#### **Supplemental Methods**

#### Cell lines and primary samples

THP-1, KG-1 AML cell lines and TIME endothelial cell line have been obtained from the American Type Culture Collection (ATCC) while OCI-AML3 AML cell line been obtained from DSMZ. All the AML cell lines were maintained in culture with RPMI medium (EuroClone) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Gibco, Thermo Fisher Scientific), 2 mM L-glutamine, 25 IU/mL of penicillin and 25 mg/mL of streptomycin (Lonza). The MHH-CALL-4 cell line was maintained in culture in RPMI Advanced complete medium (Thermo Fisher Scientific) with 20% FBS. The TIME cell line was maintained in culture with Vascular Cell Basal Medium (ATCC), supplemented with the Microvascular Endothelial Cell Growth Kit-VEGF, containing several purified human recombinant (rh) growth factors (rh\_VEGF [vascular endothelial growth factor], rh\_EGF [epidermal growth factor], rh\_FGF [fibroblast growth factor] basic, and rh IGF-1 [insulin growth factor 1]) and combined with 10 mM L-glutamine, 0.75 U/mL of heparin sulfate, 1 mg/mL of hydrocortisone hemisuccinate, 5% FBS, and 50 mg/mL of ascorbic acid (ATCC). 293T cell lines were maintained in DMEM High Glucose (Gibco) and 10% FBS.

OCI-AML3 (both wt and KO clones) and KG-1 cell lines were lentivirally transduced to express the green fluorescent protein and firefly luciferase (GFP-Luc). G-CSF-mobilized CD34+ cells were obtained from left-over samples of adult healthy donors, according to a University of Perugia IRB-approved informed consent form for clinical hematopoietic stem/progenitor cell donation. Apheresis products were labelled with CliniMACS CD34 MicroBeads (Miltenyi Biotec) and enriched with the CliniMACS Cell Separation System (Miltenyi Biotec). Primary AML cells were obtained from BM and PBMCs collected from AML patients. The Institutional Review Board of the Ethical Committee of San Gerardo Hospital approved this study, and informed consent was obtained from patients or their guardians.

#### Generation of CD33 and/or CD123 KO clones by CRISPR/CAS9 editing

CD33-KO, CD123-KO, and CD33/CD123 double-KO single cell clones were generated by CRISPRmediated genome editing from the parental wt GFP-Luc OCI-AML3 and KG-1 cells, through electroporation (Neon transfector, ThermoFisher Scientific). Before electroporation, 1.5 µg of Cas9 protein (IDT- Integrated DNA Technologies) was incubated for at least 15-30 minutes with 1µg of sgRNA to form the RNP complex. Guide RNA sequences for CD33 and CD123 were respectively GGCCGGGGTTCTAGAGTGCCA and GGCGTACTGGACGTCCGCGG, ordered from Synthego Biosciences. Off-targets and mismatches analysis for the corresponding gRNA, performed through the Off-Spotter algorithm (https://cm.jefferson.edu/Off-Spotter/)<sup>1</sup>, are shown in supplemental Fig.1 A and B respectively for CD123 sgRNA and CD33 sgRNA. Generally, 250,000 cells were electroporated according to optimized protocols for both OCI-AML3 and KG-1 cell lines (1400 V, 20 ms, 2 pulse). The isolation of knock-out clones for CD33 and/or CD123 gene was performed by a first enrichment through magnetic activated cell sorting (MACS). CD33 or anti-CD123 MicroBeads (MiltenyiBiotec) were used to enrich the edited population, further purified by cell sorting (FACSAria, BD Biosciences). Finally, single cloning allowed isolating a homogeneous monoclonal population either GFP-Luc CD33 KO, CD123KO or double CD33/CD123 KO.

#### Cell proliferation and competition assays

Proliferation assay was performed monitoring the luminescence emitted by GFP-Luc OCI-AML3 wt and KO clones 2-h after luciferine exposure. GFP-Luc OCI-AML3 cells were seeded in triplicates in 96-wells plates at a density of 250.000 per ml in 200 ml per well. Luminescence intensity was detected every 24 hours for 3 days through the automated Spark plate reader (Tecan), according to the manufacturer's protocol. In cell competition assays, OCI-AML3 wt and GFP-Luc KO clones were mixed and co-cultured from day 0 in a 6 well plate (1:1 ratio). An aliquot of the mixture was sampled, and new medium was refilled every 48 hours. Clonal evolution was estimated until day 9 by flow cytometry (FACS Canto II) using the ratio of the GFP– and GFP+ cell populations.

