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Supplementary Figures 

 

 
Supplementary Fig. 1 Experimental procedures of two-step integration strategy. (a) Experimental workflow for engineering AAVS1-integrated LP 

cells with CRISPR/Cas9. (b) Experimental workflow for integrating synthetic gene circuits into LP cells via RMCE. 
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Supplementary Fig. 2 Representative dose response fluorescence microscopy images of the selected MB231 clones. Fluorescence microscopy 

images of all selected mNF-BACH1 and mNF-GFP clones of MB231 at 0, 0.1, 0.5, 1, and 10 ng/ml Dox induction conditions. Scale bar is 100 µm.  
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Supplementary Fig. 3 Representative dose response fluorescence microscopy images of the selected HEK293 clones. Fluorescence microscopy 

images of all selected mNF-BACH1 and mNF-GFP clones of HEK293 at 0, 0.1, 0.5, 1, and 10 ng/ml Dox induction conditions. Scale bar is 100 µm.  
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Supplementary Fig. 4 Experimental design and validation of native BACH1 knockout. (a) Experimental designs to generate native BACH1 knockout 

and reintroduction of circuit-regulated ectopic BACH1 copy using two-step site-specific integration strategy. (b) Western Blot verification of native BACH1 

knockout in MB231 BK cells with reference to the MB231-1-LP parental cells and low-noise mNF-GFP MB231 clone. (c) qRT-PCR verification of 

transcriptional downstream effects to HMOX1 due to native BACH1 knockout. 
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Supplementary Fig. 5 Events were gated to reduce false events in flow cytometry analysis. 
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Supplementary Fig. 6 Unprocessed Western Blot images for Supplementary figure 4.  
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Supplementary Notes  
 

1.1 Modeling hemin-promoted BACH1 degradation. 
 

BACH1’s concentration kinetics in mNF cells can be described by the following equation: 

dB
k gB

dt
= − , where k is BACH1 synthesis, g is BACH1 degradation and dilution. 

Consequently, BACH1’s steady state level will be 0

k
B

g
= . 

When bound to BACH1 in a complex C, hemin will cause BACH1 degradation with a rate h. 

Denoting the rate of hemin-BACH1 association and separation by a and s, respectively, the 

equilibrium amounts of free and hemin-bound BACH1 will be: 

sB
F

s aH
=

+
 and 

aHB
C

s aH
=

+
, with kinetics described by: 

dF s
k gF

dt s aH
= −

+
 and ( )

dC aH
k g h C

dt s aH
= − +

+
. 

The overall, total BACH1 kinetics will be: 
dB aH

k gB hC k g h B
dt s aH

 
= − − = − + 

+ 
. 

BACH1’s new steady state will be: 
0

1

H

s
H

k aB B
aH s hg h H

s aH a g

+

= =
 

+ + + +  

. 

We fit this formula to experimental data and obtained 25.17
s

a
   and 7.8867

h

g
 . 

Therefore, hemin’s equilibrium binding constant is 25.17 per unit concentration and the 

degradation rate due to hemin is almost 8 times the normal rate of BACH1 degradation. 
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1.2 Investigation of expression noise effects on cell invasion via 

Positive-Feedback gene circuit 
 

To investigate more broadly the effects of expression noise, we used the same two-step 

strategy to integrate a BACH1-controlling mammalian Positive Feedback (mPF-BACH1) gene 

circuit into the genome of MB231 cells. Contrasting a Chinese hamster cell line, eGFP::BACH1 

expression in mPF-MB231 cells was bimodal above an induction threshold of ~100 ng/ml Dox 

(Extended Data Fig.5c). Higher Dox levels enriched the high-expression peak at the expense 

of the low-expression peak, while the positions of both peaks remained unchanged, causing a 

dose-dependent increase of eGFP::BACH1 expression mean (Extended Data Fig.5d). Such a 

bimodal distribution corresponds to two drastically different phenotypes, another noise effect 

that is different from the broad phenotypic distribution in high-noise clones. To study how 

bimodal expression affects invasion, we identified four induction levels where the expression 

means of mPF-BACH1 and mNF-BACH1 cells were similar while their CVs were drastically 

different (Extended Data Fig.5e-f). We predicted mPF cell population invasiveness by 

averaging the invasiveness corresponding to the mean of low- mid- and high-expressing mPF-

