meas. m/z 160.0793	lon Formula m/z C7H14NOS 160.0791	err [ppm] -1.5				
Intens. x10 ⁴		160.0	793			+MS, 0.0-1.3min #2-77
2.5	J _s , N	-				
2.0						
1.5						
1.0-						
0.5					161.0822	
-		159.9678			٨	
0.0		A 1			· //	

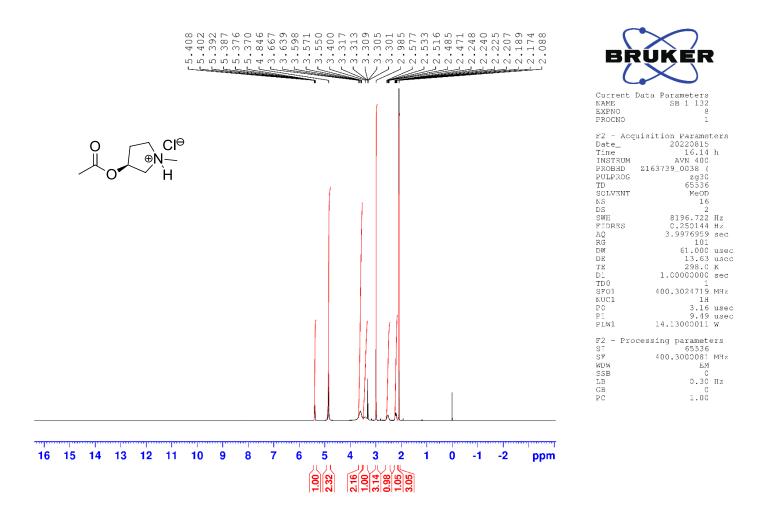
(15) (3S)-S-(1-Methylpyrrolidin-3-yl) Ethanethioate HPLC

(16) (3S)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride

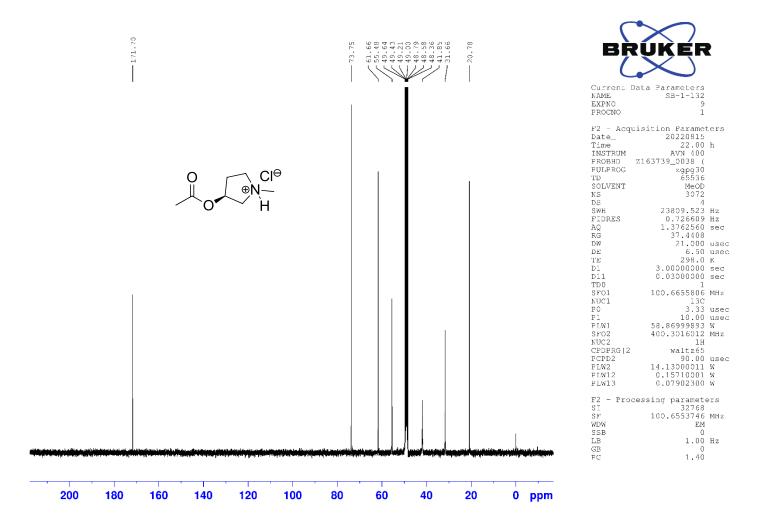


Synthesis: (*S*)-1-Methyl-3-pyrrolidinyl acetate: (*S*)-(+)-1-Methyl-3-pyrrolidinol (0.329 mL, 3 mmol) and triethylamine (1.05 mL, 7.5 mmol) were dissolved in anhydrous dichloromethane (10 mL) and cooled to 0°C with an ice bath. Acetyl chloride (0.213 mL, 3 mmol) was added dropwise at 0°C. The ice bath was removed after 5 mins, and the reaction was stirred for 6 hrs. The reaction was quenched with of brine (10 mL) and extracted with dichloromethane (3×15 mL). The combined organic layers were dried over Na₂SO₃, gravity filtered, and the filtrate was removed *in vacuo* to produce a yellow oil. The crude mixture was purified by silica gel column chromatography (5% MeOH/DCM) to produce (*S*)-1-methyl-3-pyrrolidinyl acetate (0.293 g, 68 %) as a yellow oil.

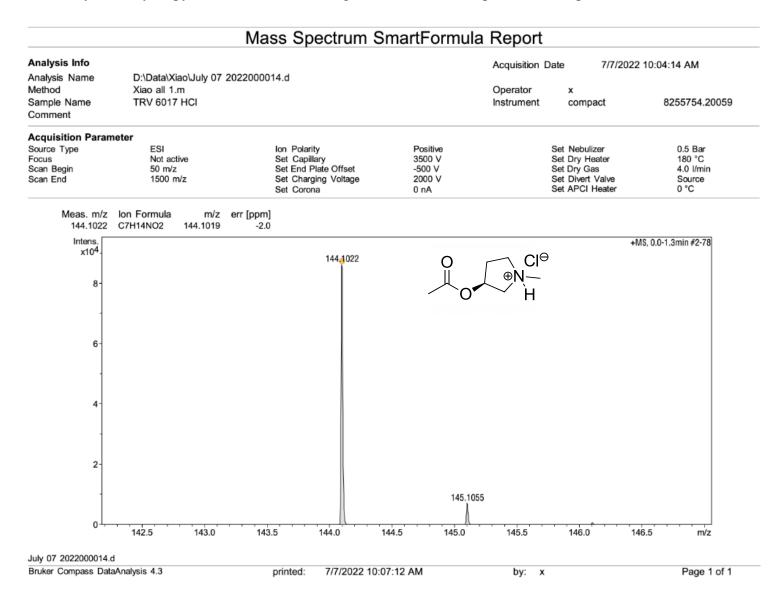
Spectroscopic data: ¹H NMR (400 MHz, DMSO-*d6*) δ 5.18-5.14 (m, 1H), 2.85-2.81 (m, 1H), 2.73 (dd, J = 10.9, 1.6 Hz, 1H), 2.57 (dd, J = 10.9, 5.9 Hz, 1H), 2.35 (s, 3H), 2.31-2.21 (m, 2H), 2.04 (s, 3H), 1.89-1.80 (1H); ¹³C NMR (100.7 MHz, DMSO-*d6*) δ 171.1 (0), 74.8 (1), 62.3 (2), 55.1 (2), 42.1 (3), 32.7 (2), 21.4 (3).

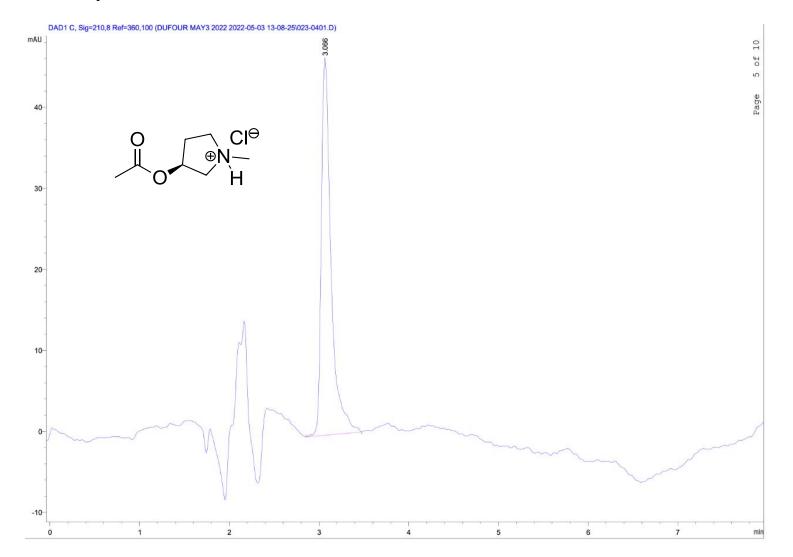

(*3S*)-3-Acetoxy-1-methyl-1-pyrrolidinium chloride: To a flask charged with (*S*)-1-Methyl-3pyrrolidinyl acetate (0.124 g, 0.867 mmol) anhydrous diethyl ether was added until complete dissolution (17 mL) under an argon atmosphere. HCl in diethyl ether (1 N solution, 1.3 mL, 1.3 mmol) was added dropwise and stirred for 1 hr. The solvent was removed *in vacuo* resulting in a white solid. The compound was triturated three times with diethyl ether (20 mL), solvent was removed with a pipet and compound placed under vacuum (1 mm Hg) to produce (*3S*)-3acetoxy-1-methyl-1-pyrrolidinium chloride (0.141 g, 90%) as a white solid.

Spectroscopic data: IR(ATR): 3380, 2921, 2650, 2458, 1717, 1241, 1047 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 5.41-5.37 (m, 1H), 4.85 (br s, 2H), 3.67-3.55 (m, 2H), 3.42-3.38 (m, 1H), 2.98 (s, 3H), 2.58-2.47 (m, 1H), 2.25-2.17 (m, 1H), 2.09 (s, 3H); ¹³C NMR (100.7 MHz, DMSO-*d*6) δ 171.7 (0), 73.8 (1), 61.7 (2), 55.5 (2), 41.9 (3), 31.7 (2), 20.8 (3); LRMS (ESI⁺): 144.1 (M⁺); HRMS (ESI⁺): calculated for C₇H₁₄NO₂⁺: 144.1019 amu; found for C₇H₁₄INO₂⁺: 144.1022 amu; HPLC purity at 210nm (75% CH3CN : 10% CH3OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 3.066 mins): >99 %.



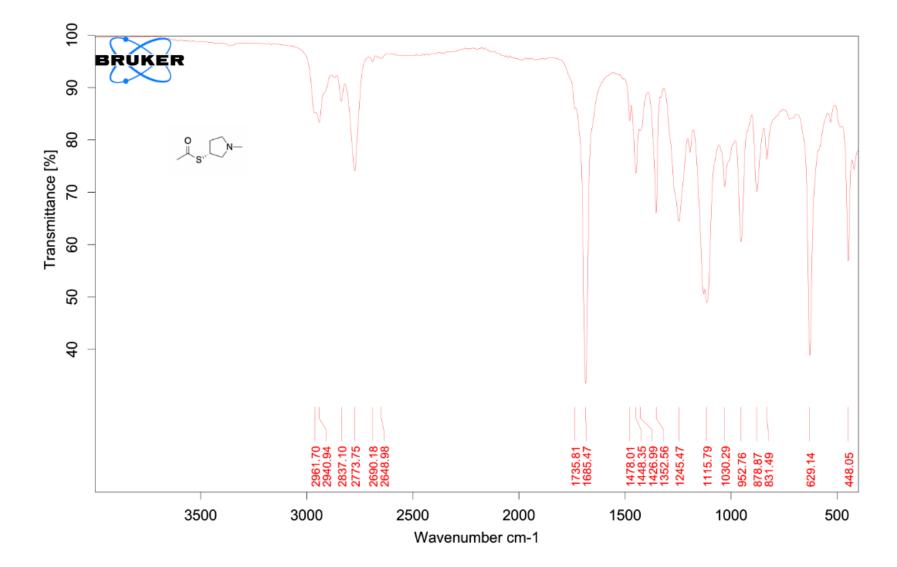
(16) (3S)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride IR(ATR)


(16) (3S)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride ¹H NMR 400 MHz (CD₃OD-d4)

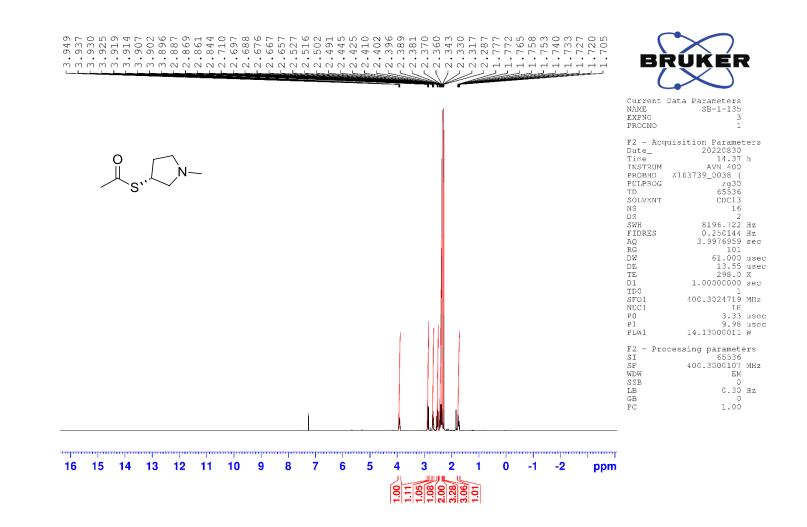

(16) (3S)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride ¹³C NMR 100 MHz (CD₃OD-d4)

(16) (3S)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)

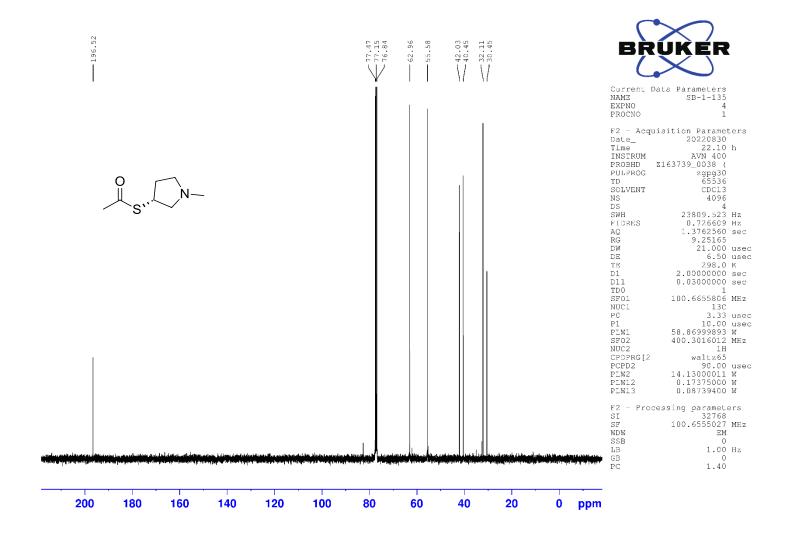
(16) (3S)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride HPLC. Note: Noise from the injection has a retention time from 1.6 min until 2.5 min. The compound of interest has a retention time of 3.066 min.

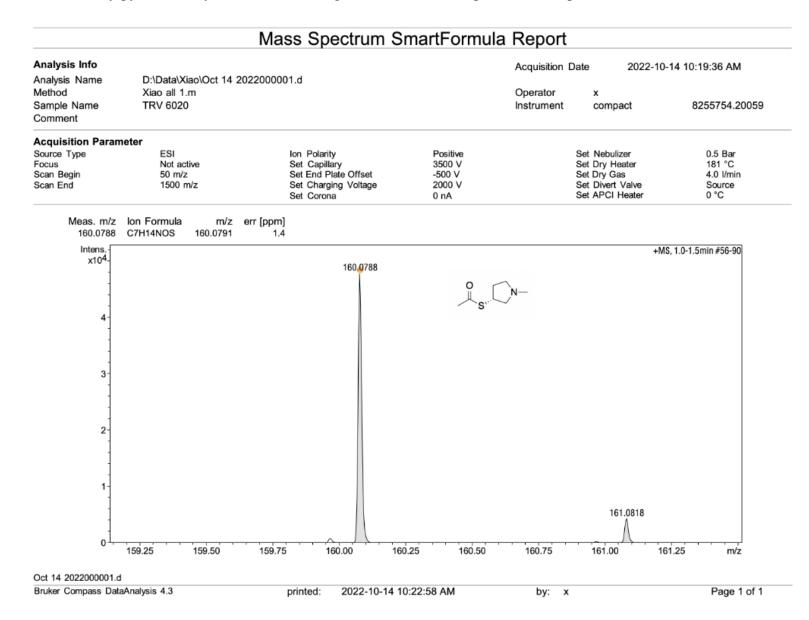


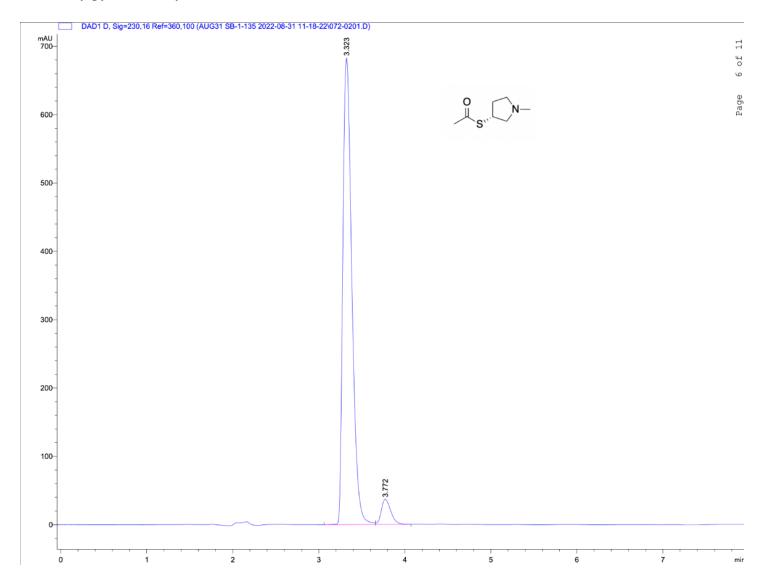
(17) (3R)-S-(1-Methylpyrrolidin-3-yl) Ethanethioate


Synthesis: (*3R*)-*S*-(1-methylpyrrolidin-3-yl) ethanethioate: (*3S*)-(+)-1-Methyl-3-pyrrolidinol (6.00 mL, 54.6 mmol) was dissolved in dry dichloromethane (180 mL) and cooled in an ice bath. Triethylamine (11.4 mL, 81.9 mmol) was added dropwise. The mixture was stirred for 5 mins before the dropwise addition of methanesulfonyl chloride (4.90 mL, 62.6 mmol). The mixture was warmed slowly to room temperature and stirred for 16 hrs. The reaction was then quenched with the addition of brine (50 mL). The layers were separated, and the aqueous layer was backextracted with dichloromethane (2×30 mL). The combined organics were washed with saturated NaHCO_{3(aq)}, dried over Na₂SO₄, gravity filtered, and the filtrate was concentrated to afford 8.01 g (82% yield) of the labile mesylate as an oil, which was used immediately without purification. The crude mesylate (6.80 g, 38.0 mmol) was charged to a round-bottom flask. To this was added 18-crown-6 ether (15.1 g, 57.0 mmol), THF (125 mL), and then potassium thioacetate (6.50 g, 57.0 mmol) in one portion. The mixture was heated to reflux and stirred overnight for 16 hrs. After cooling to room temperature, the reaction was diluted with H_2O (60 mL) and extracted with ethyl acetate (3 x 60 mL). The combined organic layers were washed with saturated $NH_4Cl_{(aq)}$, H_2O (3 × 60 mL), brine (60 mL), and dried with Na₂SO₄. The mixture was gravity filtered and the filtrate was concentrated to give 3.59 g of a purple oil. Vacuum distillation (heating at 115°C at 1 mmHg and collecting the distillate at 74-76°C) afforded 2.43 g of an orange oil. This material was then dissolved in ethyl acetate and extracted with 1N HCl (2 x 15 mL). The combined aqueous extracts were basified by the dropwise addition of $2N Na_2CO_3(aq)$ and then quickly extracted with dichloromethane (3 x 30 mL). The combined dichloromethane

extracts were washed with brine, dried (Na₂SO₄), gravity filtered, and the filtrate was concentrated *in vacuo* to give 1.57 g of a yellow oil. This material was dissolved in *i*-PrOH (100 mL) and treated with oxalic acid (0.875 g, 9.72 mmol). After stirring for 2 hrs, the thick white precipitate was collected by filtration, washing with *i*-PrOH (50 mL). The crude solid was then recrystallized from *i*-PrOH to give 1.85 g of a yellowish solid, which was immediately treated with 50 mL of saturated NaHCO₃(aq) and then extracted with DCM (3 x 60 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered and concentrated to give (*3R*)-*S*-(1-methylpyrrolidin-3-yl) ethanethioate (0.985 g,16% yield) as a yellow viscous liquid.

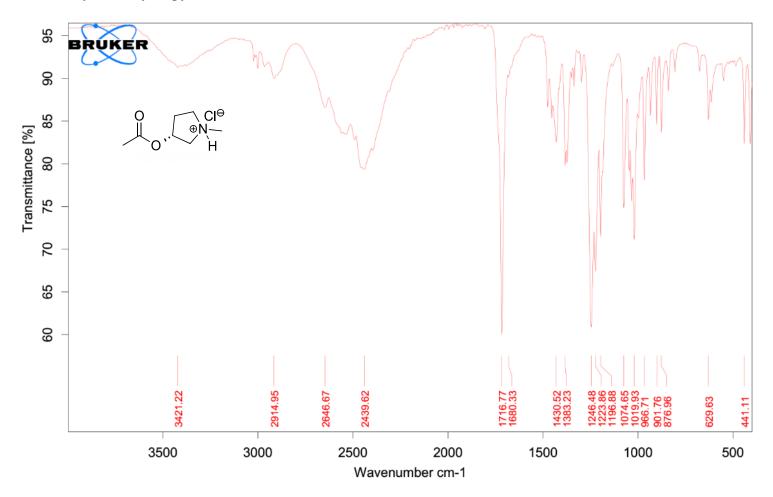

Spectroscopic data: IR(ATR) 2962, 2941, 2774, 1685, 1116, 629 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.95-3.88 (m, 1H), 2.87 (dd, J = 10.1, 7.1 Hz, 1H), 2.71-2.64 (m, 1H), 2.51 (dd, J = 10.1, 4.6 Hz, 1H), 2.44-2.36 (m, 2H), 2.34 (s, 3H), 2.29 (s, 3H), 1.78-1.71 (m, 1H); ¹³C NMR (100.7 MHz, CD₃OD-*d4*) δ 196.5 (0), 63.0 (2), 55.6 (2), 42.0 (3), 40.5(1), 32.1 (2), 30.5 (3); LRMS (ESI⁺): 160.1 (M⁺); HRMS (ESI⁺): calculated for C₇H₁₄NOS⁺: 160.0791 amu; found for C₇H₁₄NOS⁺: 160.0788 amu; HPLC purity at 230 nm (25% CH₃CN : 75% CH₃OH, retention time: 3.323 mins): 95%.