#### **RNA sequencing**

The total RNA from 12 samples (triplicates of OCI-AML3 wt, -CD33KO, -CD123KO and -CD33/123KO) was isolated according to RNeasy kit manufacturer's instructions (QIAGEN). The RNA quantity was assessed using NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific) and Qubit 2.0 Flurometer (Life Technologies), while RNA Integrity Number (RIN) values were evaluated by microfluidic electrophoresis on a BioAnalyzer 2100 (Agilent Technologies). The RIN value score was ranging from 9 to 10. The 12 mRNA-libraries were prepared according to NEBNext Ultra II Directional's manufactures instruction kit with PolyA selection. Libraries preparation and sequencing were carried out at BIODIVERSA. Each sample was analyzed using our custom pipeline ARPIR<sup>2</sup> (https://github.com/giuliospinozzi/creo\_pipelines) on HP Z840 workstation with 2x Intel Xeon and 256GB of RAM. Raw data are stored in a Network attached storage (NAS, QNAP TS-853A-4G-US with 32TB of space in RAID 6). ARPIR uses HISAT2 for the alignment, featureCounts for transcript quantification and edgeR for differential expression analysis.

After the quality check and the alignment (to hg19), Samtools was used to sort and index the bam files. After that, featureCounts was used to generate transcript abundance files. Once all samples

within each species were mapped and abundance count files were completed, edgeR filtered the genes to keep those that have at least one count per million in at least two samples. After filtering, the data were normalized through the TMM method (Trimmed Mean of M values). The model used is a Generalized Linear Model (GLM), which represents an extension of the simplest linear model. Each gene is fitted through a negative binomial distribution. Differential Expression Analysis is performed by a likelihood ratio test. Statistically significant DEGs (adjusted p-value<0.05 and absolute log Fold Change (logFC) > 1.5) were identified for each comparison using edgeR package.

## <u>Cloning of the anti-CD123.CAR, anti-CD33.CCR, retroviral supernatant production and CIK</u> <u>cells' transduction.</u>

The retroviral supernatant was produced by Fugene (Promega) mediated co-transfection of 293T cells with the MoMLV gag-pol expression plasmid pEQPAM3(-E), the RD114 env expression plasmid pRDF and the SFG-2A-dual car vector.

#### **Generation of CIK cells**

PBMCs of healthy subjects were obtained after centrifugation of fresh blood on a density gradient using Ficoll-Hypaque (Pharmacia LKB). Cells were then resuspended in complete Advanced RPMI medium. At the beginning of the culture, gamma-interferon (IFN-gamma) (Domp\_eBiotec S.p.A) was added at 1000 U/ml. The next day, IL2 (Chiron B.V) and OKT3 (Janssen-Cilag S.p.A.) were added at 300 U/ml and at 50 ng/ml, respectively, and cells were kept at the initial concentration of  $3x10^6$  cells/ml. For viral transduction, CIK cells were genetically modified at day 5 as previously described<sup>3</sup>. For SB-transposon engineering CIK cells were transduced at day 0, as previously described<sup>4</sup>. Cells were then cultured for 21 days. Fresh medium and IL2 were added twice a week during culture and cell concentration was maintained around 0,75x10<sup>6</sup> cells/ml.

#### **Flow Cytometry**

Immunostaining and flow cytometric analysis were performed on target cells and on CAR-CIK cells. Target cells were stained with: APC-anti-CD123 (Becton Dickinson, BD), PE-anti-CD123 (BD), FITC or PeCy7 anti-CD33 (BD), PeCy7 anti-CD34 (BD), PerCP- anti-CD38 (Invitrogen), PE-anti-CD144 (BD). BD QuantiBRITE PE fluorescence quantitation kit was used together with PE-anti-CD123 and PE-anti-CD33 (BD) to measure the number of molecules/cell. Mean number of CD33 and CD123 molecules on the cell surface was estimated by PE fluorescence intensity, as antibody binding capacity (ABC). QuantiBRITE beads labeled with different PE levels were used to generate the standard curve for fluorescent intensity versus the number of PE molecules/bead.