BACH1 cells, weighted by the estimated subpopulation sizes (Extended Data Fig.5g). This 

analysis indicated that unlike for other gene circuits, mPF invasiveness should increase in a 

monotone fashion because of the progressive enrichment of the high-expressing subpopulation 

at the expense of the low-expressing cells, corresponding to constant low and high invasiveness 

on the landscape, respectively. Indeed, invasion assays confirmed the prediction (Extended 

Data Fig.5h). Also, high noise in mPF cells still promoted invasion at high BACH1 expression. 
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1.3 Cellular fitness (invasion) landscape inference 
 

1.3.1  Local cellular fitness landscapes 
 

We inferred local cellular fitness landscapes based on log(eGFP::BACH1) fluorescence 

histograms from the invasion assays using Boyden chambers. We used identical sets of bins 

numbered 1 i M   for estimating fluorescence histograms of seeded ( ip ) and invading ( iq ) 

cells as probability distributions, so 
1 1

1
M M

i i

i i

p q
= =

= =  . Then, for each Dox induction level, we 

rescaled the height of all bins for the invaded cells by the average invasiveness 
Dox

w , so 

i iDox
q w qa  and 

1

M

i Dox
i

q w
=

= . Next, we estimated the local invasiveness as ( ) i
i

i

q
w Dox

p
=  

within each bin i  to construct the local fitness landscape at each Dox concentration. Finally, 

considering that both ip  and iq  are noisy, we used smoothing and then error propagation 

models to cut off regions with error CVs larger than some threshold. 

 

1.3.2  Global consensus cellular fitness landscapes 
 

We constructed global cellular fitness landscapes by weighted averaging of local fitness 

landscapes. The local fitness landscapes ( )iw Dox  inferred at different Dox concentrations 

show similar trends, but do not agree. Therefore, for each bin 1 i M   we calculated the 

weighted average of local fitness landscapes as ( )i i i

Dox

W rw Dox= . 

We calculated the weights for each local invasiveness as 
1

( ) i
i

i i

r Dox
CV




= = . Based on 

Holmes & Buhr, Clin. Biochem. 40:728 (2007), errors for ratios of two quantities ip   and iq  

propagate approximately as: 

2 2 2 2 2

2

3 8

1

p q p q qi
i

i q

CV CV CV CV CV
CV

CV





+ + +
= =

+
, where pCV  and 

pCV  are the coefficients of variation of ip   and iq , respectively. 
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1.4 Mathematical theory of phenotypic selection 
 

1.4.1 Price Equation for the shift in mean log10(BACH1 expression) 
 

First, we rederive the known relationship for the shift z  due to selection in the average 

“character” z z , which is the mean of log10(BACH1 protein expression level) in our case.  

Assume there are M  groups (fluorescence bins) labeled 1,2,...,i M= , each of which contains 

in  cells sharing a property iz , 1,2,...,i M=  and fitness iw , 1,2,...,i M= . Here, iz  represents 

discretized log10(BACH1 level), with the same iz  value assigned to all cells within fluorescence 

bin i . Cells in bin i  contribute to the post-selection (i.e., post-invasion) population according to 

their fitness iw , being replaced by their i i in n w =  “descendants”, such that 1iw   implies net 

gain, 1iw =  implies no population change, and 0 1iw   implies net loss of cells within bin i . 

Thus, the total number of cells in the post-invasion population will be: 
1

M

i i

i

N n w
=

 = . 