(17) (*3R*)-*S*-(1-Methylpyrrolidin-3-yl) Ethanethioate IR(ATR)


(17) (3R)-S-(1-Methylpyrrolidin-3-yl) Ethanethioate ¹H NMR 400 MHz (CDCl₃)

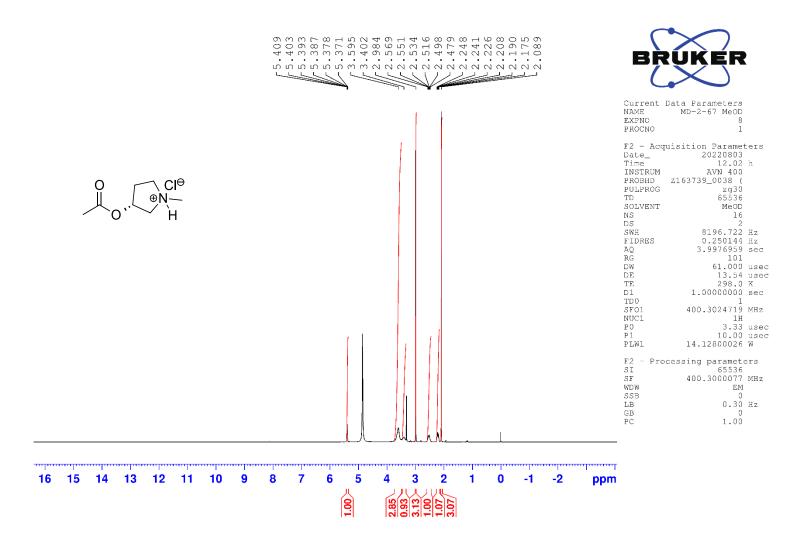
(17) (3*R*)-*S*-(1-Methylpyrrolidin-3-yl) Ethanethioate High Resolution Mass Spectrum (ESI, positive mode)

(17) (*3R*)-*S*-(1-Methylpyrrolidin-3-yl) Ethanethioate HPLC

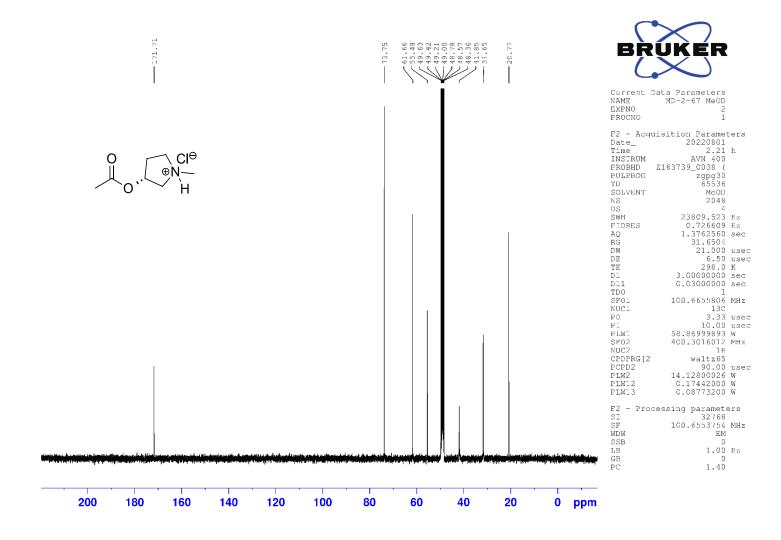

(18) (3R)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride

Synthesis: (*3R*)-1-Methyl-3-pyrrolidinyl acetate: (*3R*)-(-)-1-Methyl-3-pyrrolidinol (0.549 mL, 5.00 mmol) and triethylamine (1.74 mL, 12.5 mmol) were dissolved in anhydrous dichloromethane (17 mL) and cooled to 0°C with an ice bath. Acetyl chloride (0.356 mL, 5.00 mmol) was added dropwise at 0°C. The ice bath was removed after 5 min, and the reaction was stirred for 3 hrs. The reaction was quenched with 20 mL of brine, extracted with DCM (3×15 mL) and dried over Na₂SO₃. After gravity filtration of the drying agent, the solvent was removed *in vacuo* to produce a yellow oil. The crude mixture was purified by silica gel column chromatography (5% MeOH/DCM) to produce (*3R*)-1-methyl-3-pyrrolidinyl acetate (0.227 g, 32%) as a yellow oil.

Spectroscopic data: IR(ATR) 2944, 2839, 2780, 1735, 1236, 887cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.21-5.16 (m, 1H), 2.89-2.84 (m, 1H), 2.73 (d, J = 10.6 Hz, 1H), 2.58 (dd, J = 10.9, 5.9 Hz, 1H), 2.36 (s, 3H), 2.30-2.23 (m, 2H), 2.04 (s, 3H), 1.89-1.83 (m, 1H); ¹³C NMR (100.7 MHz, CDCl₃) δ 171.2 (0), 74.8 (1), 62.3 (2), 55.1 (2), 42.1 (3), 32.7 (2), 21.4 (3); HRMS (ESI⁺): calculated for C₇H₁₄NO₂⁺: 144.1019 amu; found for C₇H₁₄NO₂⁺: 144.1019 amu; HPLC purity at 200 nm (25% CH₃CN : 75% CH₃OH, retention time: 3.09 mins): >99%.

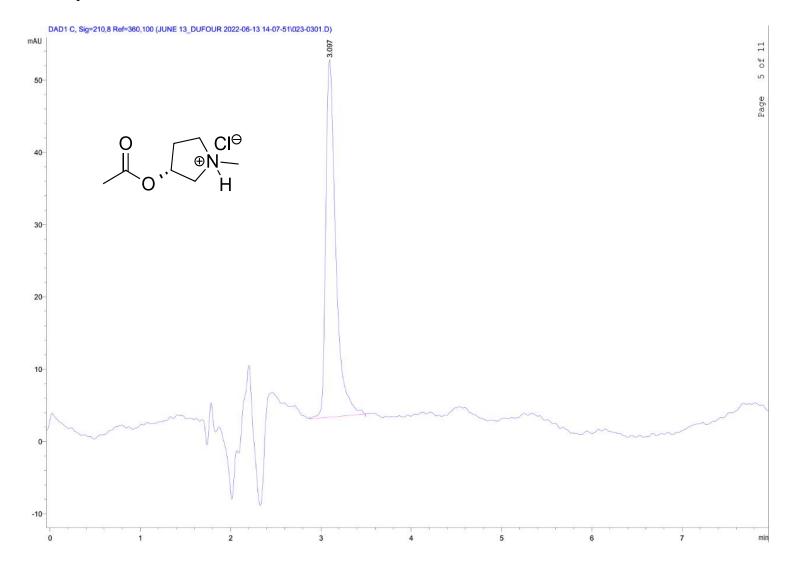

(*3R*)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride: To a flask charged with (*3R*)-1-methyl-3pyrrolidinyl acetate (0.122 g, 0.85 mmol) anhydrous diethyl ether was added until complete dissolution (17 mL) under an argon atmosphere. HCl in diethyl ether (1 N - 1.28 mL, 1.28 mmol) was added dropwise and stirred for 1hr. The solvent was removed *in vacuo* resulting in a white solid. The compound was triturated with diethyl ether (20 mL), and the solvent was removed with a pipet. This process was repeated two more times. The compound was dried *in vacuo* to produce (3R)-3-acetoxy-1-methyl-1-pyrrolidinium chloride (0.146 g, 96%).

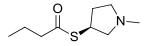
Spectroscopic data: MP_{(diethyl ether}): 90-93°C; IR(ATR) 2915, 2647, 2440, 1717, 1246, 1224, 967 cm⁻¹; ¹H NMR (400 MHz, CD₃OD-*d4*) δ 5.41-5.37 (m, 1H), 3.60 (app br s, 3H), 3.40 (app br s, 1H), 2.98 (s, 3H), 2.57-2.48 (m, 1H), 2.25-2.17 (m, 1H), 2.09 (s, 3H); ¹³C NMR (100.7 MHz, CD₃OD-*d4*) δ 171.7 (0), 73.8 (1), 61.7 (2), 55.5 (2), 41.9 (3), 31.7 (2), 20.8 (3); LRMS (ESI⁺): 144.1 (M⁺); HRMS (ESI⁺): calculated for C₇H₁₄NO₂⁺: 144.1019 amu; found for C₇H₁₄NO₂⁺: 144.1018 amu; HPLC purity at 230 nm (25% CH₃CN : 75% CH₃OH, retention time: 3.097 mins): >99%.



(18) (*3R*)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride IR(ATR)

(18) (3R)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride ¹H NMR 400 MHz (CD₃OD-d4)


(18) (3R)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride ¹³C NMR 100 MHz (CD₃OD-d4)


(18) (3R)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)

alysis Info				Acquisition Date 7/	6/2022 2:53:34 PM
nalysis Name	D:\Data\Xiao\July 06 2	022000010.d		0	
lethod Sample Name	Xiao all 1.m TRV 6018 HCI			Operator x Instrument compact	8255754.20059
Comment					0200704.2000
cquisition Paran					
ource Type ocus	ESI Not active	lon Polarity Set Capillary	Positive 3500 V	Set Nebulizer Set Dry Heater	0.5 Bar 181 °C
can Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
can End	1500 m/z	Set Charging Voltage Set Corona	2000 V 0 nA	Set Divert Val Set APCI Heat	
Meas. m/z 144.1018		err [ppm] 0.6			
Intens x10 ⁴					+MS, 0.0-1.2min #2-73
8-		144.1018	0	∽ Cl [⊖]	
8-				⊕N—	
				`О`' `` ` Н	
				o 11	
6-					
6-					
6-					
6-					
6- - 4-					
-					
-					
4-					
-					
4-					
4-			145,105	51	
4-			145.105	51	

(18) (3R)-3-Acetoxy-1-methyl-1-pyrrolidinium Chloride HPLC. Note: Noise from the injection has a retention time from 1.6 min until 2.5 min. The compound of interest has a retention time of 3.097 min.

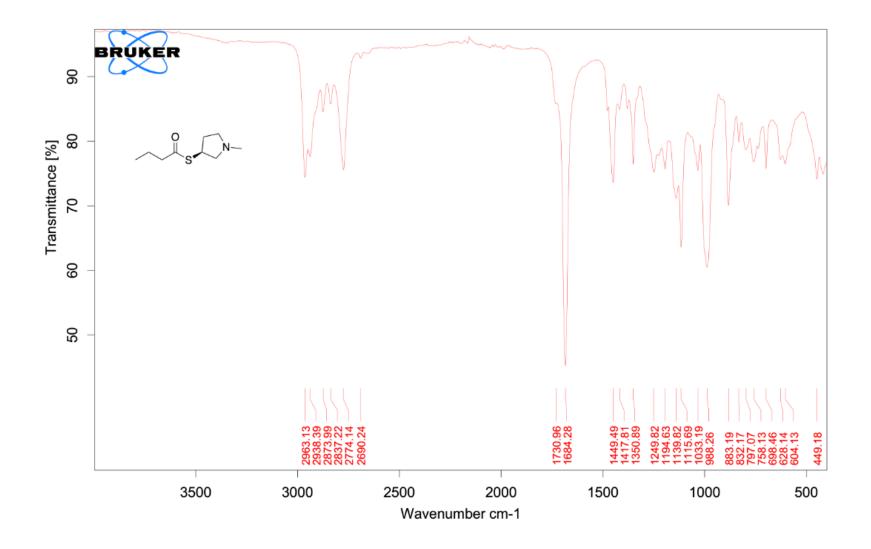
(19) ((3S)-1-Methylpyrrolidin-3-yl) Butanethioate

Synthesis: (*3R*)- **3**-(Mesyloxy)-1-methylpyrrolidine: (*3R*)-(-)-1-Methyl-3-pyrrolidinol (6.0 mL, 54.6 mmol) was dissolved in anhydrous dichloromethane (180 mL) and cooled to 0°C with an ice bath. Triethylamine (11.4 mL, 81.9 mmol) and methanesulfonyl chloride (4.9 mL, 62.8 mmol) were added dropwise at 0°C. The ice bath was removed after 5 min, and the reaction was stirred overnight (16 hrs). The reaction was quenched with brine (50 mL), extracted with dichloromethane (3×15 mL) and dried over Na₂SO₃. The solvent was removed *in vacuo* to produce (*3R*)-3-(mesyloxy)-1-methylpyrrolidine as a yellow oil (6.11 g, 54%). Product confirmed by ¹H NMR and immediately carried through to next step.

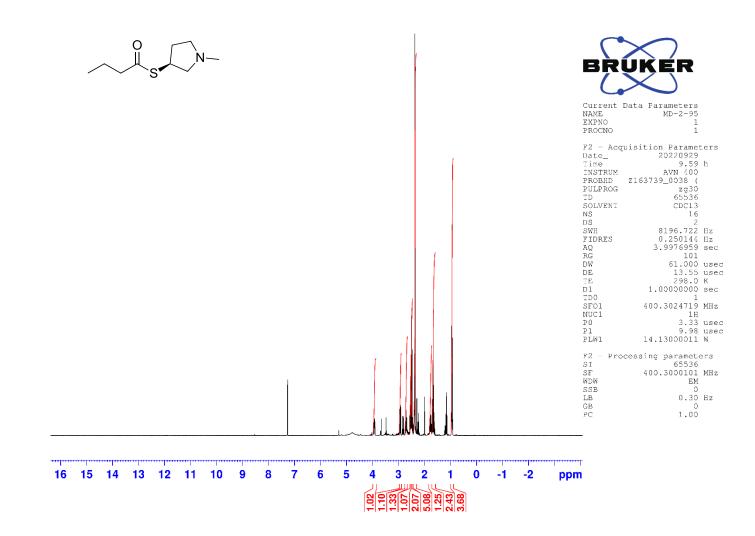
Spectroscopic data: ¹H NMR (400 MHz, CDCl₃) δ 5.23-5.19 (m, 1H), 3.01 (s, 3H), 2.90 (dd, J = 11.6 Hz, 2.0 Hz, 1H), 2.87-2.83 (m, 1H), 2.71 (dd, J = 11.3, 5.7 Hz, 1H), 2.37 (s, 3H), 2.35-2.28 (m, 2H), 2.14-2.05 (m, 1H).

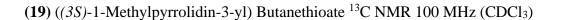
(3S)-S-(1-Methylpyrrolidin-3-yl) ethanethioate: (3R)-3-(Mesyloxy)-1-methylpyrrolidine (6.11g, 34.11 mmol), was dissolved in anhydrous THF (114 mL) under an argon atmosphere. 18-Crown-6-ether (9.91 g, 37.5 mmol) was added followed by potassium thioacetate (4.29 g, 37.5 mmol), added in 3 portions. Once all potassium thioacetate had gone into solution, the reaction was heated to 30°C and stirred overnight. The reaction was gravity filtered and the filtrate was diluted with water (50 mL). The layers were separated, and the aqueous layer was extracted with ethyl acetate (3×15 mL). The combined organic layers were washed with water (3×20 mL) and brine (3×20 mL), dried over Na₂SO₃, gravity filtered, and the filtrate was concentrated *in vacuo* to produce a red oil. This crude material was distilled under vacuum (1 mm Hg at 95 °C) to give (3S)-S-(1-methylpyrrolidin-3-yl) ethanethioate as a yellow oil (2.33 g, 37%). Product confirmed by ¹H NMR and immediately carried through to next step.

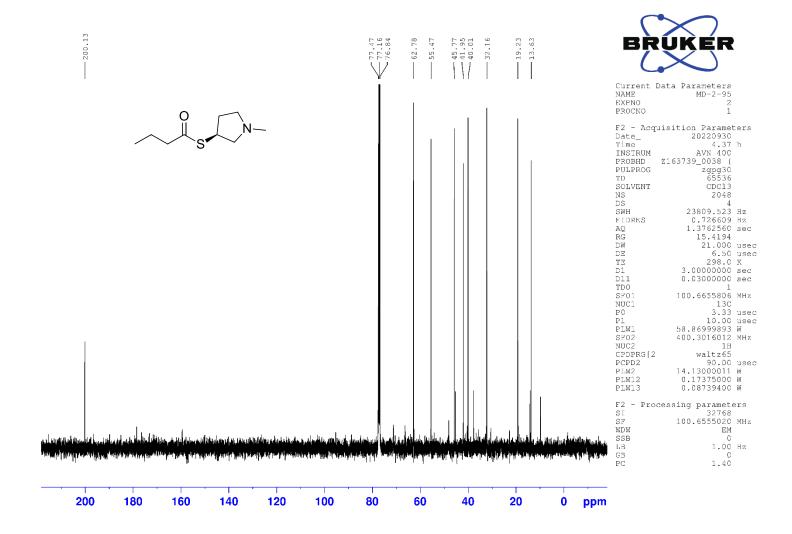
Spectroscopic data: ¹H NMR (400 MHz, CDCl₃) δ 3.95-3.89 (m, 1H), 2.94 (dd, J = 10.2 Hz, 7.3 Hz, 1H), 2.76-2.71 (m, 1H), 2.56 (dd, J = 10.4, 4.8 Hz, 1H), 2.52-2.46 (m, 1H), 2.40-2.35 (m, 1H), 2.38 (s, 3H).

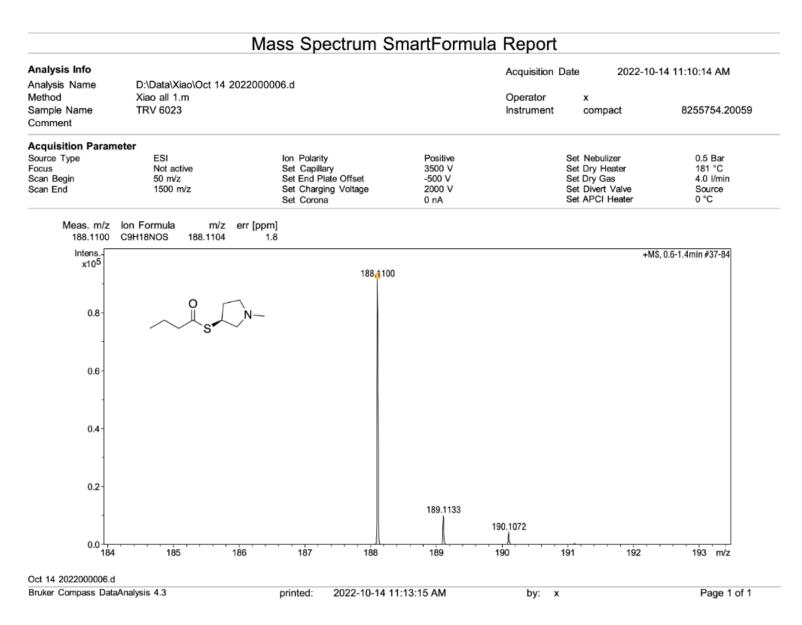

(*3S*)-1-Methyl-3-pyrrolidinethiol: (*3S*)-S-(1-Methylpyrrolidin-3-yl) ethanethioate (0.952 g, 5.98 mmol) was dissolved in MeOH (30 mL) and sodium methoxide (0.333 g, 5.98 mmol) was added to the stirring solution. After (*3S*)-S-(1-methylpyrrolidin-3-yl) ethanethioate was no longer visible by thin layer chromatography developed by a KMnO₄ stain, the reaction was concentrated *in vacuo*. The resulting material was taken up in dichloromethane and concentrated *in vacuo*, and this process was repeated twice.

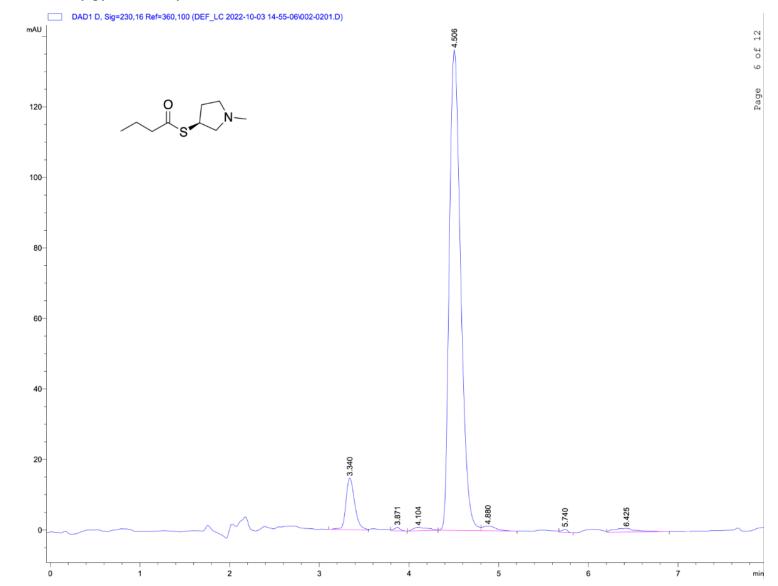
Product confirmed by ¹H NMR and immediately carried through to next step.

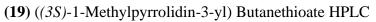

Spectroscopic data: ¹H NMR (400 MHz, CDCl₃) δ 3.40-3.35 (m, 1H), 2.79-2.71 (m, 2H), 2.52-2.48 (m, 1H), 2.33-2.36 (m, 3H), 2.31 (s, 3H), 1.72-1.63 (m, 1H).