CIK cells were stained with PerCP-anti-CD3 (Biolegend, San Diego, CA, USA), PE-anti-CD56 (BD), FITC (BD) or APC-H7 (Biolegend) anti-CD8, PE (BD) or PB (Biolegend) anti-CD4, PE-anti-CD62L (BD), FITC-anti-CD45RO (BD), Alexa Fluor 647-F(ab0)2-antiimmunoglobulin G (IgG) (H+L) (anti Fc, Listarfish), PE-anti-IL-2 (BD), FITC-anti- IFN-g (BD). To detect the IL3z.CAR expression, APCanti-IL3 (Miltenyi Biotec) was used. To detect the CD33.CCR, a recombinant human sialic acid binding IgLike Lectin 3/Siglec-3/CD33 protein with an Fc, 6His tag at the C-terminus (C-Fc-6His, Gentaur) was employed, before proceeding with secondary staining with a FITC-anti-His tag (Thermo Fisher Scientific). Briefly, single or Dual CAR-CIKs were incubated 20 minutes at room temperature with CD33 Fc chimera protein (1 $\mu$ g/ml). Cells were washed and then stained at 4°C for 30 minutes with (FITC)-anti-His tag secondary antibody. Unmanipulated CIK-cells were used as negative control.

Antibodies for phenotypic analysis of residual CD34+CD38+ HSPCs after exposure with different CIK conditions included CD123 (BD) and CD45RA (BD) as indicated in supplemental figure 5 (CMP: CD123+/CD45RA-; GMP: CD123+/CD45RA+; MEP: CD123-/CD45-).

Cell death and apoptosis were detected using the GFP-Certified Apoptosis/Necrosis detection kit (Enzo Life Sciences), according to the manufacturer's instructions. Cell membrane labeling was also performed using two lipophilic fluorescent dyes: FITC- and PE-Cell Tracker (Invitrogen).

Human grafts in mice were assessed using PO-anti-human CD45 (Thermo FisherScientific), PerCPanti-CD3, PeCy7-anti-CD33 (BD), APC-anti-CD123 (BD) and anti-mouse CD45 (eBioscience, San Diego,CA, USA) mAbs. Antibodies for HSPCs subsetting phenotypic analysis included CD45RA-FITC (BD), CD123-APC (BD), CD38-PE-Cy7 (BioLegend), CD34-APC-Cy7 (BioLegend).

Flow cytometry was performed on a FACSCanto II flow cytometer (BD), and data were analyzed using BD FACSDiva software v.8.1.3 and FlowJo v.10.8.1.

#### Short- and Long-Term Cytotoxicity Assays

To evaluate the killing ability of both unmodified and CAR-redirected CIK cells, short-term cytotoxicity assays were performed. In the short-term cytotoxic assay assessed by means of the double target challenge, CIK cells were co-cultured for 4 hrs with the targets at an effector-target (E:T) ratio of 5:1. Target cells were previously labelled with PE or FITC-Cell Trackers. At the end of the incubation, target cell killing was measured through apoptosis detection by flow cytometry, after annexin V and Necrosis Detection Reagent (NDR) staining. The percentage of killed cells was determined adding the percentage of PE+/Annexin V+/NDR- cells to that of PE+/AnnexinV+/NDR+ cells in co-culture with the effectors compared to target cells alone. Long-term cytotoxicity assays were conducted at an E:T ratio of 1:10 or 1:100, by co-culturing CIK cells with THP-1 or KG-1 AML

cell lines (previously labelled with PE-Cell Trackers) for 1 week. At the end of the culture cells were harvested and flow cytometry-based quantitative analysis was employed to determine the percentage of viable target cells recovered from the culture.

#### **Cytokine Detection**

CAR-CIK cell ability to produce cytokines was evaluated following stimulation with the various target cell conditions at an E:T ratio of 1:3. After a 2 hrs and 30 min co-culture, BD GolgiStop was added (BD). The co-culture was then maintained for an additional period of 2 hr and 30 min, after which the cells were collected and stained for anti-CD3 and anti-Fc surface molecule detection. Finally, intracellular cytokine staining (ICS) for IL-2 was performed using the BDCytofix/Cytoperm kit, according to the manufacturer's protocol. Specimens were then analyzed by flow cytometry. The cytokines GM-CSF, IFN $\gamma$ , IL-2 and TNF $\alpha$  were measured by the Human Singleplex Magnetic Bead Kit (Millipore). The procedure was performed according to the manufacturer's instructions and the concentration was reported in pg/mL.