So far, we assumed that cells do not change their BACH1 level iz  during invasion, which 

corresponds to perfect inheritance (cellular memory). To make the model more realistic, we 

assume a iz -changing mechanism by bin switching. Specifically, when inheritance of the trait z  

is imperfect, all cells within the first K  bins out of M  total bins are reassigned to the same K  

bins somehow after selection, so generally 
j jz z   for the bins numbered 1,2,...j K= , whereas 

j jz z =  for  the bins numbered 1, 2,...,j K K M= + + . We note that the bins can always be 

arbitrarily renumbered so that the cells within the first K  bins will be switching bins. The values 

0K =  and K M=  then correspond to perfect inheritance and no inheritance, respectively. 

If we denote the probability of being in bin i  by 

1

( )

i i
i M

i

i

n n
p

N
n

=

= =


, the average fitness will be: 

1

1

1

( )

M

i i M
i

i iM
i

i

i

n w

w w p w

n

=

=

=

= = =





. 

 

Likewise, the average of the log10(BACH1 level) property iz , prior to invasion will be: 

1

1

1

( )

M

i i M
i

i iM
i

i

i

n z

z z p z

n

=

=

=

 = =





.         (1) 
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After invasion, the average post-invasion property z  will be: 

1 1 1

1 1

[( ) ] [( ) ] [( ) ]

( ) ( )

M K M

i i i i i i i i i

i i i K

M M

i i i i

i i

n w z n w z n w z

z

n w n w

= = = +

= =

  +

 = =
  

 
  

 

By subtracting and adding the same sum to the numerator, and regrouping terms, we have: 

 

1 1

1

[( )( )] [( ) ]

( )

M M

i i i i i i i

i i

M

i i

i

n w z z n w z

z

n w

= =

=

 − +

 =
 


.        (2) 

 

With simplified notation, the average post-invasion property z  can also be written as: 

( )i i i i i i iw z z w z w z
z

w w

 − +
 = = . 

 

Using Equations (1) and (2), the difference in average character can be written as: 

1 1 1

1 1

[( )( )] [( ) ] [ ]

( )

M M M

i i i i i i i i i
i ii i i

M M

i i i

i i

n w z z n w z n z
w z

z z z z
w

n w n

= = =

= =

 − +


 = − = − = −
  

 
. 

 

We now use some algebra to rewrite this expression. 

 

( ) ( , )i i i i i i i i i i iw z w z z w w z z w z z w w z Cov w z
z z z z

w w w w w

  − − + − 
 = − = − = = = +  

 

Therefore, the Price equation for the change in average BACH1 levels upon invasion is: 

 

( ) ( , ) i iw z w z z Cov w z w z  − = +  , or 
( , ) i iCov w z w z

z
w

+ 
 = .   (3) 
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Next, we discuss two cases: (i) without selection; and (ii) with selection. 

(i) Without selection BACH1 levels are uncorrelated with fitness, so ( , ) 0Cov w z = . The only 

remaining term in (3) is i iw z
z

w


 = . We show that this term will vanish, so 0z  . 

a. First, with perfect cellular memory, 0iz = , so 0z = . 

b. Second, without any memory, all +/- 
iz  shifts can occur (due to random bin 

reassignments), so 
iz  must average to 0, and 0i i i iw z w z =  = . 

c. Third, with intermediate memory, we have a mixture of subcases (i)a and (i)b. 

 

(ii) With selection BACH1 levels correlate with fitness, ( , ) 0Cov w z  . 

a. First, with perfect cellular memory, 0iz = , so 0i iw z =  and we obtain the 

covariance equation: 
( , )Cov w z

z
w

 = .  

b. Second, without inheritance, all 
iz  cells redistribute randomly across the bins, so: 

( ) ( , ) ( , ) ( )i i i i i i i i i i i i i iw z w z z w z w z Cov w z Cov w z w z z    = − = − = − + − . As 

discussed above, 0z = . Also, ( , ) 0i iCov w z = , so ( , )i iw z Cov w z = − . 

c. Third, with intermediate memory, the terms in the denominator will be nonzero, 

allowing selection, to degree between cases (ii)a and (ii)b: 
( , )

0
Cov w z

z
w

   . 

Linear (directional) selection: We compute the shift z  with perfect memory and i iw az b= + . 