((*3S*)-1-Methylpyrrolidin-3-yl) butanethioate: The entire material of (*3S*)-1-methyl-3pyrrolidinethiol from the previous step was dissolved in dichloromethane (20 mL) and the resulting solution was cooled to 0°C in an ice bath. Butyryl chloride (0.621 mL, 5.98 mmol) was added followed by triethylamine (1.67 mL, 12.0 mmol). The ice bath was removed after 30 mins and the reaction was stirred overnight for 16 hrs. The reaction was concentrated *in vacuo* to afford a white material. This crude material was placed in diethyl ether (20 mL), gravity filtered to remove the insoluble material, and the filtrate was concentrated *in vacuo* to give ((*3S*)-1methylpyrrolidin-3-yl) butanethioate as a clear oil (0.786 g, 70%). *Spectroscopic data*: IR(ATR) 2963, 2938, 2774, 1684, 1116, 988, 883 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.96-3.90 (m, 1H), 2.94 (dd, J = 10.2, 7.3 Hz, 1H), 2.74-2.68 (m, 1H), 2.54 (dd, J = 10.12, 5.2 Hz, 1H), 2.47 (t, J = 7.5 Hz, 2H), 2.38-2.36 (m, 2H), 2.36 (s, 3H), 1.80-1.72 (m, 1H), 1.65 (sextet, J = 7.4 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (100.7 MHz, DMSO-*d6*) δ 200.1 (0), 62.8 (2), 55.5 (2), 45.8 (2), 42.0 (2), 40.0 (1), 32.2 (2), 19.2 (2), 13.6 (3); HRMS (ESI⁺): calculated for C₉H₁₈NOS⁺: 188.1104 amu; found for C₉H₁₈NOS⁺: 188.1100 amu; HPLC purity at 230 nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 4.506 mins): 89%.

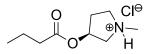

(19) ((3S)-1-Methylpyrrolidin-3-yl) Butanethioate IR(ATR)


(19) ((3S)-1-Methylpyrrolidin-3-yl) Butanethioate ¹H NMR 400 MHz (CDCl₃)



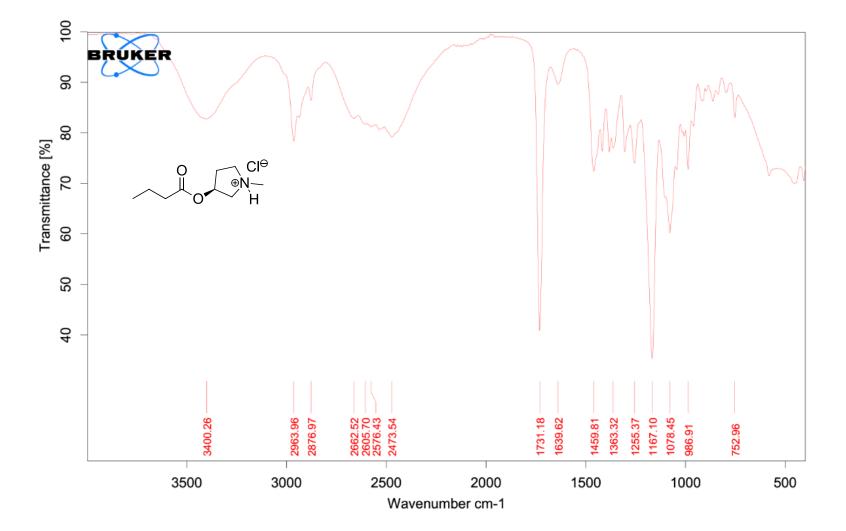


(19) ((3S)-1-Methylpyrrolidin-3-yl) Butanethioate High Resolution Mass Spectrum (ESI, positive mode)

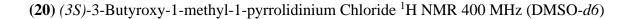


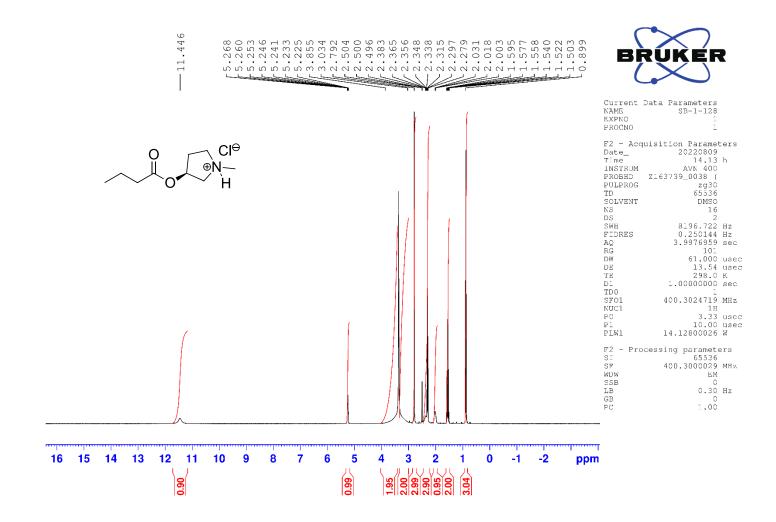
108

(20) (3S)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride

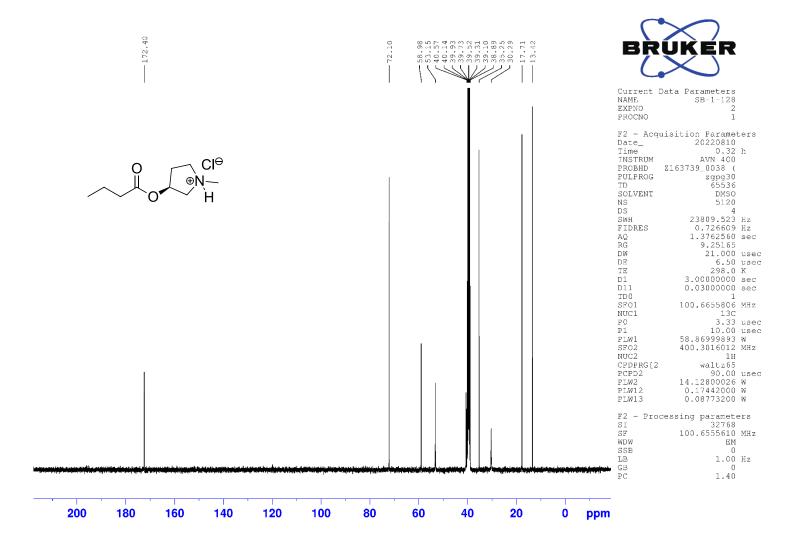

Synthesis: (*3S*)-1-Methyl-3-pyrrolidinyl butyrate: (*3S*)-(+)-1-Methyl-3-pyrrolidinol (0.329 mL, 3 mmol) and triethylamine (1.05 mL, 7.5 mmol) were dissolved in anhydrous dichloromethane (10 mL) and cooled to 0°C with an ice bath. Butyryl chloride (0.312 mL, 3.00 mmol) was added dropwise at 0°C. The ice bath was removed after 5 min, and the reaction was stirred for 3hrs. The reaction was quenched with brine (10 mL), extracted with dichloromethane (3×15 mL) and dried over Na₂SO₃. The solvent was removed *in vacuo* to produce a yellow oil. The crude mixture was purified using flash chromatography through silica gel column (5% MeOH/DCM) to afford (*3S*)-1-methyl-3-pyrrolidinyl butyrate as a yellow viscous liquid (0.367 g, 71%). The analytical data was similar to previously published data.^[4]

(3S)-3-Butyroxy-1-methyl-1- pyrrolidinium chloride: To a flask charged with (3S)-1-methyl-3-pyrrolidinyl butyrate (0.367 g, 1.77 mmol) anhydrous diethyl ether was added until complete dissolution (35 mL) under an argon atmosphere. HCl in diethyl ether 1 N (2.65 mL, 2.65 mmol) was added dropwise and stirred for 1hr. The solvent was removed in vacuo resulting in a white solid. The compound was triturated three times with diethyl ether (20 mL), solvent was removed with a pipet. This process was repeated two more times. The resulting white solid was dried *in vacuo* to produce (3S)-3-butyroxy-1-methyl-1- pyrrolidinium chloride (0.303 g, 82%).

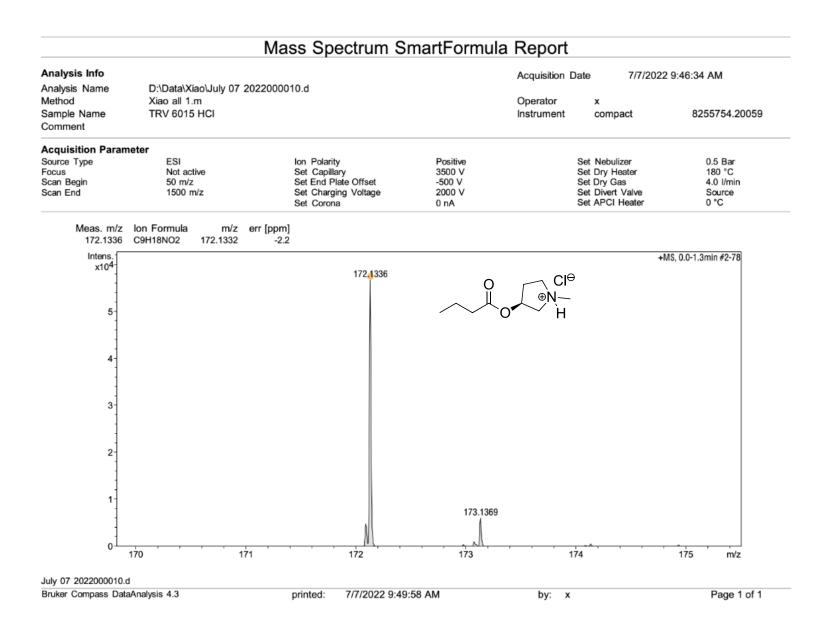

Spectroscopic data: IR(ATR) 3400, 2964, 2877, 2663, 2606, 2576, 2473, 1731, 1167, 1078 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ 11.45 (br s, 1H), 5.27-5.23 (m, 1H), 3.85-3.03 (br app m, 4H), 2.79 (s, 3H), 2.38-2.34 (m, 1H), 2.30 (t, J = 7.4 Hz, 2H), 2.03-2.00 (m, 1H), 1.55 (sext, J = 7.4

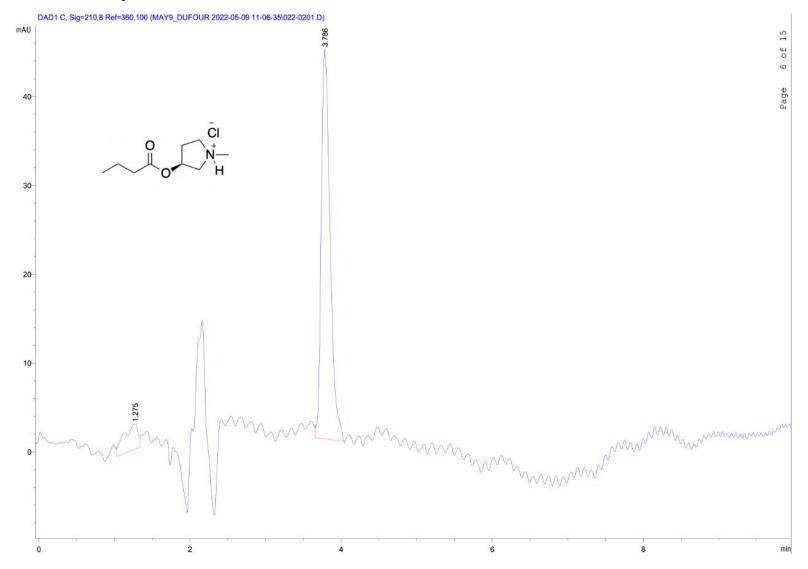

110

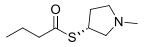
Hz, 2H), 0.88 (t, J = 7.4 Hz, 3H); ¹³C NMR (100.7 MHz, DMSO-*d*6) δ 172.4 (0), 72.1 (1), 59.0 (2), 53.1 (2), 40.6 (3), 35.2 (2), 30.3 (2), 17.7 (2), 13.4 (3); LRMS (ESI⁺): 158.1 (M⁺); HRMS (ESI⁺): calculated for C₉H₁₈NO₂⁺: 172.1332 amu; found for C₉H₁₈NO₂⁺: 172.1336 amu; HPLC purity at 210 nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 3.786 mins): >99%.



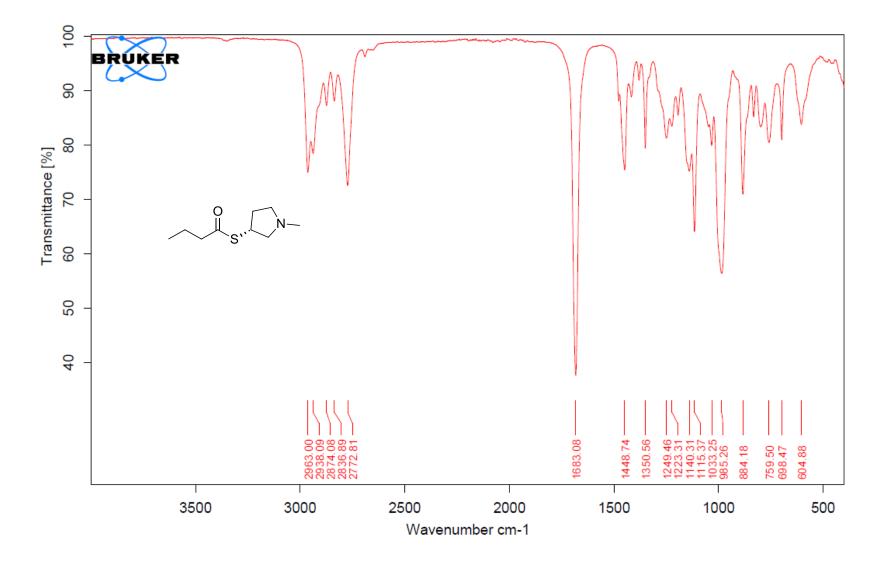
(20) (3S)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride IR(ATR)

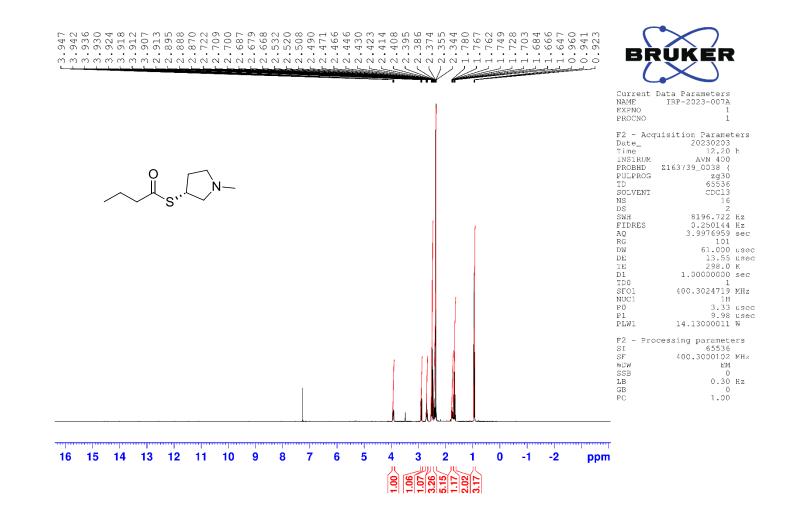



(20) (3S)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride ¹³C NMR 100 MHz (DMSO-d6)

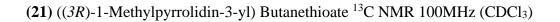

(20) (3S)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)

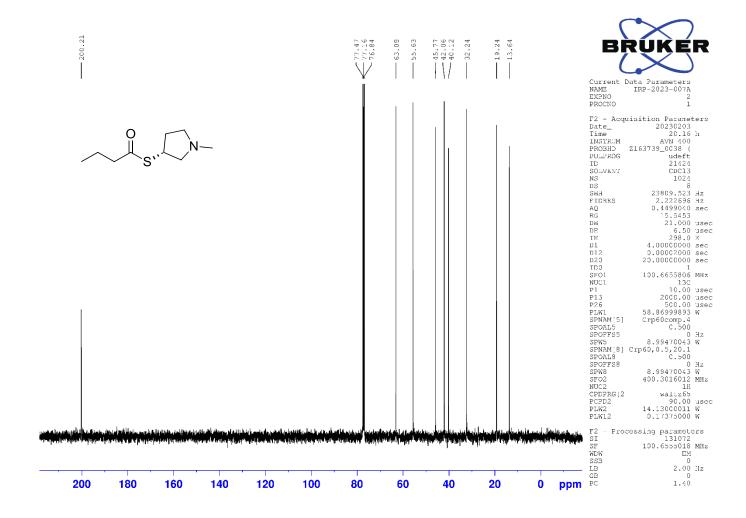
(20) (3S)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride HPLC. Note: Noise from the injection has a retention time from 1.6 min until 2.5 min. The compound of interest has a retention time of 3.786 mins.

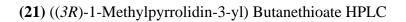

(21) ((3R)-1-Methylpyrrolidin-3-yl) Butanethioate

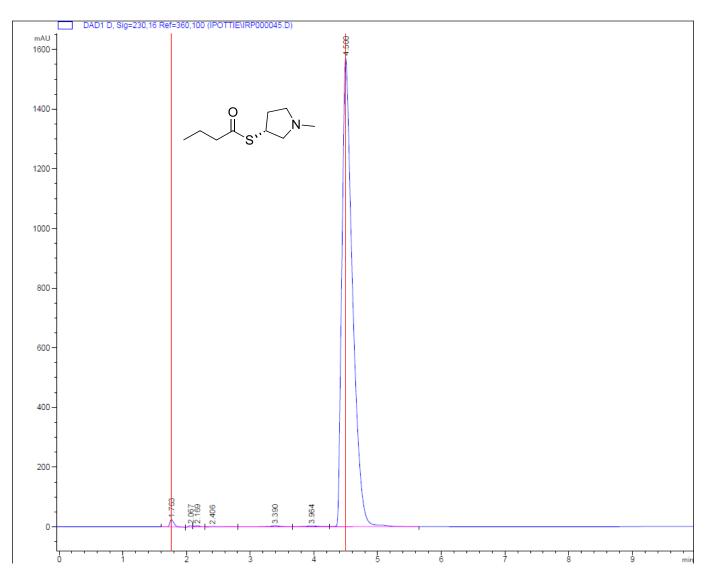


Synthesis: ((*3R*)-1-Methylpyrrolidin-3-yl) butanethioate: (*3R*)-*S*-(1-Methylpyrrolidin-3-yl) ethanethioate (1.08 g, 6.76 mmol) was dissolved in MeOH (30 mL) and cooled in an ice bath. Sodium methoxide (0.438 g, 8.11 mmol) was added in one portion and the reaction was stirred for 3 hrs. The reaction was concentrated *in vacuo* to ensure all methanol was removed. Anhydrous THF (25 mL) and Et₃N (2.80 mL, 20.3 mmol) was added to this mixture. The stirring solution was cooled to 0°C using an ice bath. Butyryl chloride (1.05 mL, 10.1 mmol) was added dropwise, and a white precipitate formed immediately. The reaction was warmed to room temperature and stirred for 1.5 hrs. The reaction was diluted with diethyl ether (30 mL) washed with water (2 x 30 mL) and brine (30 mL). The organic layer was dried over Na₂SO₄, gravity filtered, and the filtrate was concentrated *in vacuo*. The crude material was subjected to flash chromatography through silica gel (9% methanol in dichloromethane) to afford ((*3R*)-1- methylpyrrolidin-3-yl) butanethioate (69%, 0.861 g, 4.59 mmol) of as a clear light red liquid.


Spectroscopic data: IR(ATR) 2963, 2938, 2773, 1683, 1449, 1116, 985, 884 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.96-3.89 (m, 1H), 2.89 (dd, J = 10.1, 7.2 Hz, 1H), 2.72-2.67 (m, 1H), 2.53-2.47 (m, 1H), 2.49 (t, J = 7.4 Hz, 2H), 2.45-2.37 (m, 2H), 2.36 (s, 3H), 1.79-1.72 (m, 1H), 1.68 (sext, J = 7.4 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (100.7 MHz, CDCl₃) δ 200.2 (0), 63.1 (2), 55.6 (2), 45.8 (2), 42.1 (3), 40.1 (1), 32.2 (2), 19.2 (2), 13.6 (3); LRMS (ESI⁺): XXX (M⁺); HRMS (ESI⁺): calculated for C₉H₁₈NOS⁺: 188.1104 amu; found for C₉H₁₈NOS⁺: 188.1106 amu; HPLC purity at 230 nm (25% CH₃CN : 75% CH₃OH, retention time: 3.323 mins): 98%.