#### 3D Structure selection, preparation, and mutation

The crystal structure of the human ILR3(:IL3 complex (PDB:5UV8; 2.7 Å resolution) was obtained from the RCSB Protein Data Bank <sup>5</sup> and cleaned removing unwanted molecules retaining only the amino acids residues. The missing residues were added to the structure and modelled using MODELLER 9.21 <sup>6</sup>. The structure was used as a template to develop five different mutant models of IL3 bound to its receptor. The five mutated structures N18K, E22R, E43N, F113A, and Mut4 (with the combination of all four mutations), were generated through the FoldX software <sup>7</sup> and used for further analysis.

#### **Molecular Dynamics simulations**

To further understand the consequences of mutations on the IL3 structure, all-atom MD simulations were run for 30ns under specified water solvent conditions for WT and its mutants (N18K, E22R, E43N, F113A, and Mut4). The WT and Mut4 were extended to 100ns under the same condition. MD simulations were performed at 300K using the DESAMBER force field <sup>8</sup> and GROMACS 2020.5 software package <sup>9</sup>. All systems were solvated in a periodic cubic box, hydrated with a TIP4PD water model <sup>10</sup>, and neutralized with a 0.15 M NaCl solution. The box dimensions were chosen to provide at least 12 Å buffers of solvent molecules around the solute. All systems were minimized using 5000 steps of steepest descent to remove clashes between atoms. After minimization, all systems were equilibrated at a constant temperature of 300K for 125 ps, by utilizing the two-step ensemble process:

NVT (constant number of particles, constant volume, and temperature; Berendsen thermostat with no pressure coupling) and then NPT (constant number of particles, constant pressure, and temperature; Parrinello–Rahman method pressure of 1atm). After the equilibration, the final simulations were performed completely unrestrained at a temperature of 300K and using the linear constraint solver (LINCS) and particle mesh Ewald (PME) algorithms.

#### Analysis of MD Trajectories

To study the stability of the ILR3 $\langle$ :IL3 complex over the simulation time, various analytical methods were employed. All the trajectory files were analyzed to extract the root-mean-square deviation (RMSD), and radius of gyration (Rg), by using gmx rmsd, and gmx gyrate module, respectively, embedded in the GROMACS simulation package. The study of hydrogen bonds was conducted with the Visual Molecular Dynamics software (Theoretical and Computational Biophysics Group at the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign) with a cut-off of 3.0 Å distance. For the study of the free binding energies in all ILR3 $\langle$ :IL3 complexes, gmx\_MMPBSA was used <sup>11</sup>. According to the MM/GBSA method, binding free energy ( $\Delta$ Gbinding) is calculated by subtracting the free energies of the unbound receptor and ligand from the free energy of the bound complex:

 $\Delta G_{\text{binding,solvated}} = G_{\text{complex,solvated}} - (G_{\text{protein,solvated}} + G_{\text{ligand,solvated}})$ 

The pictorial structure representations were prepared using Maestro (Schrödinger, LLC, New York City, NY, USA). All the graphs were plotted using the Prism 9 tool.

#### Mutagenesis of the IL3 sequence

Mutagenesis was performed by overlapping PCR using specific mutated primers synthesized by Eurofins and used to generate protein variants. The mutated IL3z.CAR was then cloned and colonies obtained from the transformations were used for DNA amplification and extraction with the QIAGEN Maxi or Mini Prep Kit. The sequence was verified by DNA sequencing (Eurofins) and the verified plasmids were used for retroviral supernatant production.

#### **Operetta CLS Image Acquisition**

Operetta CLS (PerkinElmer) is a high throughput spinning disk confocal microscope equipped with eight emission LED sources ranging from the near ultraviolet 360nm to the far red 650nm working at controlled temperature and CO2 concentration. The confocal images acquisition was performed

using the 40X water immersion objective (numerical aperture 1.1). Target cells were labeled with CellTracker<sup>TM</sup> Deep Red Dye (ThermoFisher Scientific), CAR-CIK cells were stained with CellTrace<sup>TM</sup> Violet (ThermoFisher Scientific) and the cell death marker NucView® 488 Green Caspase-3 (Biotium) was used to measure the cytotoxic activity of CAR-CIK cells against target cells.