2 2
( )( , ) i ii i i i i

a z az b z bzw z w z az b z az b zCov w z
z

w w w w

− + −− + − +
 = = = =  

( ) ( )aVar z aVar z
z

w az b
 = =

+
. 

Thus, with perfect memory, on a linear invasion landscape, the mean of z  increases (upslope, 

a>0) or decreases (downslope, a<0) proportional to the landscape’s slope, a & variance ( )Var z . 

Quadratic (divergent or disruptive) selection: With perfect memory &
2

i i iw az bz c= + +  we have: 

2 2( )( , ) i i i i ii i
az bz c z az bz c zw z w zCov w z

z z z
w w w

+ + − + +−
 = − = = =  

2 2

2

( , ) ( ) ( , ) ( )aCov z z bVar z aCov z z bVar z
z

w a z bz c

+ +
 = =

+ +
. For Gaussian z, 

2

[2 ] ( )az b Var z
z

a z bz c

+
 =

+ +
. 

Thus, the mean of z  increases if 2az+b>0 or decreases if 2az+b<0, proportional to the fitness 

derivative [2az+b] and the covariance 
2( , )Cov z z . 
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1.4.2 Price Equation for log10(BACH1) variance 
 

Again, we assume that there are there are M  groups (fluorescence bins), each bin containing 

in  cells that share the same log10(BACH1 level) property iz , 1,2,...,i M=  and fitness iw , 

1,2,...,i M= . The cells within each bin i  contribute i i in n w =  cells to the same bin in the post-

invasion population, which for invasion assays are a subset of the original in  cells since 1iw  .  

Therefore, the total number of invading cells will be: 
1

M

i i

i

N n w
=

 = . Inheritance of the trait z  may 

be imperfect, so 
j jz z   for bins 1,2,...j K= , and i iz z =  for bins 1, 2,...,j K K M= + + . 

The variance of property iz  in the pre-invasion cell population will be: 

2

2

221 1

1 1

[ ] [ ]

( )

M M

i i i i

i i

M M

i i

i i

n z n z

Var z z z

n n

= =

= =

 
  

= − = − 
 
  

 

 
.      (4) 

 

The variance of property iz  after invasion will be: 

2

2
22

1 1

1 1

[( ) ] [( ) ]

( )

( ) ( )

M M

i i i i i i

i i

M M

i i i i

i i

n w z n w z
wz wz

Var z
w w

n w n w

= =

= =

 
      

 = − = −   
  

  

 

 
.    (5) 

 

Combining Equations (4) and (5), the change in variance will be: 

 

22

22

2
( ) ( ) ( )

wz wz
Var z Var z Var z z z

w w

 
 = − = − − +  

2 2 22 2

2
( )

wz w z wz w z
Var z

w w

 −  −
 = −  

2 2 2 2 22 2 2 2

2

( )
( )

wz w z w z z wz wz wz w z
Var z

w w

− + −  − + −
 = −  
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     2 2 2

2

( , ) ( )
( )

Cov w z w z z wz wz wz wz wz w z wz w z
Var z

w w

  + − − + + − +
 = −  

2 2 2

2

( , ) ( ) ( ( ) ( , )
( )

Cov w z w z z w z z w z z wz w z Cov w z
Var z

w w

  + − − + +  +   = −  

2

2

( ) ( , )( , ) ( )
( )

w z w z z wz w z Cov w zCov w z w z z z
Var z

w w

 + +  + +  +   = −  

In the following calculations, we assume perfect inheritance, i iz z = , so 0z = . This implies: 

2

1 22

( , )( , )
( ) ( ) ( )

wz w z Cov w zCov w z
Var z Var z Var z

w w

 +   = − =  −    (6) 

Note that with symmetric fitness peaks/valleys & iz , ( , ) 0i iCov w z = , so 
2( , )

( )
Cov w z

Var z
w

 = . 

(i.) Directional selection (linear landscape). 