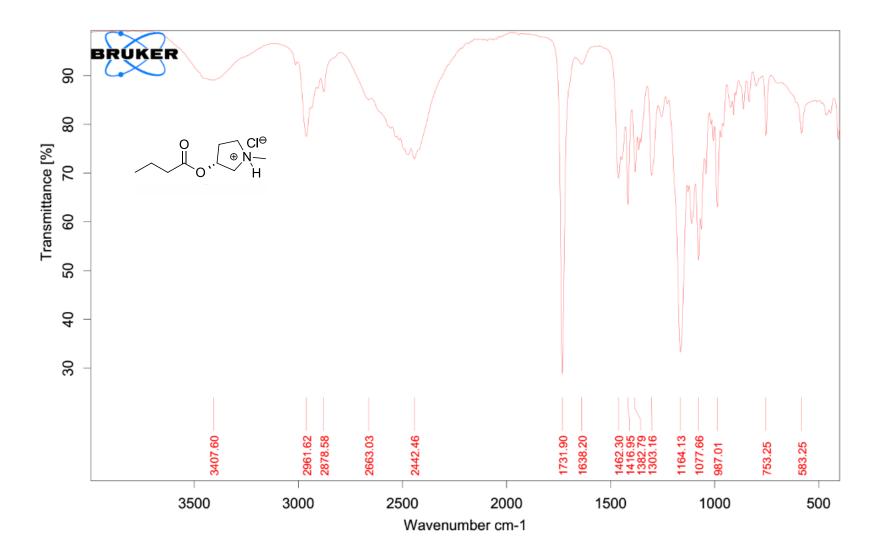

(21) ((3*R*)-1-Methylpyrrolidin-3-yl) Butanethioate IR(ATR)


(21) ((3R)-1-Methylpyrrolidin-3-yl) Butanethioate ¹H NMR 400 MHz (CDCl₃)

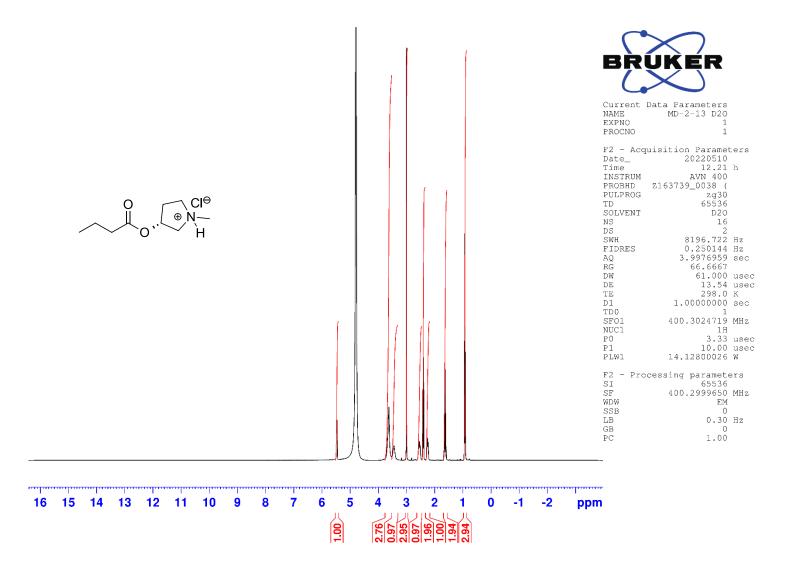


(21) ((*3R*)-1-Methylpyrrolidin-3-yl) Butanethioate High Resolution Mass Spectrum (ESI, positive mode)

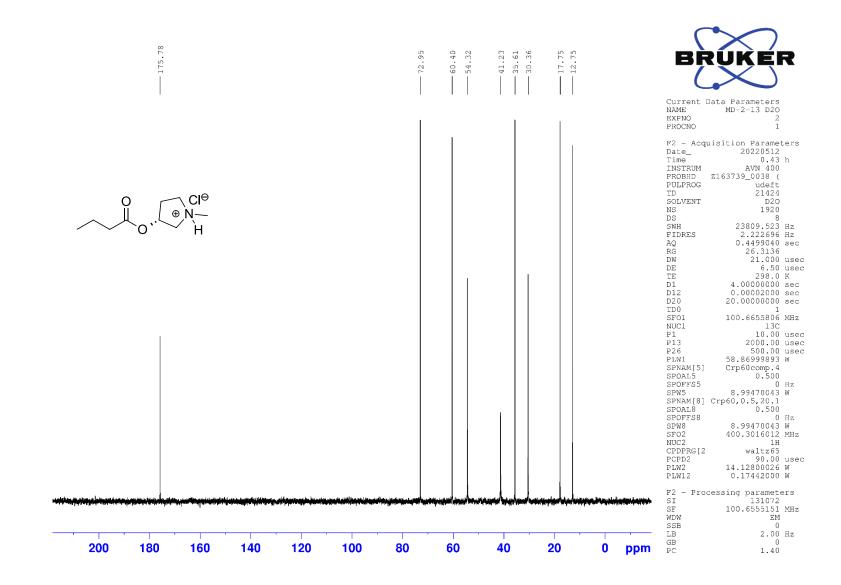
Analysis Info								Acquisition Date 2023-02-17 9:28:19 AM					
alysis Name	D:\Data\Xiao\Feb 17 2023000007.d												
ethod	Xiao all 1	.m						Operator	х				
mple Name	TRV6024							Instrument	compact		8255754.20059		
omment													
quisition Para													
urce Type	ESI			Ion Polarity		Positive			Set Nebulizer		0.5 Bar		
cus an Begin	Not ac 50 m/z			Set Capilla Set End Pl		3500 ∨ -500 ∨			Set Dry Heater Set Dry Gas		180 °C 4.0 I/min		
an End	1500 r			Set Chargi		2000 V			Set Divert Valve	e	Source		
				Set Corona		0 nA			Set APCI Heate	ər	0 °C		
Meas. m/z 188.1106		m/z 188.1104											
Intens				-						+MS, 1.1-1	.8min #67-105		
×10 ⁵ -					188.110	06							
					Ī								
2.0-													
-													
-		Ö	\square										
1.5-	~	$\mathbf{\mathbf{x}}$		N—									
-		\sim `s	S' ~										
-													
]													
1.0-													
-													
-													
0.5-													
]							400 440						
-							189.1138 /	5					
-									190.1077 ∬				
0.0+		186.5	187.0	187.5	188.0	188.5	189.0	189.5	190.0	190.5	m/z		



(22) (3R)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride


Synthesis: (3R)-1-methyl-3-pyrrolidinyl butyrate: (3R)-(-)-1-Methyl-3-pyrrolidinol (0.549 mL, 5.00 mmol) and triethylamine (1.74 mL, 12.5 mmol) were dissolved in anhydrous dichloromethane (17 mL) and cooled to 0°C with an ice bath. Butyryl chloride (0.519 mL, 5.00 mmol) was added dropwise at 0 °C. The ice bath was removed after 5 mins, and the reaction was stirred for 3hrs. The reaction was quenched with brine (20 mL), extracted with dichloromethane $(3 \times 15 \text{ mL})$ and dried over Na₂SO₃. The drying agent was removed was removed *via* gravity filtration and the solvent was removed *in vacuo* to produce a yellow oil. The crude mixture was purified by silica gel column chromatography (5% MeOH/DCM) to produce (3R)-1-methyl-3-pyrrolidinyl butyrate (0.729 g, 85%) as a yellow viscous liquid. Spectroscopic data: IR(ATR) 2964, 2939, 2777, 1730, 1251, 1175 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.20-5.15 (m, 1H), 2.84-2.79 (m, 1H), 2.69 (dd, J = 10.9, 2.2 Hz, 1H), 2.61 (dd, J = 10.9, 5.9 Hz, 1H), 2.35 (s, 3H), 2.28-2.25 (m, 4H), 1.88-1.79 (m, 1H), 1.63 (sext, J = 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (100.7 MHz, CD₃OD-*d*4) δ 173.8 (0), 74.5 (1), 62.4 (2), 55.1 (2), 42.32 (3), 36.4 (2), 32.8 (2), 18.6 (2), 13.8 (3); LRMS (ESI⁺): 172.1 (M⁺); HRMS (ESI^{+}) : calculated for C₉H₁₈NO₂⁺: 172.1332 amu; found for C₉H₁₈NO₂⁺: 172.1334 amu; HPLC purity at 210 nm (75% CH₃CN : 10% CH₃OH, 15 % aqueous triethylamine (0.1 % triethylamine in water) retention time: 3.803 mins): 99%.

(3R)-3-Butyroxy-1-methyl-1-pyrrolidinium chloride: To a flask charged with (3R)-1-methyl-3-pyrrolidinyl butyrate (0.364 g, 1.75 mmol) anhydrous diethyl ether was added until complete dissolution (35 mL) under an argon atmosphere. HCl in diethyl ether (1 N - 2.63 mL, 2.63 mmol) was added dropwise and stirred for 1 hr. The solvent was removed in vacuo resulting in a white solid. The compound was triturated with diethyl ether (20 mL), solvent was removed with a pipet. The process was repeated two more times. The material was dried in vacuo to produce (3R)-3-butyroxy-1-methyl-1- pyrrolidinium chloride (0.350 g, 96%) as a white solid. *Spectroscopic data:* IR(ATR) 3407, 2962, 2879, 2663, 2442, 1732, 1164, 1078 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ 5.47 (app br s, 1H), 3.62 (app br s, 3H), 3.44 (app br s, 1H), 3.00 (s, 3H), 2.59-2.49 (m, 1H), 2.40 (t, J = 7.4 Hz, 2H), 2.28-2.22 (m, 1H), 1.63 (sext, J = 7.4 Hz, 2H), 0.92 $(t, J = 7.4 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (100.7 \text{ MHz}, D_2\text{O}) \delta 175.8 (0), 72.9 (1), 60.4 (2), 54.3 (2), 41.2 (3), 60.4 (2), 54.3 (2), 60.4 (2)$ 35.6 (2), 30.4 (2), 17.7 (2), 12.8 (3); LRMS (ESI⁺): 172.1 (M⁺); ⁺); HRMS (ESI⁺): calculated for C₉H₁₈NO₂⁺: 172.1332 amu; found for C₉H₁₈NO₂⁺: 172.1331 amu; HPLC purity at 210 nm (75% CH₃CN : 10% CH₃OH, 15 % aqueous triethylamine (0.1 % triethylamine in water) retention time: 3.805 mins): >99%.

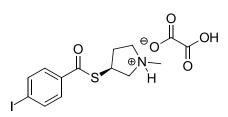


(22) (3R)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride IR(ATR)

(22) (3R)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride ¹H NMR 400 MHz (D₂O)

(22) (3R)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride ¹³C NMR 100 MHz (D₂O)

(22) (3*R*)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)


nalysis Info				Acquisition [Acquisition Date 7/7/2022 9:55:17 AM				
nalysis Name	D:\Data\Xiao\Ju	ly 07 202200	0012.d						
lethod	Xiao all 1.m			Operator	x				
ample Name omment	TRV 6016 HCI					Instrument	compact	8255754.20059	
cquisition Paran									
ource Type ocus	ESI Not active		Ion Polarity Set Capilla		Positive 3500 V		Set Nebulizer Set Dry Heater	0.5 Bar 180 °C	
can Begin	50 m/z		Set End Pla	ate Offset	-500 V		Set Dry Gas	4.0 l/min	
can End	1500 m/z		Set Chargi Set Corona		2000 V 0 nA		Set Divert Valve Set APCI Heater	Source 0 °C	
Meas. m/z 172.1331	lon Formula C9H18NO2 172.	m/z err [pp 1332	m] 0.5						
Intens.						210		+MS, 0.0-1.3min #2-78	
x10 ⁵			172.1	331	Ö				
-			Ī		$\land \downarrow$, L⊕N—			
-			I		> .0	Η			
1.5-			I						
-			I						
-			I						
-									
1.0-									
1									
0.5-									
-									
					170 1000				
-					173.1366				
-					1				
-					Δ			I	
0.0	70.5 171.0	171.5	172.0	172.5	173.0	173.5 174.0	0 174.5	175.0 m/z	

(22) (3R)-3-Butyroxy-1-methyl-1-pyrrolidinium Chloride HPLC. Note: Noise from the injection has a retention time from 1.6 min until 2.5 min. The compound of interest has a retention time of 3.805 min.

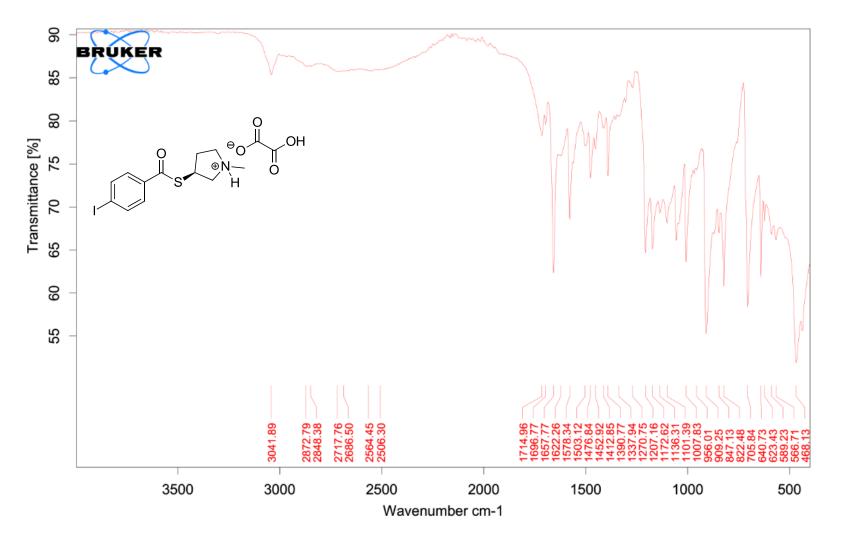
Aryl N-Methylpyrrolidinyl Derivatives

(23) ((3S)-1-Methylpyrrolidin-3-yl) p-Iodobenzenecarbothioate Oxylate

Synthesis: (*3R*)-3-(Mesyloxy)-1-methylpyrrolidine: (*R*)-(-)-1-Methyl-3-pyrrolidinol (6.00 mL, 54.6 mmol) was dissolved in anhydrous dichloromethane (180 mL) and cooled to 0°C with an ice bath. Triethylamine (11.4 mL, 81.9 mmol) and methanesulfonyl chloride (4.90 mL, 62.8 mmol) were added dropwise at 0°C. The ice bath was removed after 5 mins, and the reaction was stirred overnight. Brine (50 mL) was added to the reaction and the layers were separated. The aqueous layer was extracted with dichloromethane (3×15 mL). The combined organic layers were dried over Na₂SO₃, gravity filtered, and the filtrate was concentrated *in vacuo* to produce a yellow viscous liquid (6.11 g, 54%). Product confirmed by ¹H NMR and the crude material was immediately carried through to next step without further purification.

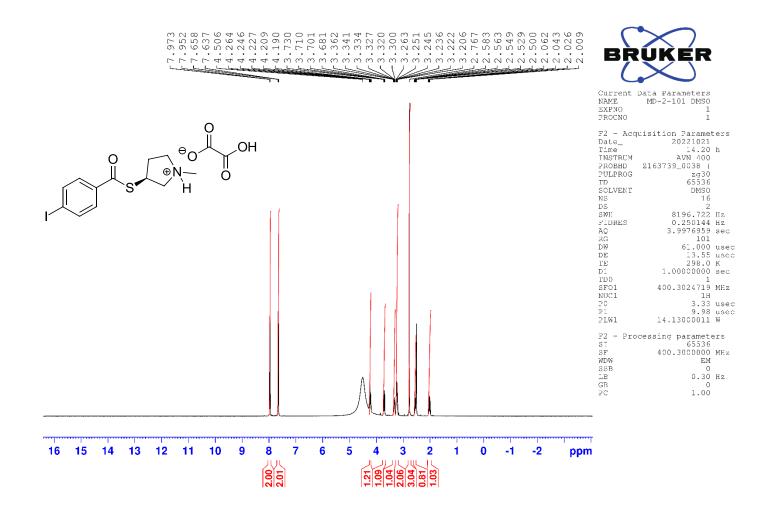
(3S)-S-(1-Methylpyrrolidin-3-yl) ethanethioate: (3R)-3-(Mesyloxy)-1-methylpyrrolidine (6.11 g, 34.1 mmol), was dissolved in anhydrous THF (114 mL) under an argon atmosphere. 18crown-6-ether (9.91 g, 37.5 mmol) was added followed by potassium thioacetate (4.29 g, 37.5 mmol), added in 3 portions. Once all potassium thioacetate had gone into solution, the reaction was heated to 30°C and left overnight. The reaction was gravity filtered, the filtrate diluted with water (50 mL) and it was extracted with EtOAc (3×15 mL). The combined organic layers were washed with water (3×20 mL) and brine (3×20 mL), dried over Na₂SO₃, gravity filtered, and concentrated *in vacuo* to produce a red oil. The crude material was then distilled to give (*3S*)-S-(1-methylpyrrolidin-3-yl) ethanethioate as a yellow oil (2.33 g, 37%). The product was confirmed by ¹H NMR.

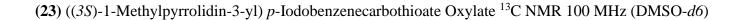
(*S*)-1-Methyl-3-pyrrolidinethiol: (*3S*)-S-(1-Methylpyrrolidin-3-yl) ethanethioate (0.442g, 2.77 mmol) was dissolved in MeOH (10 mL) and sodium methoxide (0.155 g, 2.78 mmol) was added to the stirring solution. After all starting material was shown to be consumed by TLC

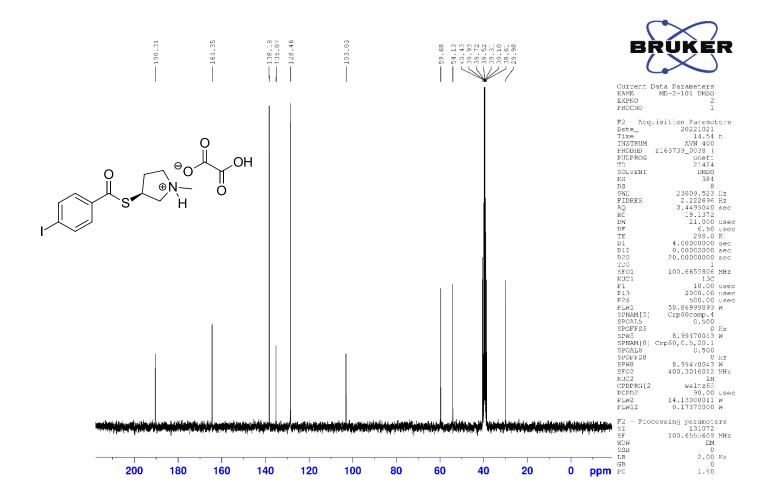

experiment, the MeOH was removed *in vacuo* and the resulting material was washed with DCM and concentrated twice. This material was used immediately in the next step.

((*3S*)-1-Methylpyrrolidin-3-yl) *p*-iodobenzenethioate: (*S*)-1-Methyl-3-pyrrolidinethiol from the previous step was dissolved in dichloromethane (10 mL) and cooled to 0°C using an ice bath. 4-Iodobenzoyl chloride (0.740 g, 2.78 mmol) was added followed by triethylamine (0.774 mL, 5.55 mmol). The ice bath was removed after 30 mins and the reaction was left overnight. The next morning the solvent was removed *in vacuo*. The crude material was washed with diethyl ether, gravity filtered to remove all precipitate, and the filtrate was concentrated *in vacuo* to give a white solid. This material recrystallized with methanol and isopropanol to give a white solid (0.727 g).

((3S)-1-Methylpyrrolidin-3-yl) p-Iodobenzenecarbothioate Oxylate: ((3S)-1-

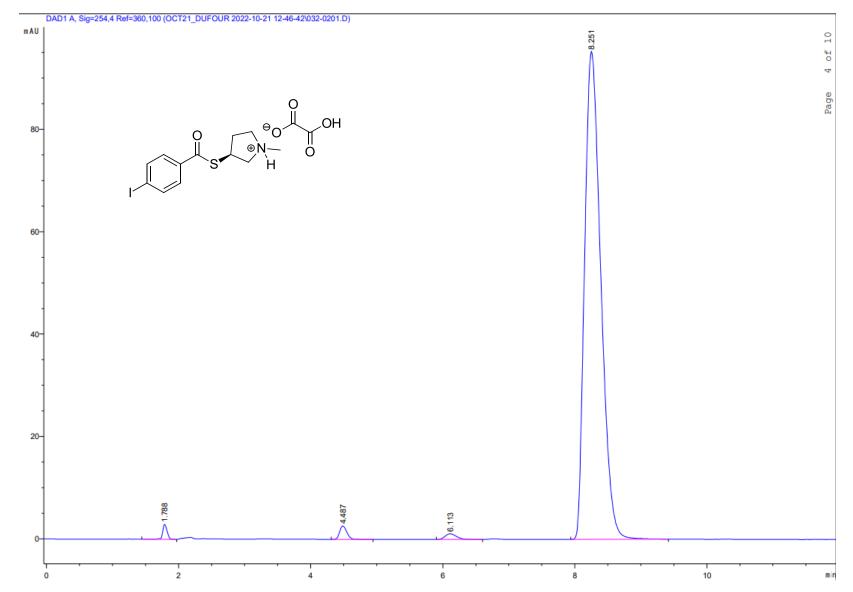

Methylpyrrolidin-3-yl) *p*-iodobenzenethioate (0.600 g, 1.73 mmol) was completely dissolved in isopropanol (32.5 mL). With stirring, oxalic acid (0.156 g, 1.73 mmol) was added and stirred for 3 hrs at room temperature. The solution was concentrated *in vacuo* to give a white solid and immediately recrystallized with isopropanol. For further purification, this material was recrystallized from methanol to give ((*3S*)-1-methylpyrrolidin-3-yl) *p*-iodobenzenecarbothioate oxylate as a white solid (0.357 g, 47%).

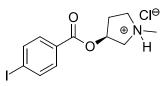

Spectroscopic Data: IR(ATR): 3041, 2718, 2564, 1714, 1697, 1578, 909 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ 7.97-7.95 (m, 2H), 7.66-7.64 (m, 2H), 4.51 (br s, 2H, overlapping with H₂O in DMSO), 4.26-4.19 (m, 1H), 3.71 (dd, J = 11.7, 8.1 Hz, 1H), 3.36-3.30 (m, 1H), 3.26-3.21 (m, 2H), 2.77 (s, 3H), 2.58-2.52 (m, 1H), 2.06-1.97 (m, 1H); ¹³C NMR (100.7 MHz, DMSO-*d*6) δ 190.3 (0), 164.3 (0), 138.9 (1), 135.1 (0), 128.5 (1), 103.0 (0), 59.7 (2), 54.1 (2), 40.4 (3), 38.6 (1), 30.0 (2); HRMS (ESI⁺): calculated for C₁₂H₁₅INOS⁺: 347.9913; found for C₁₂H₁₅INOS⁺: 347.9912; HPLC purity at 254nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 8.245 mins): 97.2 %.