#### Cell Avidity Analysis

Cell-cell interaction strength between CAR-CIK cells and OCI-AML3 cells were analyzed using the z-Movi® Cell Avidity Analyzer (LUMICKS, Amsterdam, The Netherlands) with z-Movi microfluidic chips. The microfluidic chips were coated with poly-L-lysine (Sigma-Aldrich) for 10 min and air-dried for 60 min at 37°C. OCI-AML WT, CD33 negative or double negative target cells were concentrated to 1x10<sup>8</sup> cells/mL and flushed onto separate chips and incubated for 2 hours at 37°C, after which Dual CAR and unmodified CIK cells were fluorescently labeled with CellTrace Far Red dye (Thermo Fisher Scientific) according to the manufacturer's protocol. The chips were transferred onto the z-Movi Cell Avidity Analyzer at 37°C followed by flushing in 1x10<sup>5</sup> labelled CAR CIK cells and co-incubated with the adhered AML target cells for 5 minutes. Subsequently, a linear force ramp was applied from 0 to 1000 pN (as calibrated for 10 µm polystyrene beads) for 2 min 30 s. CART cell adhesion and detachment was tracked by changes in the z-position and avidity runs were analyzed using Oceon 1.2.8 Software (LUMICKS).

#### **Mice**

Immunocompromised NSG mice were purchased (The Jackson Laboratory) and bred in-house under pathogen-free conditions. Procedures involving animal handling and care were conformed to protocols approved by both Milano-Bicocca and Perugia University in compliance with national and international law and policies. For the OCI-AML3 model, 8- to 12-week-old mice received an intravenous injection via tail vein of  $1 \times 10^6$  OCI-AML3 wt or KO clones stably expressing luciferase, monitoring leukemia progression every week by Bioluminescence imaging using an IVIS Lumina III imaging system and Living Image software (PerkinElmer, USA) for analysis. For the KG-1 model, 8- to 12-week-old mice received a radiation dose of 0.9 Gy followed 24 hours later by an intravenous injection via tail vein of  $2,5 \times 10^6$  KG-1 cells stably expressing luciferase. CAR-CIK cells were then injected via tail vein at a time and dose provided in the figure legends. In experiments addressing low affinity Dual CAR-CIK cells efficacy, leukemia progression was measured by Bioluminescence imaging using an IVIS Lumina III imaging system and analyzed with Living Image software (PerkinElmer, USA). In experiments addressing Dual CAR-CIK cells design optimization, leukemia progression was measured by phenotypic analysis of PB bleeding, performed every week.

#### **Statistical Analysis**

Categorical variables are described by counts and percentages, and quantitative characteristics are expressed as median (I-III quartile) or mean (standard deviation, SD), as appropriate. The Wilcoxon signed-rank test or the Tukey's test were used for comparing quantitative variables between two paired or unpaired samples, respectively. The Kaplan-Meier method was applied to estimate survival curves, while the log-rank test for comparisons. P-values were adjusted for multiple testing using the Benjamini-Hochberg method. Analyses were performed using R 4.2.1 (R Foundation for Statistical Computing, Vienna, Austria) and GraphPad Prism (La Jolla, CA, USA) softwares. P-values are denoted with asterisks as follows: p-value > 0.05, not significant (ns); \*, p-value < 0.05; \*\*, p-value < 0.001; \*\*\*\*, p-value < 0.001.