We assume i iw az b= + , and compute ( )Var z  term by term. The first term in (6) is: 

2 2 2 2 2

1 ( ) ( , ) ( )i i i i i i i i i iw Var z Cov w z w z w z az b z az b z = = − = + − + =  

3 2 2 2 3 2 2( , )i i i i i i i ia z b z a z z b z a z a z z aCov z z= + − − = − = , so:  

2 2

1

( , ) ( , )
( )

Cov z z aCov z z
Var z a

w az b
 = =

+
. For Gaussian iz , 1

2 ( )
( )

a z Var z
Var z

a z b
 =

+
. 

The second term in (6) is: 

2

2 ( ) ( , ) ( ) ( , )i i i i i i i i iw Var z w z z w Cov w z az b z z az b Cov az b z =  +  =  + + +  + =     

2 ( )( )i i i i i i ia z b z az z bz az b z az b z = + + +  + − +  =    

2 2 2 2 2 2 22 ( ) 2 2i i ia z a z bz a z bz az bz aVar z a z a z a z bz     = + + + − − = − + + =
       

2 2 2 2( ) 2 ( )( ) ( ) 2 ( )a Var z azVar z a z b a Var z az wVar z= + + = + . 

Overall, 

2

2 2

1 2( ) ( ) ( ) ( , ) 2 ( ) ( )
a a

Var z Var z Var z Cov z z zVar z Var z
w w

 
  =  − = − −  

 
. 
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For Gaussian iz , 
2( , ) 2 ( )Cov z z zVar z= , so 

2

2( ) ( )
a

Var z Var z
w

 
 = − 

 
. 

Thus, the trait variance always decreases on any non-flat invasion landscape, by a factor 

proportional to the slope a, times the square variance of the trait. 

(ii.) Divergent or stabilizing selection (quadratic landscape). 

We assume: 
2

i i iw az bz c= + + . We calculate the terms of 1 2( ) ( ) ( )Var z Var z Var z =  − : 

2 2 2 2 2

1 ( ) ( , ) ( ) ( )i i i i i i i iw Var z Cov w z az bz c z az bz c z = = + + − + + =  

4 3 2 2 2 2 2

i i i i i i i ia z b z c z a z z b z z c z= + + − − − =  

2 2( ) ( , )aVar z bCov z z= +  

For Gaussian iz , 

2 2 2

1

( ) ( , ) ( ) 2 ( )
( )

aVar z bCov z z aVar z bzVar z
Var z

w w

+ +
 = = . 

The second term in (6) is: 

2 22 3 2 2 3 2 2

2 ( ) 2i i i i i i i i i i iw Var z a z a z z b z b z c z a z a z z b z b z    = + + + + − + −
   

 

( )2 2 2 2

2 ( ) ( , ) ( ) 2 ( , ) ( )i iw Var z aCov z z bVar z z a z b z c aCov z z bVar z    = + + + + +  
 

2 2 2

2 ( ) ( , ) ( ) 2 ( , ) ( )w Var z aCov z z bVar z z w aCov z z bVar z    = + + +     

2
2 2 2

2 ( ) 2 ( , ) ( ) ( , ) ( )w Var z z w aCov z z bVar z aCov z z bVar z    = + + +     

2
2 2

2

( , ) ( ) ( , ) ( )
( ) 2

aCov z z bVar z aCov z z bVar z
Var z z

w w

 + +
 = +  

 
 

Overall, 

2
2

2 2 ( , ) ( )
( ) ( ) 2 ( , )

a aCov z z bVar z
Var z Var z zCov z z

w w

 +
  = − −   

 
. 

Using the calculations in the Addendum, for Gaussian iz , we have: 

2

42 2
( )

a a b
Var z

w w




 + 
 = −  

   
 . 

Noting that the derivative 2 0
dw

az b
dz

= + =  at fitness peaks/valleys, 

42
( )

a
Var z

w


 = . 
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Thus, the trait variance increases at fitness valleys, a>0 while it decreases at fitness peaks, a<0 

by a factor proportional to the landscape curvature a, times the variance of the square trait. 