(23) ((3S)-1-Methylpyrrolidin-3-yl) p-Iodobenzenecarbothioate Oxylate IR(ATR)

(23) ((3S)-1-Methylpyrrolidin-3-yl) p-Iodobenzenecarbothioate Oxylate ¹H NMR 400 MHz (DMSO-d6)

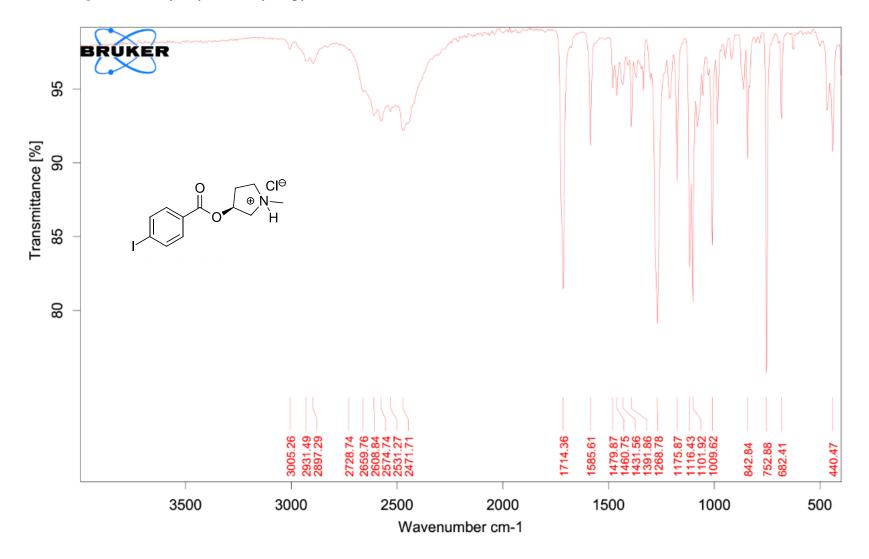



(23) ((3S)-1-Methylpyrrolidin-3-yl) p-Iodobenzenecarbothioate Oxylate High Resolution Mass Spectrum (ESI, positive mode)

nalysis Info				Acquisition Date 2022-11-01 2:53:21 PM			
nalysis Name	D:\Data\Xiao\Nov 01 202	2000004.d					
lethod	Xiao all 1.m		Operator	х			
ample Name comment	TRV 6025			Instrument	compact	8255754.20059	
cquisition Param	eter						
ource Type	ESI	Ion Polarity	Positive		Set Nebulizer	0.5 Bar	
ocus can Begin	Not active 50 m/z	Set Capillary Set End Plate Of	3500 V set -500 V		Set Dry Heater Set Dry Gas	180 °C 4.0 l/min	
can End	1500 m/z	Set Charging Vo			Set Divert Valve	Source	
		Set Corona	0 nA		Set APCI Heater	0° 0	
Meas. m/z 347.9912	lon Formula m/z err C12H15INOS 347.9914	[ppm] 0.4					
Intens.					+	MS, 0.6-1.4min #37-81	
x10 ⁵	0 m H	347.991	,				
	s s		-				
	s s s	н					
8-	i² 📎 ö						
-							
6-							
Ŭ							
-							
4-							
1							
2-							
			348.9941				
			340.5541				
1			Δ	349.9894			
			N.	049.9094 A			
0	346 347	348	· · · · · · · · · ·				
	346 347	348	349	350	351	m/z	

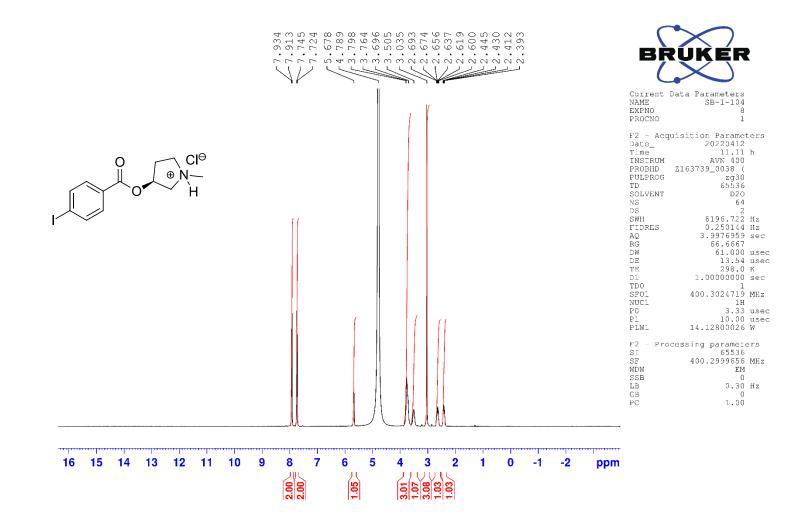
(23) ((3S)-1-Methylpyrrolidin-3-yl) *p*-Iodobenzenecarbothioate

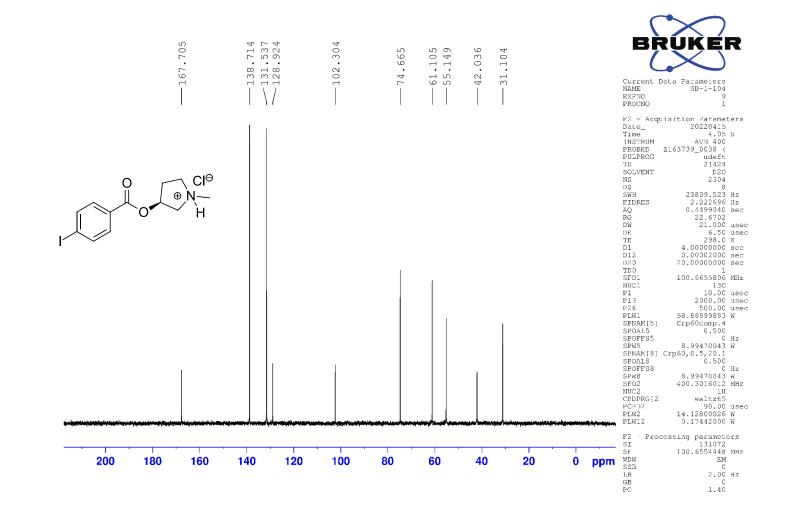
(24) (3S)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride



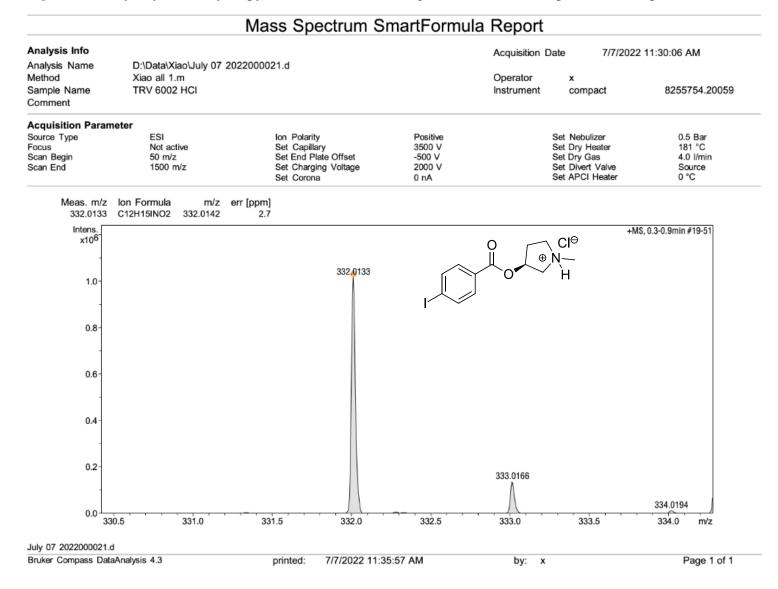
Synthesis: (*3S*)-1-Methyl-3-pyrrolidinyl *p*-iodobenzoate: 4-Iodobenzoyl chloride (0.799 g, 3.00 mmol), triethylamine (1.05 mL, 7.50 mmol) and 4-dimethylaminopyridine (DMAP) (0.0659 g, 0.54 mmol) were dissolved in anhydrous dichloromethane (20 mL) under an argon atmosphere. (*S*)-(+)-1-Methyl-3-pyrrolidinol (0.329 mL, 3.00 mmol) was added at 0°C. The ice bath was removed after 5 min, and the reaction was stirred for 3h at room temperature. The reaction was quenched with brine (20 mL), extracted with dichloromethane (3 x 15 mL) and the combined organic layers were dried over Na₂SO₃. After the drying agent was removed *via* filtration the solvent was removed *in vacuo* to produce a white solid. The crude mixture was purified by silica gel column chromatography (5% MeOH/DCM) to afford (*3S*)-1-methyl-3-pyrrolidinyl *p*-iodobenzoate (0.274 g, 28%) as a white solid. The analytical data was similar to previously published data.^[7]

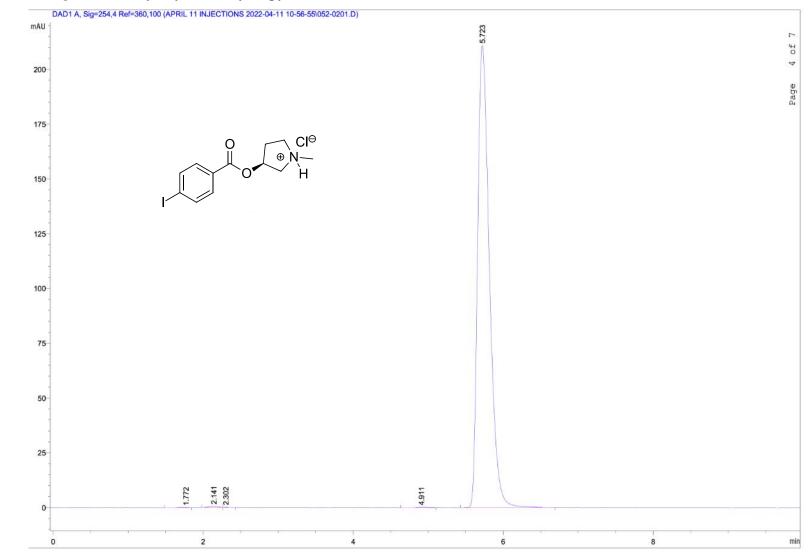
(3S)-3-(*p*-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium chloride: (3S)-1-Methyl-3-pyrrolidinyl *p*-iodobenzoate (0.136 g, 0.410 mmol) was dissolved in anhydrous diethyl ether (9 mL) under an argon atmosphere. HCl in diethyl ether (1 N - 0.62 mL, 0.620 mmol) was added dropwise resulting in the immediate formation of a white precipitate. The reaction was stirred for an additional 60 mins. The precipitate was collected *via* suction filtration, washed with Et₂O (2 x 10 mL), to afford (3S)-3-(*p*-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium chloride, (0.100 mg, 66% yield) as a white solid.


Spectroscopic data: MP_{(diethyl ether}): 243-245°C; IR (ATR) 3005, 2931, 2897, 2574, 2472, 1714, 1586, 1269, 1102, 753; ¹H NMR (400 MHz, D₂O) δ 7.93-7.91 (m, 2H), 7.75-7.72 (m, 2H), 5.68 (br app s, 1H), 3.80-3.70 (m, 3H), 3.50 (br app s, 1H), 3.03 (s, 3H), 2.69-2.60 (m, 1H), 2.45-2.39 (m, 1H); ¹³C NMR (100.7 MHz, D₂O) δ 167.7 (0), 138.7 (1), 131.5 (1), 128.9 (0), 102.3 (0), 74.7 (1), 61.1 (2), 55.1 (2), 42.0 (2), 31.1 (2); LRMS (ESI⁺): 332.0 (M+); HRMS (ESI⁺): calculated for C₁₂H₁₅INO₂⁺: 332.0142; found for C₁₂H₁₅INO₂⁺: 332.0133; HPLC purity at 254 nm (75%)

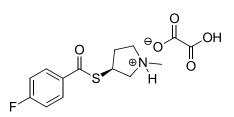

CH₃CN : 10% CH₃OH, 15 % aqueous triethylamine (0.1 % triethylamine in water) retention time: 5.723 mins): >99%.

(24) (3S)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride IR(ATR)


(24) (3S)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride ¹H NMR 400 MHz (D₂O)



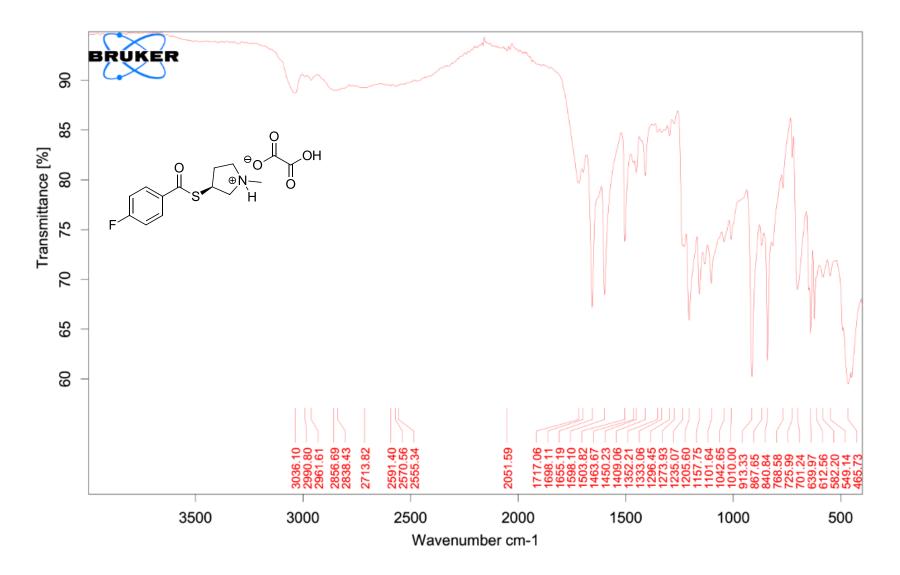
(24) (3S)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride ¹³C UDEFT NMR 100 MHz (D₂O)


(24) (3S)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)

(24) (3S)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride HPLC

(25) ((3S)-1-Methylpyrrolidin-3-yl) p-Fluorobenzenecarbothioate Oxylate

Synthesis: (*3R*)-3-(Mesyloxy)-1-methylpyrrolidine: (*R*)-(-)-1-Methyl-3-pyrrolidinol (6.00 mL, 54.6 mmol) was dissolved in anhydrous dichloromethane (180 mL) and cooled to 0°C with an ice bath. Triethylamine (11.4 mL, 81.9 mmol) and methanesulfonyl chloride (4.90 mL, 62.8 mmol) were added dropwise at 0°C. The ice bath was removed after 5 min, and the reaction was stirred overnight. Brine (50 mL) was added to the reaction and the layers were separated. The aqueous layer was extracted with dichloromethane (3 x 15 mL). The combined organic layers were dried over Na₂SO₃, gravity filtered, and the filtrate was concentrated *in vacuo* to produce a yellow viscous liquid (6.11 g, 54%). Product was confirmed by ¹H NMR and the crude material was immediately carried through to next step without further purification.

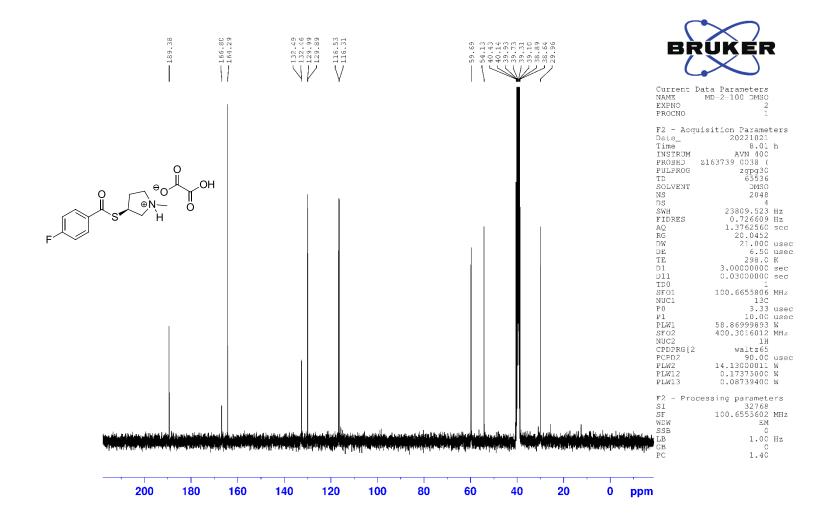

(*3S*)-S-(1-Methylpyrrolidin-3-yl) ethanethioate: (*3R*)-3-(Mesyloxy)-1-methylpyrrolidine (6.11 g, 34.1 mmol) was dissolved in anhydrous THF (114 mL) under an argon atmosphere. 18-crown-6-ether (9.91 g, 37.5 mmol) was added followed by potassium thioacetate (4.29 g, 37.5 mmol), added in 3 portions. Once all potassium thioacetate had gone into solution, the reaction was heated to 30°C and left overnight. The reaction was gravity filtered, the filtrate diluted with water (50 mL) and it was extracted with EtOAc (3×15 mL). The combined organic layers were washed with water (3×20 mL) and brine (3×20 mL), dried over Na₂SO₃, gravity filtered, and concentrated *in vacuo* to produce a red oil. The crude material was then distilled to give (*3S*)-S-(1-methylpyrrolidin-3-yl) ethanethioate as a yellow oil (2.33 g, 37 %). The product was confirmed by ¹H NMR and the material was immediately carried through to next step without further purification.

(*S*)-1-Methyl-3-pyrrolidinethiol: (*3S*)-S-(1-Methylpyrrolidin-3-yl) ethanethioate (0.344 g, 2.16 mmol) was dissolved in MeOH (11 mL) and sodium methoxide (0.120 g, 2.16 mmol) was added to the stirring solution. After all starting material was shown to be consumed by TLC

experiment, the MeOH was removed *in vacuo*. The resulting material was placed dichloromethane (20 mL) and concentrated *in vacuo*. This process was repeated, and the material was immediately used in the next step.

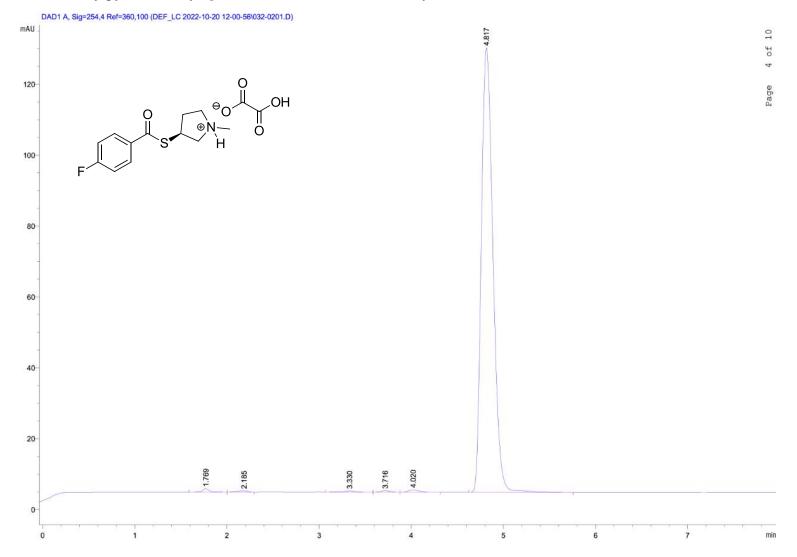

((*3S*)-1-Methylpyrrolidin-3-yl) *p*-fluorobenzenethioate: (*S*)-1-Methyl-3-pyrrolidinethiol was dissolved in dichloromethane (7 mL) and cooled to 0°C using an ice bath. 4-Fluorobenzoyl chloride (0.602 g, 4.32 mmol) was added followed by triethylamine (0.774 mL, 5.55 mmol). The ice bath was removed after 30 mins and warmed to room temperature. After all starting material was shown to be consumed by TLC experiment (developed using KMnO₄ stain), the reaction was concentrated *in vacuo*. The crude material was washed with diethyl ether, gravity filtered to remove all precipitate, and the filtrate was concentrated *in vacuo* to give a yellow oil (0.406 g).

((3S)-1-Methylpyrrolidin-3-yl) p-fluorobenzenecarbothioate oxylate: A portion of ((3S)-1methylpyrrolidin-3-yl) p-fluorobenzenethioate (0.0.324 g, 1.36 mmol) was completely dissolved in isopropanol (14 mL). With stirring, oxalic acid (0.220 g, 1.36 mmol) was added and stirred for 3 hrs at room temperature. The solution was concentrated in vacuo to give a white solid and immediately recrystallized from isopropanol to give ((3S)-1-methylpyrrolidin-3-yl) pfluorobenzenecarbothioate oxylate as a white solid (0.289 g, 64%). Spectroscopic Data: MP_(isopropanol): 130-134°C; IR(ATR): 3036, 2961, 2713, 2591, 1717, 1698, 1598, 913 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ 8.00-7.96 (m, 2H), 7.44-7.38 (m, 2H), 4.52 (br s, 2H, overlapping with H₂O in DMSO), 4.27-4.20 (m, 1H), 3.72 (dd, J = 11.8, 8.1 Hz, 1H), 3.37-3.31 (m, 1H), 3.28-3.22 (m, 2H), 2.78 (s, 3H), 2.59-2.52 (m, 1H), 2.07-1.98 (m, 1H); ¹³C NMR (100.7 MHz, DMSO-*d*6) δ 189.4 (0), 166.8 (d, ${}^{1}J_{C,F}$ = 252.7 Hz, 0), 164.3 (1), 132.5 (d, ${}^{4}J_{C,F} = 2.8$ Hz, 0), 129.9 (d, ${}^{3}J_{C,F} = 9.6$ Hz, 1), 116.4 (d, ${}^{2}J_{C,F} = 22.4$ Hz, 1), 59.7 (2), 54.1 (2), 40.4 (3), 38.6 (1), 30.0(2); ¹⁹F NMR (376.6 MHz, DMSO-*d*6) δ -104.1; HRMS (ESI⁺): calculated for C₁₂H₁₅FNOS⁺: 240.0853; found for C₁₂H₁₅FNOS⁺: 240.0853; HPLC purity at 254nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 4.817 mins): 98.2 %.