# Supplemental Table 1. CD123 sgRNA off-targeted analysis

| Chrom | Strand | Start     | End       | Actual genomic hit                                           | Number of mismatches | Pre-mRNA<br>(Unspliced)                                                            | mRNA<br>(CDS)                                                              |
|-------|--------|-----------|-----------|--------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| ×     | -      | 1471083   | 1471105   | G <b>t</b> CGTACTGGACGTCCGCGG-GGG                            | 1                    | IL3RA - interleukin<br>3 receptor, alpha<br>(low affinity)                         | IL3RA -<br>interleukin<br>3 receptor,<br>alpha (low<br>affinity)           |
| Y     | -      | 1421083   | 1421105   | G <b>t</b> CGTACTGGACGTCCGCGG-GGG                            | 1                    | -                                                                                  | -                                                                          |
| 7     | -      | 151328949 | 151328971 | GG <b>g</b> GTAC <b>c</b> GG <b>g</b> CGTCCGCGG-AGG          | 3                    | PRKAG2 - protein<br>kinase, AMP-<br>activated, gamma<br>2 non-catalytic<br>subunit | -                                                                          |
| 1     | +      | 1580063   | 1580085   | <b>ct</b> CGTACTGG <b>c</b> CG <b>g</b> CCGCGG-TGG           | 4                    | CDK11B - cyclin-<br>dependent kinase<br>11B                                        | -                                                                          |
| 1     | +      | 1643278   | 1643300   | ctCGTACTGGcCGgCCGCGG-TGG                                     | 4                    | CDK11A - cyclin-<br>dependent kinase<br>11A                                        | -                                                                          |
| 9     | -      | 134471732 | 134471754 | G <mark>a</mark> CG <b>gg</b> C <b>c</b> GGACGTCCGCGG-AGG    | 4                    | RAPGEF1 - Rap<br>guanine nucleotide<br>exchange factor<br>(GEF) 1                  | RAPGEF1 -<br>Rap<br>guanine<br>nucleotide<br>exchange<br>factor (GEF)<br>1 |
| 2     | +      | 219846632 | 219846654 | G <b>c</b> CGT <b>c</b> CTGG <b>g</b> CG <b>g</b> CCGCGG-CGG | 4                    | FEV - FEV (ETS<br>oncogene family)                                                 | FEV - FEV<br>(ETS<br>oncogene<br>family)                                   |
| 3     | +      | 195589773 | 195589795 | GG <b>gGaAg</b> TGGACG <b>g</b> CCGCGG-TGG                   | 4                    | -                                                                                  | -                                                                          |
| 7     | +      | 128573480 | 128573502 | GG <b>t</b> GT <b>c</b> CTGGA <b>g</b> G <b>c</b> CCGCGG-GGG | 4                    | -                                                                                  | -                                                                          |
| 11    | +      | 65453682  | 65453704  | GG <b>a</b> GTACTGG <b>c</b> CG <b>gg</b> CGCGG-TGG          | 4                    | -                                                                                  | -                                                                          |
| 15    | -      | 76604565  | 76604587  | GGC <b>a</b> TACTGG <b>c</b> CG <b>gg</b> CGCGG-TGG          | 4                    | -                                                                                  | -                                                                          |

| Chrom | Strand | Start     | End       | Actual genomic hit                                           | Number of mismatches | Pre-mRNA<br>(Unspliced)                                               | mRNA<br>(CDS)                                                             |
|-------|--------|-----------|-----------|--------------------------------------------------------------|----------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|
| 8     | +      | 58129538  | 58129560  | GGCG <b>gtag</b> GGACGTCCGCGG-CGG                            | 4                    | -                                                                     | -                                                                         |
| 2     | -      | 157190414 | 157190436 | GGCG <b>act</b> IGGACG <b>g</b> CCGCGG-GGG                   | 4                    | NR4A2 - nuclear<br>receptor subfamily<br>4, group A,<br>member 2      | -                                                                         |
| 22    | -      | 37948437  | 37948459  | GGCG <b>g</b> A <b>g</b> TGG <b>gg</b> GTCCGCGG-TGG          | 4                    | -                                                                     | -                                                                         |
| 10    | -      | 83634281  | 83634303  | GGCG <b>c</b> AC <b>c</b> GG <b>g</b> CG <b>c</b> CCGCGG-CGG | 4                    | -                                                                     | -                                                                         |
| 10    | +      | 135278760 | 135278782 | GGCG <b>c</b> ACTG <b>cg</b> CGT <b>g</b> CGCGG-GGG          | 4                    | SPRN - shadow of<br>prion protein<br>homolog<br>(zebrafish)           | -                                                                         |
| 19    | -      | 39342698  | 39342720  | GGCGT <b>c</b> C <b>g</b> GG <b>c</b> CG <b>g</b> CCGCGG-GGG | 4                    | HNRNPL -<br>heterogeneous<br>nuclear<br>ribonucleoprotein<br>L        | -                                                                         |
| 17    | -      | 7906865   | 7906887   | GGCGTA <b>ga</b> GG <b>g</b> C <b>a</b> TCCGCGG-CGG          | 4                    | GUCY2D -<br>guanylate cyclase<br>2D, membrane<br>(retina-specific)    | GUCY2D -<br>guanylate<br>cyclase 2D,<br>membrane<br>(retina-<br>specific) |
| 9     | -      | 140570657 | 140570679 | GGCGTA <b>a</b> TGG <b>c</b> CG <b>gg</b> CGCGG-TGG          | 4                    | EHMT1 -<br>euchromatic<br>histone-lysine N-<br>methyltransferase<br>1 | -                                                                         |