We used these formulas to estimate the changes in the mean and CV of log10(BACH1) levels at 

each induction level in Extended Data Fig. 9. Using the inferred cellular invasion landscapes, we 

estimated the linear slope and quadratic curvature by linear and quadratic fits, respectively, within 

a standard deviation centered at the current mean of log10(BACH1). Thus, we generated the 

theoretical data points in Extended Data Fig. 9. 

We note that the real invasion landscape is neither linear nor quadratic over the expression range 

of the seeded cells, so exact quantitative agreement of these theoretical predictions with 

experimental results is not expected. The direction of change (up/down) for the mean predicted 

by this theory tend to agree well with simulations and experiments. 

 

Addendum: Some calculations used above for Gaussian distributions,  +N  

In the above derivations we used two relationships for Gaussian distributions, z =  +N . 

First, 

2 2 2 2 2( , ) [ , ( ) ] [ , 2 ]Cov z z Cov n n Cov n n n        = + + = + + +  

2 2 2 2( , ) [ , ] [ , 2 ] [ , ]Cov z z Cov n n Cov n n Cov n        = + + + + +  

2 2 2 2 2( , ) [ , ] [ , ] [ , 2 ] [ , 2 ]Cov z z Cov n n Cov n Cov n n Cov n       = + + +  

2 3 2 2 3 2 2( , ) [ , ] 2 [ , ] 0 2 1 2Cov z z Cov n n Cov n n    = + = + = . 

Second, 

2 2 2 2 2( ) [( ) ] [ 2 ]Var z Var n Var n n    = + = + +  

2 2 2( ) [ 2 ]Var z Var n n = +  

2 2 2 2 2( ) [ ] [2 ] 2 [ ,2 ]Var z Var n Var n Cov n n   = + + ,  

2 4 2 2 2 3 2( ) [ ] 4 [ ] 4 [ , ]Var z Var n Var n Cov n n   = + +  

2 4 2 2 2 2 2( ) 2 4 2 [ 2 ]Var z      = + = + . 

Above we have used: ( ) [ ] [ ] 2 [ , ]Var X Y Var X Var Y Cov X Y+ = + + . 

Also, we note that for 
2

1  chi-square distributed Z, we have: 

2 1Z n= =  and 
2( ) ( ) 2Var Z Var n= = .  
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1.5 Computational simulations of invasion. 
 

We developed stochastic simulations based on methods described by Daniel A. Charlebois, 

Nezar Abdennur, and Mads Kærn in Phys. Rev. Lett. 107, 218101 (14 November 2011). We 

modeled the fluctuating BACH1 levels of individual cells using the exact simulation method for 

the OU process as described by Daniel T. Gillespie in “Exact numerical simulation of the 

Ornstein-Uhlenbeck process and its integral”, Phys. Rev. E 54, 2084 (1 August 1996).  

Specifically, we assume that as time progresses, each cell’s log10(BACH1) levels denoted as 

( )x t  are a solution of the Ornstein-Uhlenbeck Langevin Equation: 

1 1

2 2
1

( ) ( ) [ ( )] ( )( )x t dt x t x t dt c N t dt


+ = + − + , where ( )N t  is a temporally uncorrelated 

standard normal random variable; whereas the constants  , c , and   are the mean, the 

diffusion constant, and the relaxation time, respectively. 

We chose to model log10(BACH1) levels because the flow cytometry distributions were 

approximately lognormal. Thus, log10(BACH1) levels should be normally distributed, matching 

the solution of the Ornstein-Uhlenbeck process. 

The log10(BACH1) levels can be computationally simulated to progress in time according to the 

following exact updating formula: 

1

2 2

( ) [ ( ) ] 1 ( )
2

t t
c

x t t x t e e n t 


 
 

− −  
+  = + − + −  

   
, where ( )n t  is a single sample from a 

normal random variable generator, while  , c  and   are constants. 