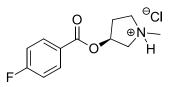


(25) ((3S)-1-Methylpyrrolidin-3-yl) p-Fluorobenzenecarbothioate Oxylate IR(ATR)

(25) ((3S)-1-Methylpyrrolidin-3-yl) p-Fluorobenzenecarbothioate Oxylate ¹H NMR 400 MHz (DMSO-d6)

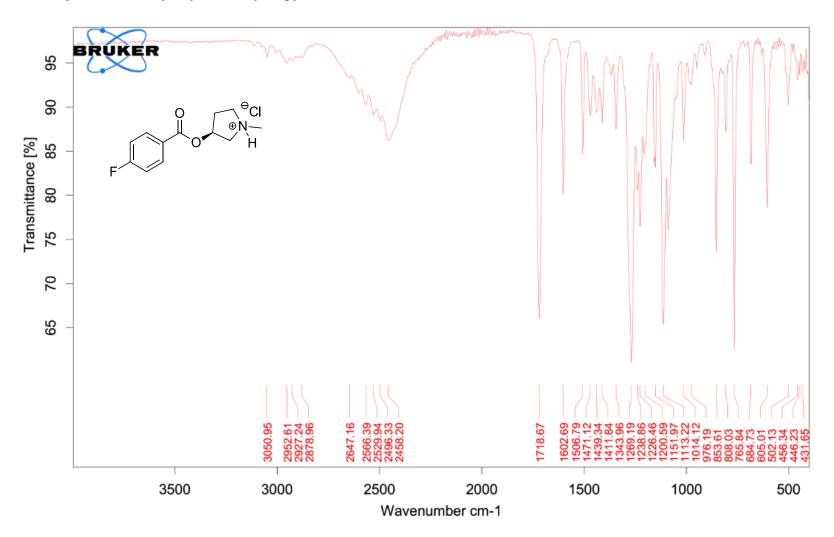


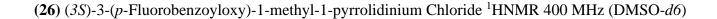
(25) ((3S)-1-Methylpyrrolidin-3-yl) p-Fluorobenzenecarbothioate Oxylate ¹³C NMR 100 MHz (DMSO-d6)

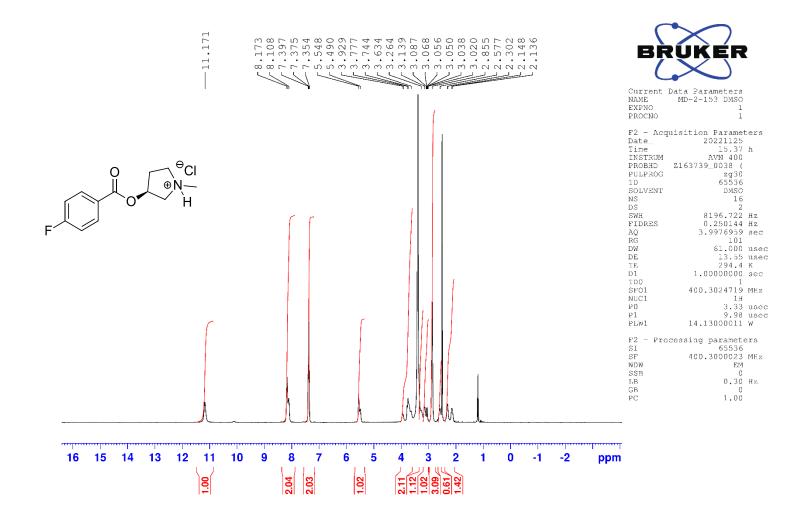

(25) ((3S)-1-Methylpyrrolidin-3-yl) *p*-Fluorobenzenecarbothioate Oxylate High Resolution Mass Spectrum (ESI, positive mode)

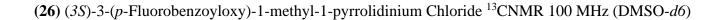
Analysis Info					Acquisition	n Date 202	2-11-01 2:43:55 P	м	
nalysis Name	D:\Data\Xiao\Nov 01 202	2000002.d							
lethod	Xiao all 1.m				Operator	x			
Sample Name Comment	TRV 6026				Instrumen	t compact	8255754	4.20059	
Acquisition Param	neter								
Source Type	ESI Not active	Ion Polarity		Positive 3500 V		Set Nebulizer	0.5 B 180 °		
ocus Scan Begin	50 m/z	Set Capillary Set End Plate	Offset	-500 V		Set Dry Heater Set Dry Gas	4.0 1/1		
Scan End	1500 m/z	Set Charging		2000 V		Set Divert Valve			
		Set Corona	· ·	0 nA		Set APCI Heater	0°C		
Meas. m/z 240.0853	lon Formula m/z el C12H15FNOS 240.0853	rr [ppm] 0.2							
Intens.		0.2					+MS, 0.6-1.1min #37	-62	
x10 ⁵			240.0853						
6-									
-	s (i)	0							
1		[⊥] он							
5-	F O	0.1							
1									
-									
4-									
*									
1									
1									
3-									
1									
-									
2									
2									
2									
-									
1				241.0885					
-				241.0885					
-				241.0885	242.0831				
-	237 238	239	240	241.0885		43 244	245	, m/z	

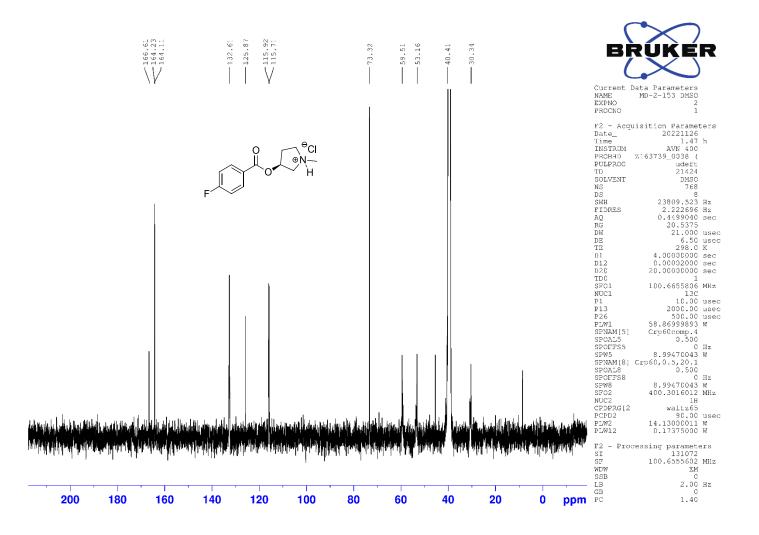
(25) ((3S)-1-Methylpyrrolidin-3-yl) p-Fluorobenzenecarbothioate Oxylate HPLC


(26) (3S)-3-(p-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride

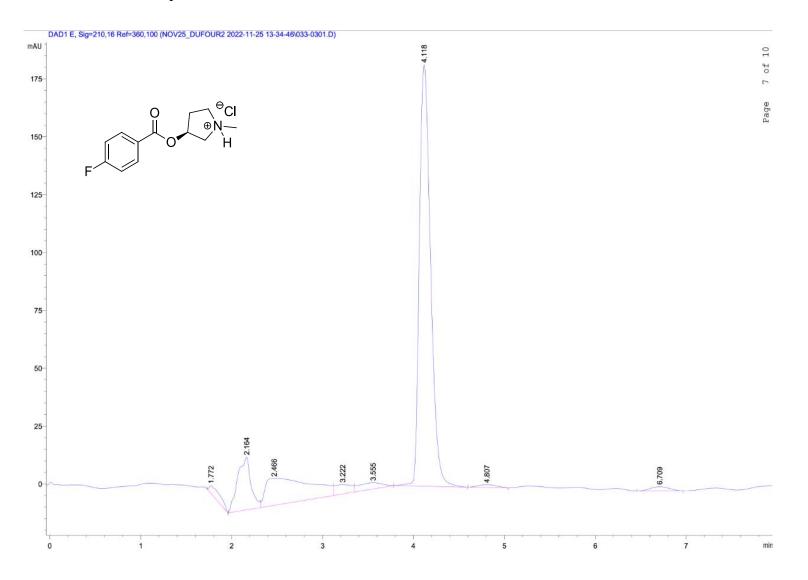

Synthesis: (*3S*)-1-Methyl-3-pyrrolidinyl *p*-fluorobenzoate: (*3S*)-(+)-1-Methyl-3-pyrrolidinol (0.20 mL, 1.82 mmol) was dissolved in anhydrous dichloromethane (6.00 mL) under an argon atmosphere and cooled to 0°C. To this solution, triethylamine (0.501 mL, 3.64 mmol) and 4-fluorobenzoyl chloride (0.218 g, 1.82 mmol). The ice bath was removed after 5 min, and the reaction was stirred for 24 hrs. At this time water (20 mL) was added, layers were separated, and the aqueous layer was extracted with dichloromethane (3×15 mL). The combined organic layers were dried over Na₂SO₃, gravity filtered, and the filtrate was concentrated *in vacuo* to produce an orange oil. This crude material was purified by flash chromatography through silica gel (5% MeOH/DCM/1% TEA) to afford (*3S*)-1-methyl-3-pyrrolidinyl *p*-fluorobenzoate as an orange oil (0.338 g, 83%).

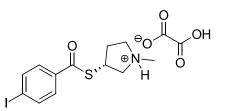

Spectroscopic data: IR(ATR): 2965, 2942, 2777, 1712, 1603, 1507, 1268, 1113, 688 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ 8.03-7.99 (m, 2H), 7.37-7.33 (m, 2H), 5.31-5.27 (m, 1H), 2.75-2.69 (m, 3H), 2.33-2.25 (m, 2H), 2.26 (s, 3H), 1.90-1.81 (m, 1H); ¹³C NMR (100.7 MHz, DMSO-*d*6) δ 165.1 (d, ¹*J*_{*C,F*} = 251.3 Hz, 0), 164.7 (0), 132.1 (d, ³*J*_{*C,F*} = 9.7 Hz, 1), 126.4 (d, ⁴*J*_{*C,F*} = 2.7 Hz, 0), 115.9 (d, ²*J*_{*C,F*} = 22.1 Hz, 1), 75.3 (1), 61.6 (2), 54.4 (2), 41.6 (3), 32.2 (2); HPLC purity at 254 nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 4.106 mins): 98.7 %.


(3S)-3-(p-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride: S-((3S)1-Methylpyrolidin-3-yl) p-fluorobenzenecarbothioate (0.2484 g, 1.11 mmol) was dissolved in anhydrous diethyl ether (22mL) under an argon atmosphere. HCl in diethyl ether 1 N (1.7 mL, 1.67 mmol) was added dropwise and stirred for 3 hrs. The solvent was removed *in vacuo* resulting in a white solid. The compound was triturated three times with diethyl ether (20mL), solvent was removed with a pipet and compound was dried to produce (3S)-3-(p-fluorobenzoyloxy)-1-methyl-1pyrrolidinium chloride (0.148 g, 51%) as a mixture of isomers. *Spectroscopic data*: MP_{(diethyl ether}): 143-145 °C; IR(ATR): 3051, 2953, 2927, 2647, 2566, 2530, 1719, 1603, 1269, 1113, 766 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d6*) δ 11.17 (br s, 1H), 8.17-8.11 (m, 2H), 7.40-7.35 (m, 2H), 5.55-5.49 (m, 1H), 3.93-3.63 (m, 2H), 3.30-3.24 (m, 1H), 3.14-3.02 (m, 1H), 2.85 (s, 3H), 2.58-2.14 (m, 2H); ¹³C NMR (100.7 MHz, DMSO-*d6*) δ 165.4 (d, ¹J_{C,F} = 251.8 Hz, 0), 164.2 (0), 132.6 (1), 125.9 (0), 115.8 (d, ²J_{C,F} = 22.5 Hz, 1), 73.3 (1), 59.5 (2), 53.2 (2), 40.4 (3), 30.3 (2); HRMS (ESI⁺): calculated for C₁₂H₁₅FNO₂⁺: 224.1081 amu; found for C₁₂H₁₅FNO₂⁺: 224.1083 amu; HPLC purity at 254nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 4.118 mins): 98.8 %.



(26) (3S)-3-(p-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride IR(ATR)




(26) (3S)-3-(p-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)

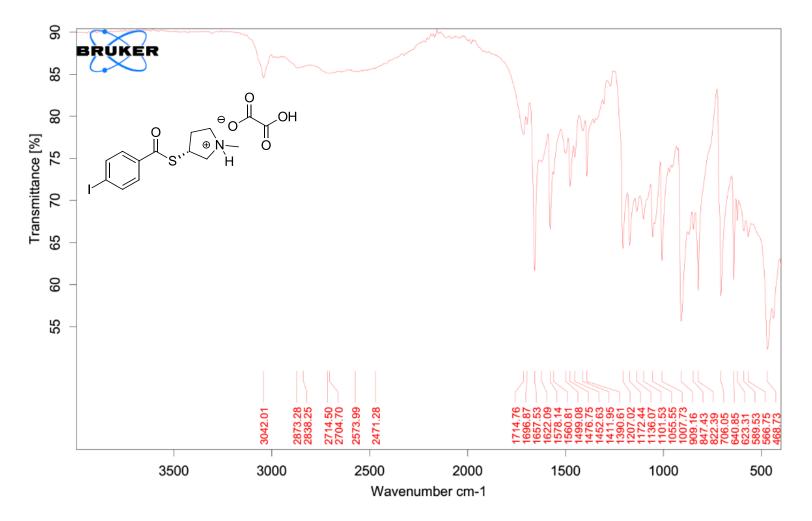
		Mass S	pectrum S	martFormu	la Report		
nalysis Info					Acquisition D	ate 2022-12-	-13 2:18:41 PM
nalysis Name ethod ample Name omment	D:\Data\Xiao\Dec 13 Xiao all 1.m TRV6027 HCI	2022000004.d			Operator Instrument	x compact	8255754.20059
cquisition Parar	neter						
purce Type ocus can Begin can End	ESI Not active 50 m/z 1500 m/z		pillary I Plate Offset arging Voltage	Positive 3500 V -500 V 2000 V 0 nA		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater	0.5 Bar 180 °C 4.0 I/min Source 0 °C
Meas. m/z 224.1083	lon Formula m/z C12H15FNO2 224.1081	err [ppm] -0.6					
Intens. x10 ⁴			004 4000	0	⊂ [⊕] CI	+M3	S, 0.7-1.6min #39-92
			224,1083	Ň	. ↓ ⊕N—		
1.5-				F	`О∙ ~ Н		
-				,			
-							
1.0-							
-							
1							
0.5-							
]					225.111	r	
					225.111	U	
							I

(26) (*3S*)-3-(*p*-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride HPLC. Note: Noise from the injection has a retention time from 1.6 min until 2.5 min. The compound of interest has a retention time of 4.118 min.

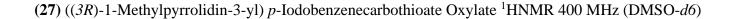
(27) ((3R)-1-Methylpyrrolidin-3-yl) p-Iodobenzenecarbothioate Oxylate

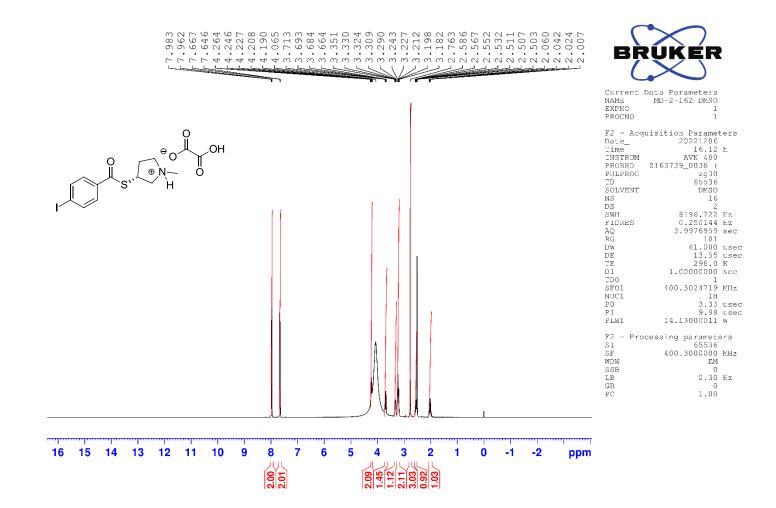
Synthesis: (*3S*)-3-(Mesyloxy)-1-methylpyrrolidine: (*S*)-(-)-1-Methyl-3-pyrrolidinol (6.00 mL, 54.6 mmol) was dissolved in anhydrous DCM (130 mL) and cooled to 0°C with an ice bath. Triethylamine (11.4 mL, 81.9 mmol) and methanesulfonyl chloride (4.90 mL, 62.8 mmol) were added dropwise at 0°C. The ice bath was removed after 5 mins, and the reaction was stirred overnight. Brine (50 mL) was added to the reaction and the layers were separated. The aqueous layer was extracted with dichloromethane (3×15 mL). The combined organic layers were dried over Na₂SO₃. Gravity filtered, and the filtrate was concentrated in vacuo to produce a yellow oil (8.87 g, 91%). Product confirmed by ¹H NMR and the crude material was immediately carried through to next step without further purification.

(*3R*)-S-(1-Methylpyrrolidin-3-yl) ethanethioate: (*3S*)-3-(Mesyloxy)-1-methylpyrrolidine (6.99 g, 39.0 mmol), was dissolved in anhydrous THF (130 mL) under an argon atmosphere. 18crown-6-ether (15.5 g, 58.5 mmol) was added followed by potassium thioacetate (6.68 g, 58.5 mmol), added in 3 portions. Once all potassium thioacetate had gone into solution, the reaction was heated to 30°C and left overnight. The reaction was filtered then diluted with water (50 mL) and extracted with EtOAc (3×15 mL). The organic layer was washed with water (3×20 mL) and brine (3×20 mL), dried over Na₂SO₃ and concentrated *in vacuo* to produce a red oil. The crude material was then distilled under vacuum (1 mm Hg) at 100 °C to give a yellow oil (4.45 g, 72%). Product confirmed by ¹H NMR and the crude material was immediately carried through to next step without further purification.

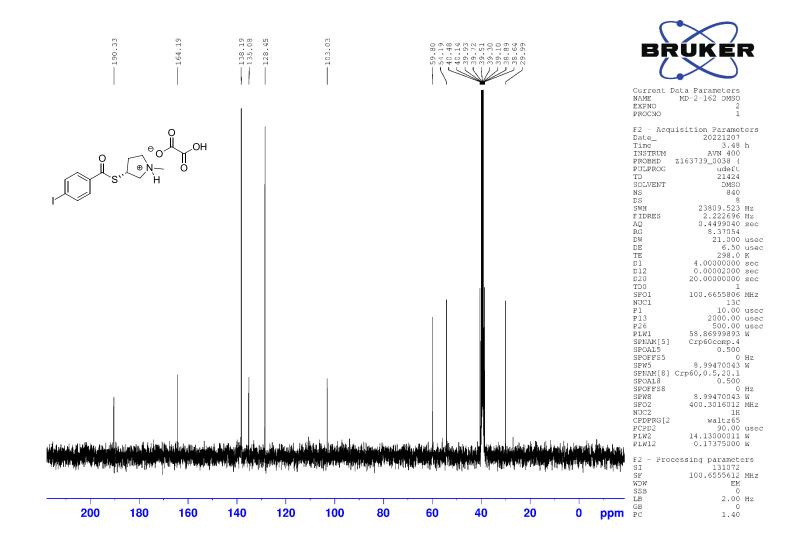

(*R*)-1-Methyl-3-pyrrolidinethiol: (*3R*)-S-(1-Methylpyrrolidin-3-yl) ethanethioate (0.951 g, 5.97 mmol) was dissolved in MeOH (30 mL) and sodium methoxide (0.333 g, 5.97 mmol) was added to the stirring solution. After all starting material was consumed by TLC using a KMnO₄ stain, MeOH was removed *in vacuo* and a solvent swap with DCM was done and used in the next step immediately.

((*3R*)-1-Methylpyrrolidin-3-yl) *p*-iodobenzenethioate: (*R*)-1-Methyl-3-pyrrolidinethiol was dissolved in DCM (20mL) and cooled to 0 °C in an ice bath. 4-Iodobenzoyl chloride (1.59 g, 5.97 mmol) was added to the reaction flask followed by triethylamine (1.66 mL, 11.9 mmol). The ice bath was removed after 30 mins, reaction was warmed to room temperature and stirred for 16 hrs. Once the reaction was complete, the solvent was removed *in vacuo*. The crude material was washed with diethyl ether, filtered to remove all precipitate, and the filtrate was concentrated *in vacuo* to give an orange solid, (1.63 g, 79%). This material was used carried through immediately without further purification.


((3R)-1-Methylpyrrolidin-3-yl) p-Iodobenzenecarbothioate Oxylate: ((3R)-1-

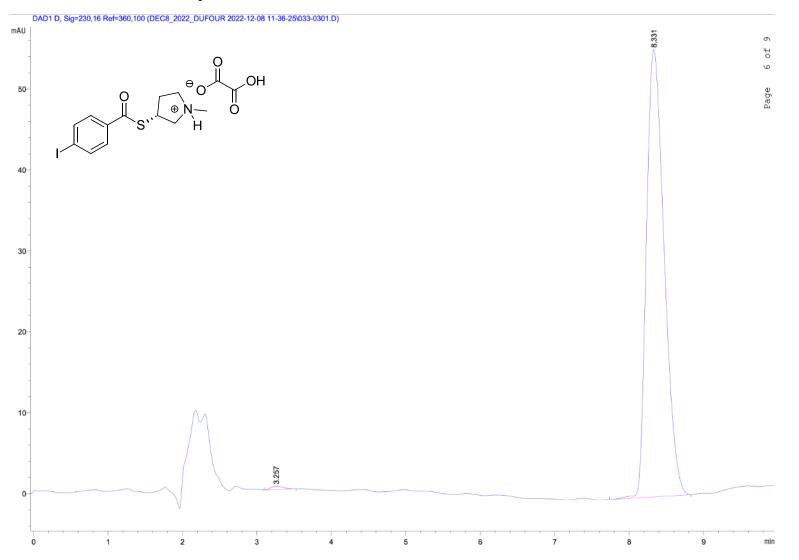

Methylpyrrolidin-3-yl) *p*-iodobenzenethioate (1.14 g, 3.28 mmol) was completely dissolved in isopropanol (63 mL). With stirring, oxalic acid (0.296 g, 3.28 mmol) was added and left to react for 3 hrs. The solution was concentrated *in vacuo* to give a white solid and immediately recrystallized with isopropanol. For further purification, this material was recrystallized with methanol twice to give ((*3R*)-1-methylpyrrolidin-3-yl) *p*-iodobenzenecarbothioate Oxylate as a white solid (0.610 g, 42%)

Spectroscopic Data: MP_(isopropanol): 197–200 °C; IR(ATR): 3042, 2838, 2705, 2574, 1658, 1561, 909, 706 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d6*) δ 7.98-7.96 (m, 2H), 7.67-7.65 (m, 2H), 4.26-4.19 (m, 1H), 4.06 (br s, 2H, overlapping with H₂O in DMSO); 3.69 (dd, J = 11.7, 8.0 Hz, 1H), 3.35-3.29 (m, 1H), 3.24-3.18 (m, 2H), 2.76 (s, 3H), 2.59-2.52 (m, 1H), 2.06-1.97 (m, 1H); ¹³C NMR (100.7 MHz, DMSO-*d6*) δ 190.3 (0), 164.2 (0), 138.2 (1), 135.1 (0), 128.5 (1), 103.0 (0), 59.8 (2), 54.2 (2), 40.5 (3), 38.6 (1), 30.0 (0); HRMS (ESI⁺): calculated for C₁₂H₁₅INOS⁺: 347.9913 amu; found for C₁₂H₁₅INOS⁺: 347.9910 amu; HPLC purity at 230nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 8.331 mins): 99.5 %.