Considering the long-term (stationary) statistics of this stochastic process: ( )x t →  and 

 ( )
2

c
Var x t


→ , the standard deviation is: 

2

c
 = , so the updating formula becomes: 

1

2 2
2( ) [ ( ) ] 1 ( )

t t

x t t x t e e n t   
 

− −  
+  = + − + −  

   
. 

To model the effects of selection on cells, we calculated the mean and CV of log10(BACH1) 

levels for all experimental data, and then simulated BACH1 level fluctuations in 5000 cells using 

the above updating formula. We ignored cell division for simplicity. At every time step, each 

seeded cell could invade with a probability [ ( )]w x t , where [ ]w x  is inferred cellular 

invasiveness vs. log10(BACH1) levels, i.e., the cellular fitness landscape. 

We allowed log10(BACH1) levels to fluctuate in both seeded and invading cells. After 500 

timesteps of 0.1 hours (50 hours total simulation time), we measured the statistics and numbers 

of seeded and invading cells to generate the simulated data.  
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1.6 Nonmonotonicity in let-7 mediated loss of targets  
 

We used a system of ODEs to model the RKIP-BACH1 system in Lee et al., PNAS 2014. In that 

study, we model RKIP protein (R) repression by ectopic (βE) and native (βB) BACH1 protein: 

1

1 ( )

dR
R

dt B E



= −

+ +  

We model the RKIP-activated synthesis of let7 miRNA (L) by a Hill function, and the association 

of let7 with any let-7 target (T) including BACH1 mRNA (B) by mass action kinetics, with linear 

degradation: 

r

r r

dL aR
L cLT

dt m R
= − −

+   

We assume that this equation has fast dynamics, so it equilibrates to steady state: 

( )(1 )

r

r r

aR
L

m R cT
=

+ + . 

1
1

( )(1 ) 1 1

r r r r r

r r r r r r r r r r

aR aR aR aR cT aR
cLT L

m R m R m R cT m R cT cT m R

 
= − = − = − = + + + + + + + +   

Next, assume that the same let-7 target is activated by BACH1, approximated by a linear 

function: 

T B=  

Target loss by association with let-7 will be given by: 

1 1
1

r

rr r

c B aR c B a
cLT

c B m R c B m

R

 

 
= =

+ + +  
+ 

   

The steady state level of RKIP can be obtained from the first equation: 

1

[1 ( )]
R

B E 
=

+ +  

From here, target loss by association with let-7 will be given by: 

( )1 [1 ( )] 1
r

c B a
cLT

c B m B E



  
=

+ + + +
 

This function will depend on BACH1 in a nonmonotone fashion, just like the invasion landscape, 

see Lee et al., PNAS 111(3):E364-73 (2014). 
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1.7 Nonmonotonicity by generic incoherent feedforward loops  
 

Imagine that a BACH1 target is regulated by BACH1 by two opposing (activating and 

repressory) regulatory pathways, which are combined in a multiplicative fashion. 

One pathway regulates the target sharply, which we model by a steep Hill function: 

( ) ( )
h

h h

H
h B s S s

H B
= + −

+  

The other pathway regulates the target more gradually, which we model by a linear function: 

( )f B B=  

The expression of the target will be given by the product (like a logical AND gate): 

( ) ( ) ( )
h

h h

H
f B h B B s S s

H B


 
= + − 

+  . 

This function will depend on BACH1 in a nonmonotone fashion, as indicated in main text Figure 

6H, just like the invasion landscape. 
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Supplemental Tables 
 

Single-guide RNA  Sequence (5’ -> 3’) 
Fwd-AAVS1-gRNA CACCGGGGCCACTAGGGACAGGAT 
Rev-AAVS1-gRNA CCCCGGTGATCCCTGTCCTACAAA 
Fwd-BACH1-gRNA CCTGGCCTACGATTCTTGAG 