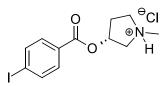


(27) ((3*R*)-1-Methylpyrrolidin-3-yl) *p*-Iodobenzenecarbothioate Oxylate IR(ATR)

(27) ((3R)-1-Methylpyrrolidin-3-yl) p-Iodobenzenecarbothioate Oxylate ¹³CNMR 100 MHz (DMSO-d6)

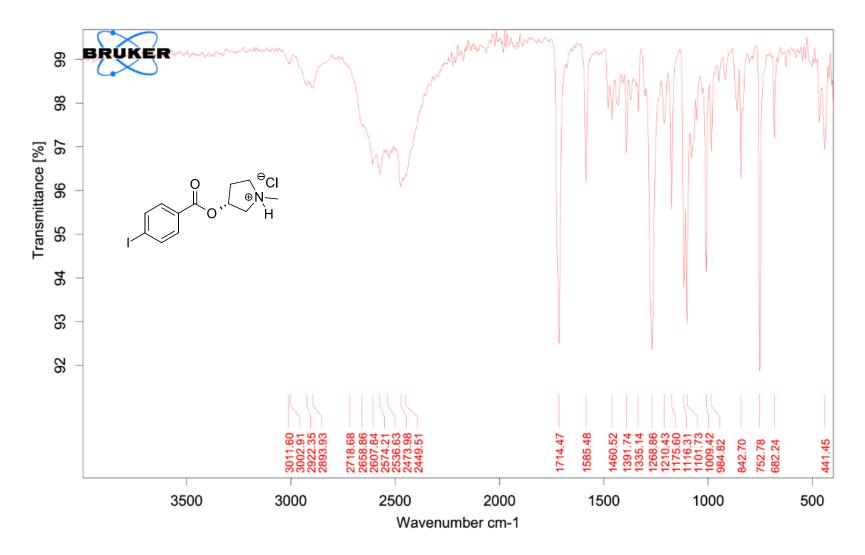


(27) ((3*R*)-1-Methylpyrrolidin-3-yl) *p*-Iodobenzenecarbothioate Oxylate High Resolution Mass Spectrum (ESI, positive mode)

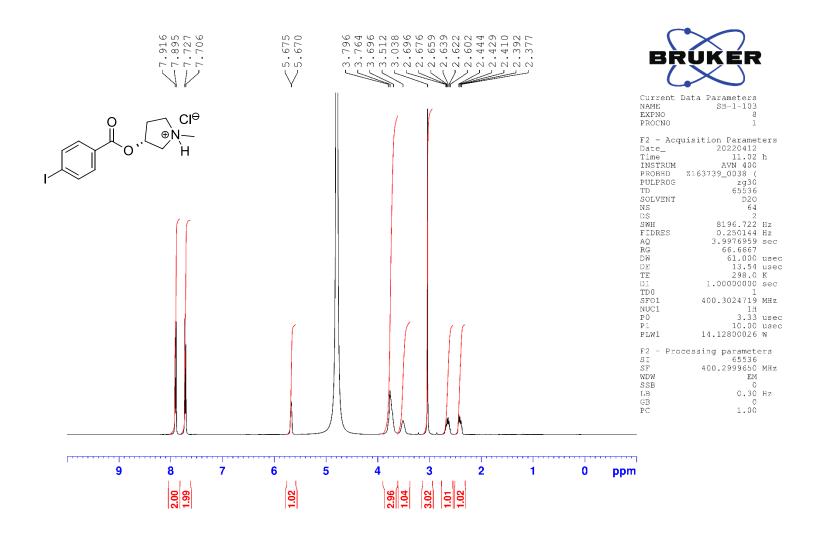

Mass Spectrum SmartFormula Report

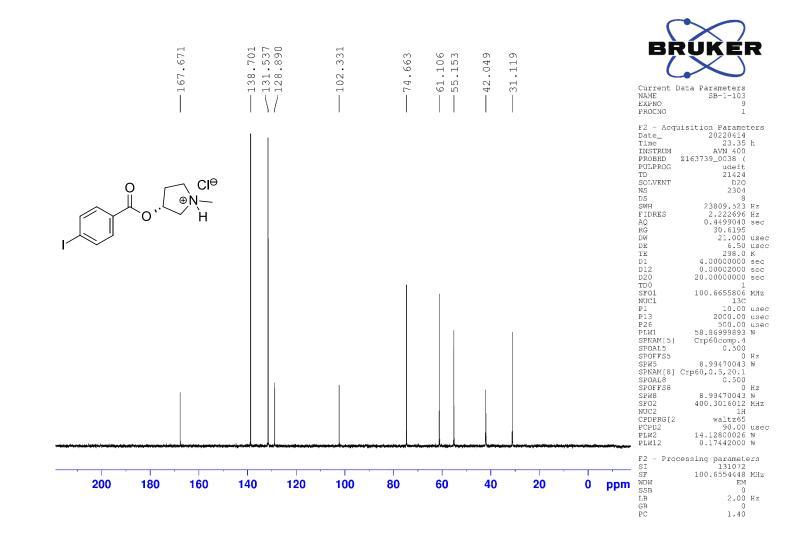
nalysis Info					Acquisition [Date 2022	-12-13 2:01:53 PM
nalysis Name lethod ample Name omment	D:\Data\Xiao\Dec 13 20 Xiao all 1.m TRV6029 Oxalate	022000002.d			Operator Instrument	x compact	8255754.2005
cquisition Param ource Type ocus can Begin can End	ESI Not active 50 m/z 1500 m/z	Set Er	apillary Id Plate Offset harging Voltage	Positive 3500 V -500 V 2000 V 0 nA		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater	0.5 Bar 180 °C 4.0 l/min Source 0 °C
Meas. m/z 347.9910	lon Formula m/z o C12H15INOS 347.9914	err [ppm] 0.9					
Intens. x10 ⁵ 2.5-			347 ,9 910	Structure of the second	он		+MS, 0.6-1.9min #35-112
2.0							
1.5-							
0.5-				348.9939	349.989	2	
0.0	346	347	348	, , , , , , , , , , , , , , , , , , ,	<u></u>		351 m/z

(27) ((3*R*)-1-Methylpyrrolidin-3-yl) *p*-Iodobenzenecarbothioate Oxylate HPLC. Note: Noise from the injection has a retention time from 1.6 min until 2.5 min. The compound of interest has a retention time of 8.331 min.



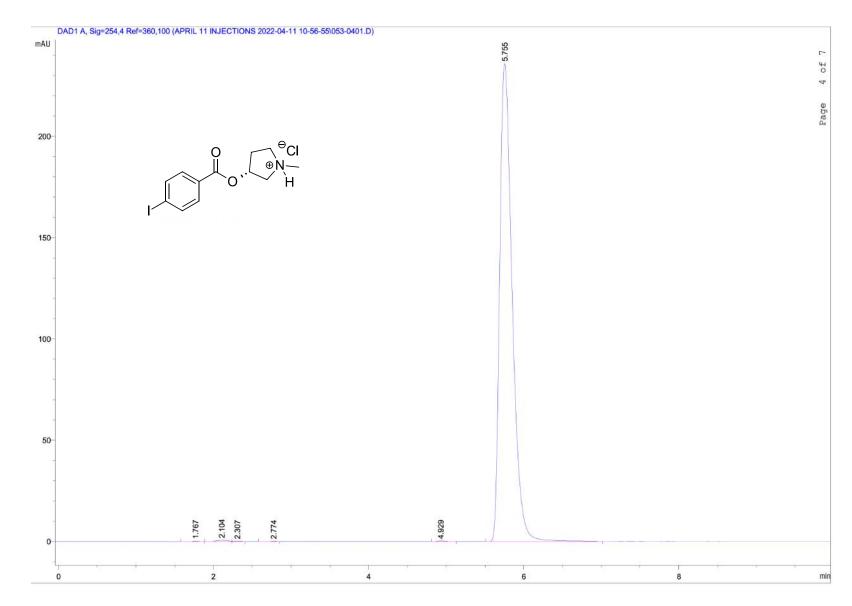
(28) (3R)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium chloride


Synthesis: (*3R*)-1-Methyl-3-pyrrolidinyl *p*-iodobenzoate: 4-Iodobenzoyl chloride (0.799 g, 3.00 mmol), triethylamine (1.05 mL, 7.50 mmol) and 4-dimethylaminopyridine (DMAP) (0.0659 g, 0.540 mmol) were dissolved in anhydrous dichloromethane (20.0 mL) under an argon atmosphere. (R)-(-)-1-Methyl-3-pyrrolidinol (0.329 mL, 3.00 mmol) was added at 0°C. The ice bath was removed after 5 mins, and the reaction was stirred for 3hrs. The reaction was quenched with brine (20mL), extracted with DCM (3×15 mL) and the combined organic layers were dried over Na₂SO₃. The solvent was removed was *in vacuo* to produce a pink solid. The crude mixture was purified by silica gel column chromatography (5% MeOH/DCM) to produce a pink solid, (*3R*)-1-methyl-3-pyrrolidinyl *p*-iodobenzoate (0.409 g, 41%). The analytical data was similar to previously published data.^[7]

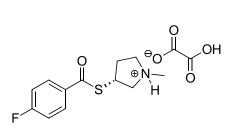

(*3R*)-3-(*p*-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium chloride: (*3R*)-1-Methyl-3-pyrrolidinyl *p*-iodobenzoate (0.257 g, 0.776 mmol) was dissolved in anhydrous diethyl ether (16 mL) under an argon atmosphere. HCl in diethyl ether (1 N - 1.2 mL, 1.16 mmol) was added dropwise resulting in the immediate formation of a white precipitate. The reaction was stirred for an additional 60 mins at room temperature. The precipitate was collected via suction filtration, washing with Et₂O (2 x 10 mL), to afford (*3R*)-3-(*p*-iodobenzoyloxy)-1-methyl-1-pyrrolidinium chloride (0.150 mg, 53 % yield) as a white solid. Spectroscopic data: MP_{(diethyl ether}): 243-245 °C; IR (ATR) 3012, 3003, 2922, 2894, 2574, 2474, 1714, 1585, 1269, 1102, 753; ¹H NMR (400 MHz, D₂O) δ 7.92-7.90 (m, 2H), 7.73-7.71 (m, 2H), 5.68-5.66 (m, 1H), 3.80-3.70 (m, 3H), 3.51 (br app s, 1H), 3.04 (s, 3H), 2.70-2.60 (m, 1H), 2.44-2.38 (m, 1H); ¹³C NMR (100.7 MHz, D₂O) δ 167.7, 138.7, 131.5, 128.9, 102.3, 74.7, 61.1, 55.2, 42.0, 31.1; LRMS (ESI⁺): 332.0 (M⁺); HRMS (ESI⁺): calculated for C₁₂H₁₅INO₂⁺: 332.0142; found for C₁₂H₁₅INO₂⁺: 332.0133; HPLC purity at 254 nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 5.755 mins): >99%.

(28) (3*R*)-3-(*p*-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride IR(ATR)

(28) (3R)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride ¹H NMR 400 MHz (D₂O)



(28) (3R)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride ¹³C NMR 100 MHz (D₂O)


(28) (3R)-3-(p-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)

						Acquisition D	Acquisition Date 7/6/2022 3:12:40 PM			
alysis Name		ao\July 06 2022	2000014.d							
ethod Imple Name	Xiao all 1.n TRV 6003					Operator Instrument	x	8255754.2005		
omment	160 6003					instrument	compact	8233734.2003		
quisition Paran										
urce Type cus	ESI Not activ	ve	lon Pola Set Cap		Positive 3500 V		Set Nebulizer Set Dry Heater	0.5 Bar 181 °C		
an Begin	50 m/z 1500 m/	-		Plate Offset	-500 V 2000 V		Set Dry Gas Set Divert Valve	4.0 l/min Source		
an End	1500 m	z	Set Con	rging Voltage ona	0 nA		Set APCI Heater	0 °C		
Meas. m/z 332.0133		m/z err 332.0142	[ppm] 2.7							
Intens x10 ⁵ .								/IS, 0.0-1.3min #1-79		
x10°.				332,0133	0	[⊖] Cl				
-					Ĭ	⊕N—				
4-						`О`' У П				
-						• • • •				
1										
-										
3-										
-										
1										
2-										
-										
1										
_										
						333.0168				
1-						1000				
1-										
1-					332.3299	333 147	6	I		
1- - - 0	331.0		31.5	332.0	332.3299 332.5	333.147	333.5	m/z		
		33	31.5	332.0	· ~ · · · · ·	- $ -$				

(28) (3*R*)-3-(*p*-Iodobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride HPLC

(29) ((3R)-1-Methylpyrrolidin-3-yl) p-Fluorobenzenecarbothioate Oxylate

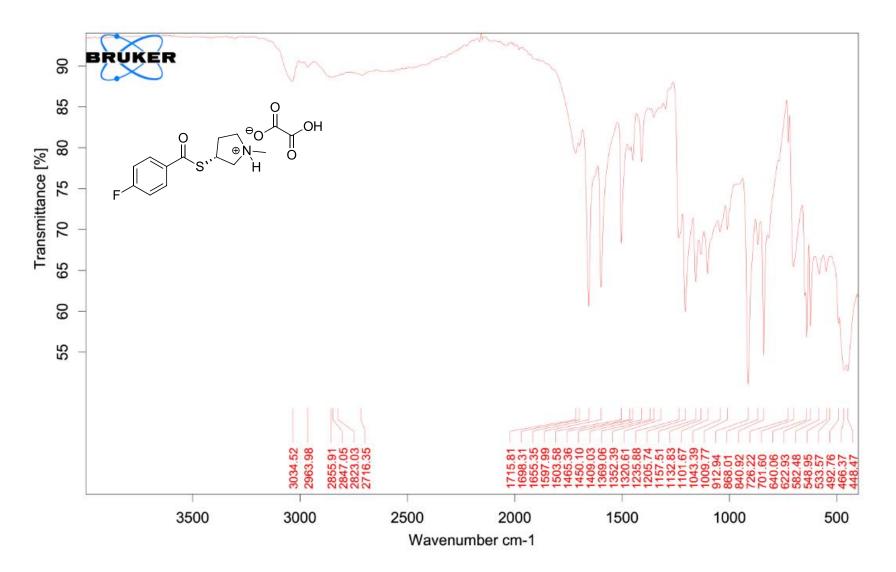
Synthesis: (*3S*)-3-(Mesyloxy)-1-methylpyrrolidine: (*3S*)-(-)-1-Methyl-3-pyrrolidinol (6.0 mL, 54.6 mmol) was dissolved in anhydrous dichloromethane (130 mL) and cooled to 0°C with an ice bath. Triethylamine (11.4 mL, 81.9 mmol) and methanesulfonyl chloride (4.9 mL, 62.8 mmol) were added dropwise at 0°C. The ice bath was removed after 5 mins, and the reaction was stirred overnight. Brine (50 mL) was added to the reaction and the layers were separated. The aqueous layer was extracted with dichloromethane (3×15 mL). The combined organic layers were dried over Na₂SO₃, gravity filtered, and the filtrate was concentrated *in vacuo* to produce (*3S*)-3-(mesyloxy)-1-methylpyrrolidine as a yellow oil (8.87 g, 91%). Product was confirmed by ¹H NMR and the crude material was immediately carried through to next step without further purification.

(*3R*)-S-(1-Methylpyrrolidin-3-yl) ethanethioate: (*3S*)-3-(Mesyloxy)-1-methylpyrrolidine (6.99 g, 39.0 mmol) was dissolved in anhydrous THF (130 mL) under an argon atmosphere. 18-crown-6-ether (15.5 g, 58.5 mmol) was added followed by potassium thioacetate (6.68 g, 58.5 mmol), added in 3 portions. Once all potassium thioacetate had gone into solution, the reaction was heated to 30°C and left overnight. The reaction was filtered, the filtrate diluted with water (50 mL) and extracted with EtOAc (3×15 mL). The combined organic layers were washed with water (3×20 mL) and brine (3×20 mL), dried over Na₂SO₃, gravity filtered, and concentrated *in vacuo* to produce (*3R*)-S-(1-methylpyrrolidin-3-yl) ethanethioate as a red oil. The crude material was then distilled under vacuum (1 mm Hg) at 100-101°C to give a yellow oil (4.45 g, 72%). Product was confirmed by ¹H NMR and the material was immediately carried through to next step without further purification.

(*S*)-1-Methyl-3-pyrrolidinethiol: (*3R*)-S-(1-Methylpyrrolidin-3-yl) ethanethioate (0.950 g, 5.97 mmol) was dissolved in MeOH (30 mL) and sodium methoxide (0.332 g, 5.97 mmol) was added to the stirring solution. After all starting material was shown to be consumed by TLC experiment

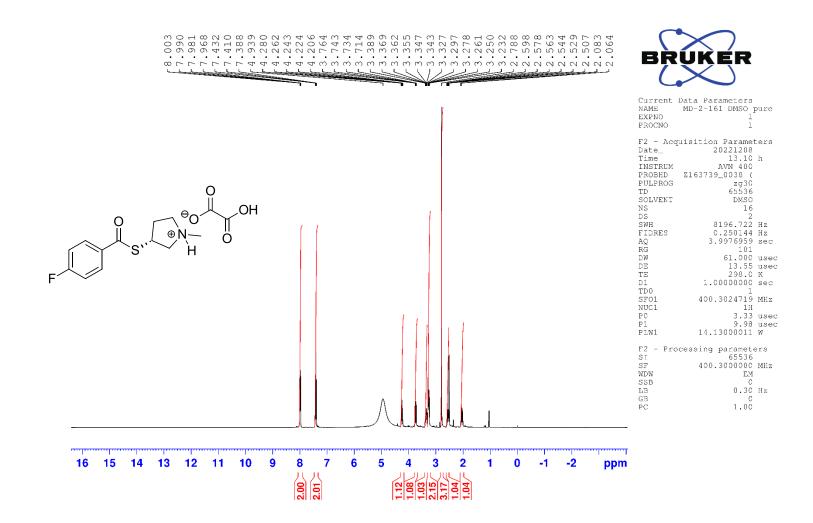
the reaction was concentrated *in vacuo*. The resulting material was placed dichloromethane (20 mL) and concentrated *in vacuo*. This process was repeated and the material was immediately used in the next step.

((*3R*)-1-Methylpyrrolidin-3-yl) *p*-fluorobenzenecarbothioate oxylate: The (*S*)-1-methyl-3pyrrolidinethiol was dissolved in dichloromethane (20 mL) and cooled to 0°C using an ice bath. 4-fluorobenzoyl chloride (0.716 mL, 5.97 mmol) was added followed by triethylamine (1.66 mL, 11.9 mmol). The ice bath was removed after 30 mins and warmed to room temperature. After all starting material was shown to be consumed by TLC experiment (developed using KMnO₄ stain), the solvent was removed *in vacuo*. The crude material was washed with diethyl ether, filtered to remove all precipitate, and the filtrate was concentrated *in vacuo* to give an orange oil (1.52 g). A portion of this orange oil (1.03 g, 4.30 mmol) was completely dissolved in isopropanol (43 mL). With stirring, oxalic acid (0.387 g, 4.30 mmol) was added and the mixture stirred for 3 hrs. The solution was concentrated *in vacuo* to give a white solid and immediately recrystallized with isopropanol four times to give ((*3R*)-1-methylpyrrolidin-3-yl) *p*fluorobenzenecarbothioate oxylate as a white solid (0.539 g, 38%).

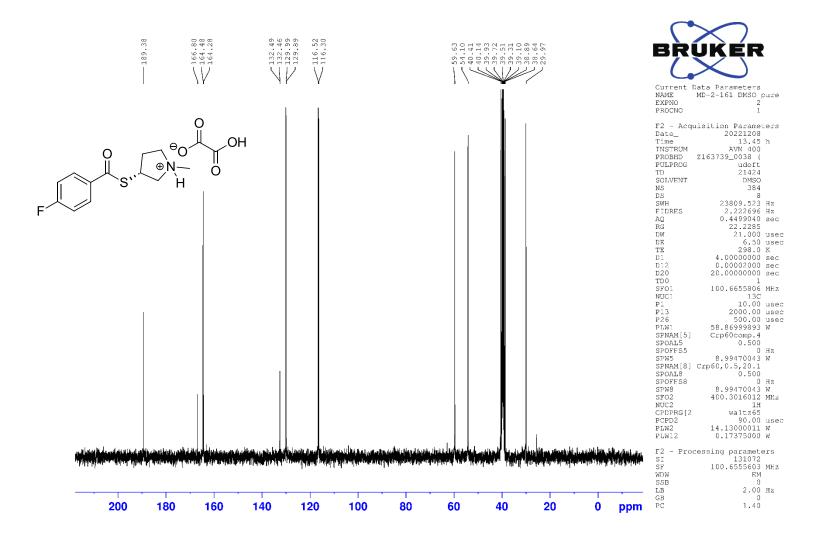

Spectroscopic Data: MP_(isopropanol): 134–137 °C; IR(ATR): 3035, 2964, 2847, 2716, 1655, 1598,

1206, 913, 841 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ 8.00-7.97 (m, 2H), 7.43-7.39 (m, 2H),

4.24 (pent, J = 7.5 Hz, 1H), 3.74 (dd, J = 12.0, 8.3 Hz, 1H), 3.39-3.34 (m, 1H), 3.30-3.23 (m,

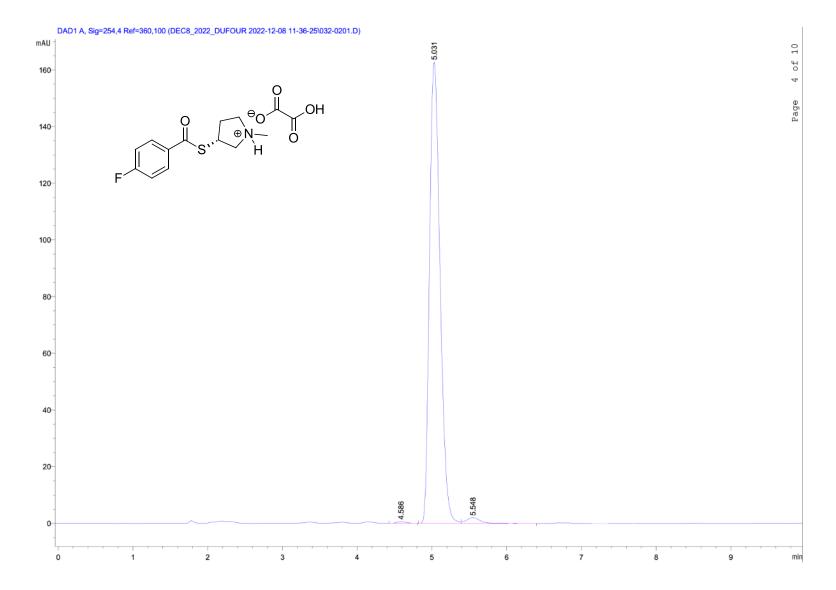

2H), 2.79 (s, 3H), 2.60-2.53 (m, 1H), 2.08-1.99 (m, 1H); ¹³C NMR (100.7 MHz, DMSO-*d6*) δ 189.4 (0), 165.5 (d, ¹J_{CF} = 253.3 Hz, 0), 164.5 (1), 132.47 (d, ⁴J_{CF} = 2.6 Hz, 0), 129.9 (d, ³J_{CF} = 9.8 Hz, 1), 116.4 (d, ²J_{CF} = 22.4 Hz, 1), 59.6 (2), 54.1 (2), 40.4 (3), 38.6 (1), 30.0 (2); ¹⁹F NMR (376.6 MHz, DMSO-*d6*) δ 104.1; HRMS (ESI⁺): calculated for C₁₂H₁₅FNOS⁺: 240.0853 amu; found for C₁₂H₁₅FNOS⁺: 240.0853 amu; HPLC purity at 254nm (75% CH₃CN : 10% CH₃OH :

15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 5.031 mins): 98.2%.

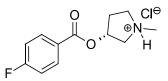


(29) ((3*R*)-1-Methylpyrrolidin-3-yl) *p*-Fluorobenzenecarbothioate Oxylate IR(ATR)

(29) ((3*R*)-1-Methylpyrrolidin-3-yl) *p*-Fluorobenzenecarbothioate Oxylate ¹HNMR 400 MHz (DMSO-*d6*)



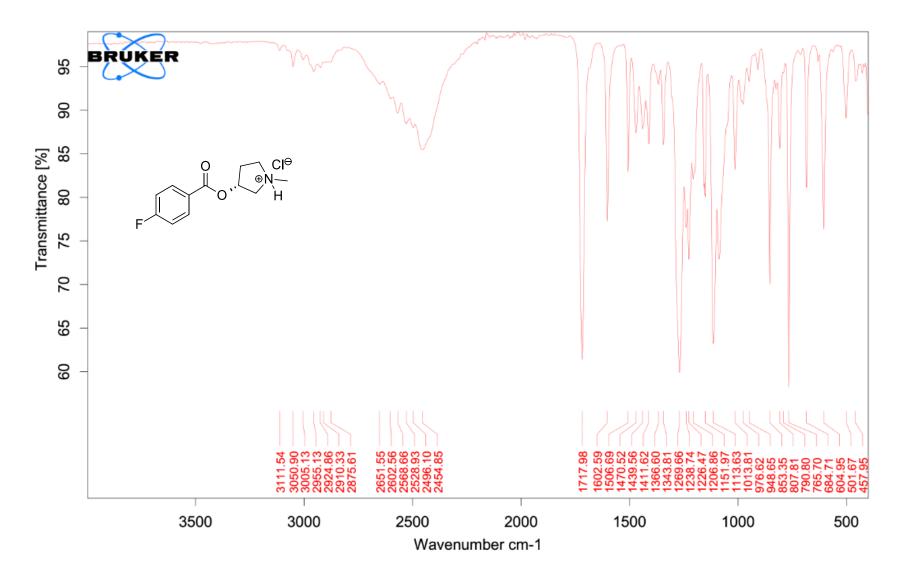
(29) ((3*R*)-1-Methylpyrrolidin-3-yl) *p*-Fluorobenzenecarbothioate Oxylate ¹³CNMR 100 MHz (DMSO-*d*6)


(29) ((3R)-1-Methylpyrrolidin-3-yl) p-Fluorobenzenecarbothioate Oxylate

Analysis Info					Acquisition [Date 2022-12-	13 1:52:45 PM
Analysis Name	D:\Data\Xiao\Dec 13 2						
Method	Xiao all 1.m				Operator	x	
Sample Name	TRV6030 Oxalate				Instrument	compact	8255754.20059
Comment							
Acquisition Paran							
Source Type	ESI Not active	Ion Polarity		Positive 3500 V		Set Nebulizer	0.5 Bar 180 °C
Focus Scan Begin	50 m/z	Set Capilla Set End Pla		-500 V		Set Dry Heater Set Dry Gas	4.0 l/min
Scan End	1500 m/z	Set Chargin		2000 V		Set Divert Valve	Source
		Set Corona		0 nA		Set APCI Heater	0°C
Meas. m/z 240.0853	lon Formula m/z C12H15FNOS 240.0853	err [ppm] 0.1					
Intens. x10 ⁴						-	i, 0.6-1.4min #36-82
			240,0853			0	
					0 1	[∋] o [⊥] OH	
6-						, II	
				\wedge	S''	ν— Ο Η	
-				F	<i>.</i> ,		
				•			
4-							
1							
2-							
				241.0884			
1							
				(242.0831	242.9257	
			IL.	1 1	Λ	1	
0+							

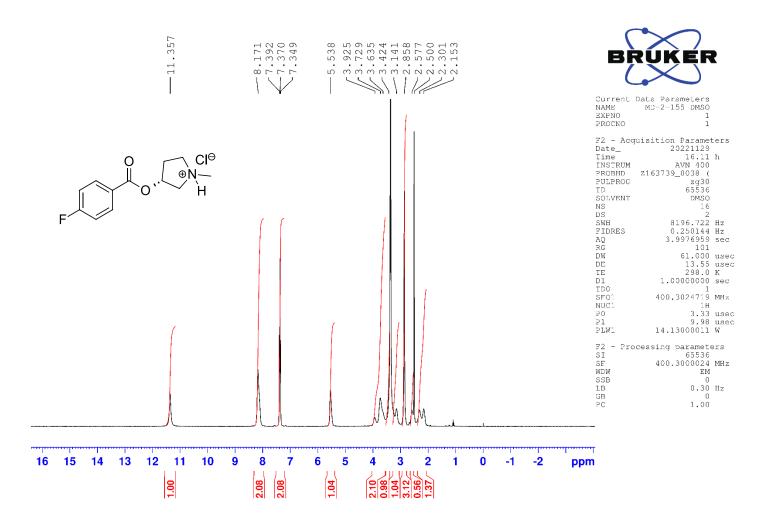
(29) ((3*R*)-1-Methylpyrrolidin-3-yl) *p*-Fluorobenzenecarbothioate Oxylate HPLC

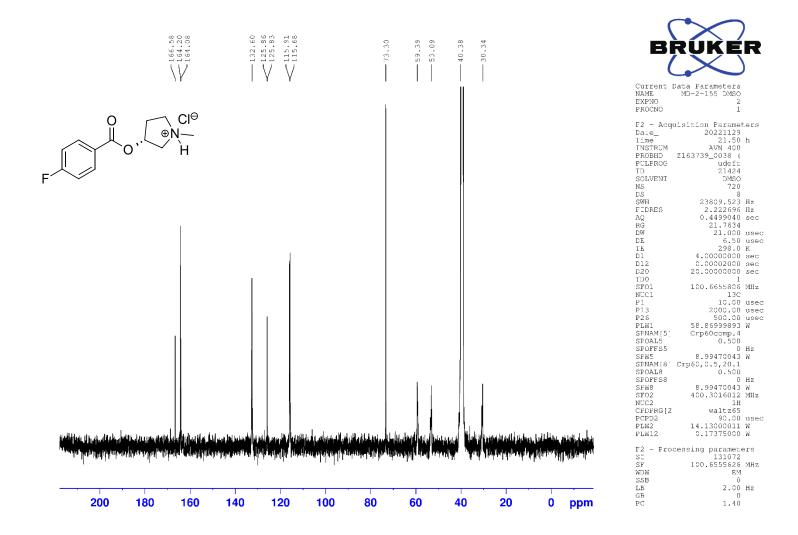
(**30**) (*3R*)-3-(*p*-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride

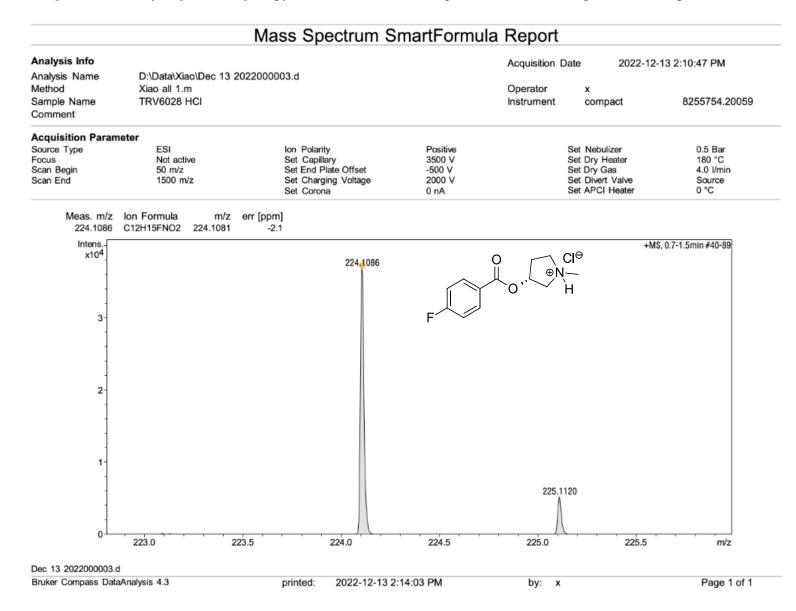

Synthesis: (*3R*)-1-Methyl-3-pyrrolidinyl *p*-fluorobenzoate: (*3R*)-(+)-1-Methyl-3-pyrrolidinol (0.659 mL, 6.00 mmol) was dissolved in anhydrous dichloromethane (20 mL) under an argon atmosphere and cooled to 0°C. To this solution, triethylamine (1.67 mL, 12.0 mmol) and 4-fluorobenzoyl chloride (0.720 g, 6.00 mmol). The ice bath was removed after 5 min, and the reaction was stirred for 24hrs. At this time water (20 mL) was added, layers were separated, and the aqueous layer was extracted with dichloromethane (3×15 mL). The combined organic layers were dried over Na₂SO₃, gravity filtered, and the filtrate was concentrated *in vacuo* to produce an orange oil. This crude material was purified by flash chromatography through silica gel (5% MeOH/DCM/1% TEA) to afford (*3R*)-1-methyl-3-pyrrolidinyl *p*-fluorobenzoate as an orange oil (1.09 g, 82%).

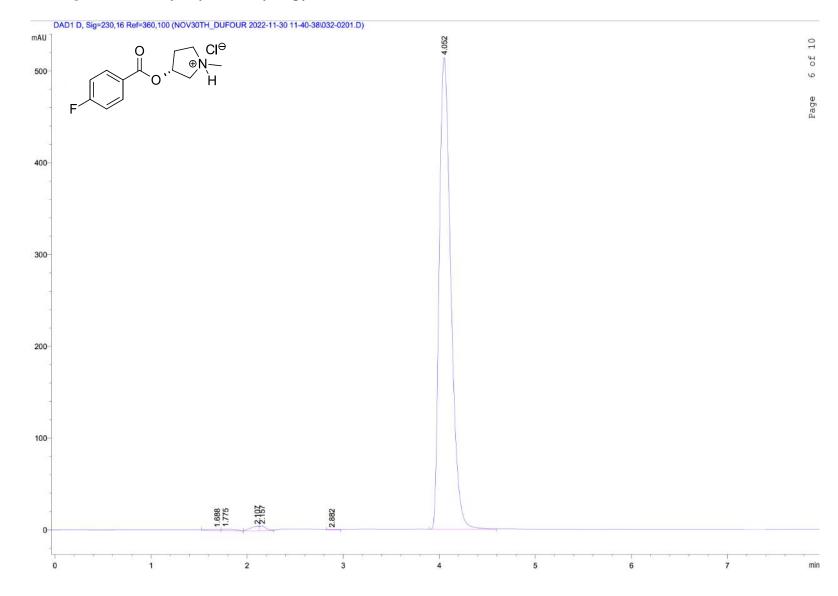
(3R)-3-(p-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride: (3R)-1-Methyl-3-

pyrrolidinyl *p*-fluorobenzoate (0.248 g, 1.11 mmol) was dissolved in anhydrous diethyl ether (22 mL) under an argon atmosphere. HCl in diethyl ether (1 N - 1.70 mL, 1.67 mmol) was added dropwise and stirred for 3 hrs. The solvent was removed *in vacuo* resulting in a white solid. The compound was triturated three times with diethyl ether (20 mL), solvent was removed with a pipet and compound was dried to produce (*3R*)-3-(*p*-fluorobenzoyloxy)-1-methyl-1-pyrrolidinium chloride (0.148 g, 51%).

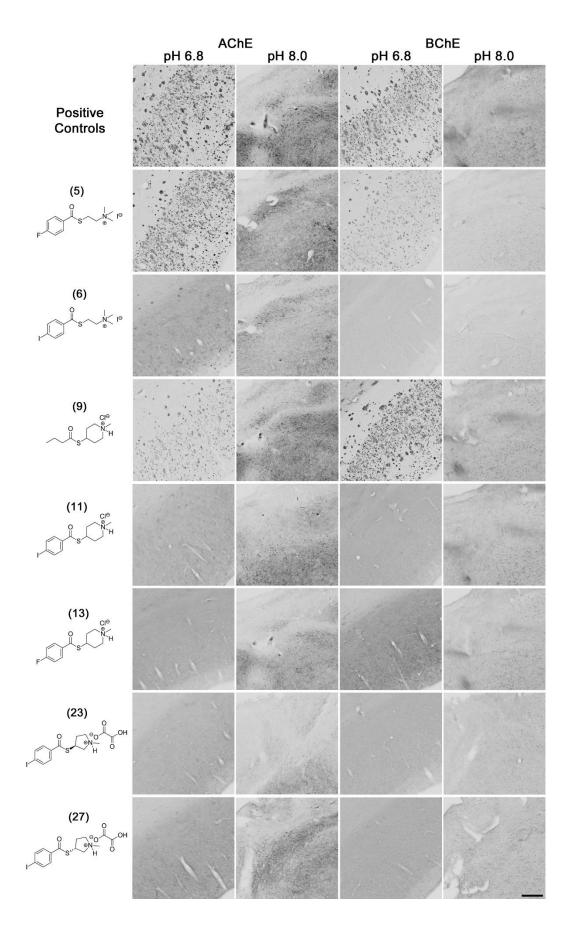

Spectroscopic Data: MP_{(diethyl ether}): 144–149 °C; IR(ATR): 3112, 3051, 2955, 2603, 2569, 2455, 1718, 1602, 1270, 1114, 853, 685 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ 11.36 (br s, 1H),


8.16-8.15 (m, 2H), 7.39-7.35 (m, 2H), 5.54 (br s, 1H), 3.92-3.63 (m, 2H), 3.42 (br s, 1H), 3.14 (br s, 1H), 2.86 (s, 3H), 2.58-2.15 (m, 2H); ¹³C NMR (100.7 MHz, DMSO-*d*6) δ 165.3 (d, ¹*J*_{*C,F*} = 251.8 Hz, 0), 164.2 (0), 132.6 (1), 125.8 (d, ⁴*J*_{*C,F*} = 2.4 Hz, 0), 115.8 (d, ²*J*_{*C,F*} = 22.2 Hz, 1), 73.3 (1), 59.4 (2), 53.1 (2), 40.4 (3), 30.4 (2); HRMS (ESI⁺): calculated for C₁₂H₁₅FNO₂⁺: 224.1081 amu; found for C₁₂H₁₅FNO₂⁺: 224.1086 amu; HPLC purity at 230nm (75% CH₃CN : 10% CH₃OH : 15% aqueous triethylamine [0.1% triethylamine in H₂O], retention time 4.052 mins): 98.4%.

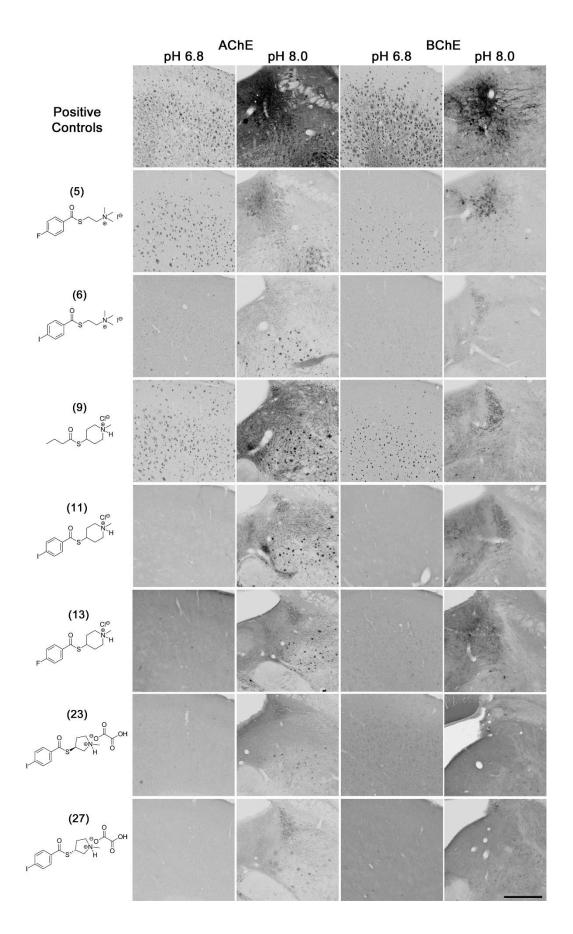

(30) (3R)-3-(p-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride IR(ATR)


(30) (3R)-3-(p-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride ¹HNMR 400 MHz (DMSO-d6)

(30) (3R)-3-(p-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride High Resolution Mass Spectrum (ESI, positive mode)



(**30**) (*3R*)-3-(*p*-Fluorobenzoyloxy)-1-methyl-1-pyrrolidinium Chloride HPLC


References:

- [1] Macdonald IR, Jollymore CT, Reid GA, Pottie IR, Martin E, Darvesh S. Thioesters for the in vitro evaluation of agents to image brain cholinesterases. J Enzyme Inhib Med Chem. 2013;28(3):447-455. DOI: <u>10.3109/14756366.2011.647008</u>
- Bormans G, Sherman P, Snyder SE, Kilbourn MR. Synthesis of carbon-11- and fluorine-18-labeled 1-methyl-4-piperidyl-4'-fluorobenzoate and their biodistribution in mice. Nucl Med Biol. 1996;28(4):513-517. DOI <u>10.1016/0969-8051(96)00033-9</u>.
- [3] Hoeltje HD, Jensen B, Lambrecht G. Cyclic acetyl choline analogs part 4 4 acetoxy piperidines and 4 acetoxythia cyclo hexanes. Eur J Med Chem. 1978;13(5):453-464.
- [4] Kikuchi T, Fukushi K, Ikota N, Ueda T, Nagatsuka S-I, Arano Y, Irie T. Synthesis of piperidinyl and pyrrolidinyl butyrates for potential in vivo measurement of cerebral butyrylcholinesterase activity. J Labelled Compd Radiopharm. 2001;44(1):31-41. DOI: 10.1002/jlcr.429.
- [5] Cheng CY, Brochmann-Hanssen E, Waters JA. Quantitative structure-activity relationships of aromatic esters of 1-methyl-4-piperidinol as analgesic. J Med Chem. 1982;25(2):145-152. DOI: <u>10.1021/jm00344a011</u>.
- [6] Waters JA. Aromatic esters of nonquaternary carbon-4 piperidinols as analgesics. J Med Chem. 1978;21(7):628-633. DOI: <u>10.1021/jm00205a007</u>.
- [7] Macdonald IR, Reid GA, Joy EE, Pottie IR, Matte G, Burrell S, Mawko G, Martin E, Darvesh S. Synthesis and preliminary evaluation of piperidinyl and pyrrolidinyl iodobenzoates as imaging agents for butyrylcholinesterase. Mol Imaging Biol. 2011;13(6):1250-1261. DOI: <u>10.1007/s11307-010-0448-0</u>.

B. Figures for histochemistry

Figure S1. Representative photomicrographs of histochemical staining of AChE (columns 1 and 2) and BChE (columns 3 and 4) at pH 6.8 and 8.0 in human brain tissues demonstrating that, when used as inhibitors, some compounds engaged with cholinesterases. Optimal staining for plaques at pH 6.8 is shown in the orbitofrontal cortex, optimal staining of normal neural elements at pH 8.0 is shown in the thalamus. Scale bar =400 μ m.

Figure S2. Representative photomicrographs of histochemical staining of AChE (columns 1 and 2) and BChE (columns 3 and 4) at pH 6.8 and 8.0 in mouse brain tissues demonstrating that, when used as inhibitors, some compounds engaged with cholinesterases. Optimal staining for plaques at pH 6.8 is shown in the orbitofrontal cortex, optimal staining of normal neural elements at pH 8.0 is shown in the thalamus. Scale bar = $200 \,\mu$ m.