Rev-BACH1-gRNA CTCAAGAATCGTAGGCCAGG 

shRNAmir  Sequence (5’ -> 3’) 
Anti-BACH1 TTCTGAAACATAATCATCGTTT 

Anti-RKIP TGAATCAAGACCATCCCACGAA 

Supplemental Table 1: List of guide RNAs used for AAVS1 CRISPR-Cas9 targeting and BACH1 
knockout and shRNA sequences targeting BACH1 and RKIP. 
Both guide RNAs were synthesized and annealed for the ligation reaction with BbsI digested eSpCas9(1.1) 
vector.  
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Primer name Sequence (5’ -> 3’) 
5’ LP junction forward AACGGGGCTCAGTCTGAAGAGC 

5’ LP junction reverse TCTCGGCATGGACGAGCTGTACAAGTAA 

3’ LP junction forward CCGCCTCTGGCCCACTGTTTC 

3’ LP junction reverse AATCCATCTTGTTCAATGGCCGATCCCA 

5’ LP random Integration forward TCTCGGCATGGACGAGCTGTACAAGTAA 

5’ LP random Integration reverse (for HEK293 cell) AGTTTACCCCGCGCCACCTTCTCTAG 

5’ LP random Integration reverse (for MB231 cell) TCAGGCCGTGCTTACTAAGGGCC 

3’ LP random Integration forward AATCCATCTTGTTCAATGGCCGATCCCA 

3’ LP random Integration reverse TACGGGGAAAAGGCCTCCAAGGCCTACT 

Supplemental Table 2: List of genotyping primers for Land-Pad (LP) insertion. 
Primers were diluted with molecular-grade water to a working stock of 10 μM from 100 μM frozen stocks. 
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Primer name Sequence (5’ -> 3’) 
5’ NF junction forward AACGGGGCTCAGTCTGAAGAGC 

5’ NF junction reverse TCAAAGTCCTTCTGCCCGTTGCTCA 

3’ NF junction forward CCGCCTCTGGCCCACTGTTTC 

3’ NF junction reverse TCGTCAGGCCTTCGATACCGAC 

5’ NF random Integration forward CTGTCCACCTCATCAGAGTA 

5’ NF random Integration reverse  TGTGGTGTAGATGTTCGCGA 

3’ NF random Integration forward TTTACGTCGCCGTCCAGCTC 

3’ NF random Integration reverse ACACAACACCGCCTCGACCA 

Supplemental Table 3: List of genotyping primers for Negative-Feedback (NF) circuit exchange. 
Primers were diluted with molecular-grade water to a working stock of 10 μM from 100 μM frozen stocks. 
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Probe name Source Identifier 
EGFP/YFP (Mr04097229_mr) Thermo Fisher Scientific CAT# 4331182 

BACH1 (Hs00230917_m1) Thermo Fisher Scientific CAT# 4331182 

PEBP1 (RKIP) (Hs00831506_g1) Thermo Fisher Scientific CAT# 4331182 

HMOX1 (Hs01110250_m1) Thermo Fisher Scientific CAT# 4331182 

MMP1 (Hs00899658_m1) Thermo Fisher Scientific CAT# 4331182 

CXCR4 (Hs00607978_s1) Thermo Fisher Scientific CAT# 4331182 

CCND1 (Hs00765553_m1) Thermo Fisher Scientific CAT# 4331182 

RPL13A (Hs04194366_g1, VIC) Thermo Fisher Scientific CAT# 4331182 

Human GAPD (GAPDH) Reference Thermo Fisher Scientific CAT# 4326317E 

RNase P (RPPH1) Reference Thermo Fisher Scientific CAT# 4403326 
Primer  Source Sequence/Identifier 
BACH1t qPCR primer forward Customized ACTCCAGAACAGCTGGATTGT 
BACH1t qPCR primer reverse Customized TGGTATGGAACACTTCTTGGCA 
Human GAPD (GAPDH) Reference 
primer set 

IDT Hs.PT.39a.22214836 

Supplemental Table 4: List of TaqMan® probes and qPCR primers for gene expression and copy 
number detection. 
GAPDH and RPL13A reference probe was used in gene expression quantitative PCR analysis while 
RPPH1 reference probe was used in copy number detection quantitative PCR analysis.  
 

 

 