Number of potential off-targets for the predicted CD123 sgRNA shown through the Off-Spotter algorithm (<u>https://cm.jefferson.edu/Off-Spotter/</u>) together with genomic location information and annotation (ENSEMBL gene identifiers, transcript identifiers and common gene names). Mismatches are indicated by red lowercase letters for each off-target.

| Supplemental Table 2. | CD33 sgRNA | off-targeted | analysis |
|-----------------------|------------|--------------|----------|
|-----------------------|------------|--------------|----------|

| Chrom | Strand | Start     | End       | Genomic hit                                         | Number of mismatches | Pre-mRNA<br>(Unspliced)                                                                  | mRNA (CDS)                                                                                     |
|-------|--------|-----------|-----------|-----------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 19    | -      | 51729087  | 51729109  | GGCCGGGTTCTAGAGTGCCA-GGG                            | 0                    | CD33 molecule                                                                            | CD33<br>molecule                                                                               |
| 7     | +      | 86828849  | 86828871  | GG <b>at</b> GGGT <mark>c</mark> CTAGAGTGCCA-AGG    | 3                    | TMEM243 -<br>transmembrane<br>protein 243,<br>mitochondrial                              | -                                                                                              |
| 12    | +      | 102520020 | 102520042 | aaCtaGGTTCTAGAGTGCCA-GGG                            | 4                    | PARPBP - PARP1<br>binding protein                                                        | -                                                                                              |
| 5     | +      | 85854213  | 85854235  | <b>t</b> GC <b>at</b> GGT <b>g</b> CTAGAGTGCCA-TGG  | 4                    | -                                                                                        | -                                                                                              |
| 8     | -      | 53853799  | 53853821  | agccaggttccagactgcca-ggg                            | 4                    | -                                                                                        | -                                                                                              |
| 2     | +      | 20601632  | 20601654  | tgccaggttctggcgtgcca-tgg                            | 4                    | -                                                                                        | -                                                                                              |
| 19    | +      | 13616844  | 13616866  | G <b>atg</b> GGGTT <b>g</b> TAGAGTGCCA-TGG          | 4                    | CACNA1A -<br>calcium channel,<br>voltage-<br>dependent, P/Q<br>type, alpha 1A<br>subunit | CACNA1A -<br>calcium<br>channel,<br>voltage-<br>dependent,<br>P/Q type,<br>alpha 1A<br>subunit |
| 8     | +      | 140607489 | 140607511 | GCCtGaGTTCaAGAGTGCCA-GGG                            | 4                    | -                                                                                        | -                                                                                              |
| 7     | +      | 140772808 | 140772830 | G <mark>a</mark> CgGGGTgCcAGAGTGCCA-AGG             | 4                    | -                                                                                        | -                                                                                              |
| 1     | -      | 239501285 | 239501307 | Gtcagggttctataatgcca-agg                            | 4                    | -                                                                                        | -                                                                                              |
| 15    | +      | 71624385  | 71624407  | GG <b>aa</b> GGGT <b>c</b> CTAGA <b>t</b> TGCCA-AGG | 4                    | (THSD4 -<br>thrombospondin,<br>type I, domain<br>containing 4                            | -                                                                                              |
| 8     | +      | 62856457  | 62856479  | GG <b>tt</b> GGGTT <b>t</b> T <b>t</b> GAGTGCCA-TGG | 4                    | -                                                                                        | -                                                                                              |
| 4     | -      | 102442679 | 102442701 | GG <b>a</b> CtGGaaCTAGAGTGCCA-TGG                   | 4                    | BANK1 - B-cell scaffold protein                                                          | -                                                                                              |

| Chrom | Strand | Start     | End       | Genomic hit                                                  | Number of mismatches | Pre-mRNA<br>(Unspliced)    | mRNA (CDS)                    |
|-------|--------|-----------|-----------|--------------------------------------------------------------|----------------------|----------------------------|-------------------------------|
|       |        |           |           |                                                              |                      | with ankyrin<br>repeats 1  |                               |
| 18    | +      | 68387779  | 68387801  | GGC <b>t</b> GGG <b>g</b> TCT <b>gc</b> AGTGCCA-GGG          | 4                    | -                          | -                             |
| 9     | -      | 79634638  | 79634660  | GGCCG <b>a</b> GT <b>g</b> CT <b>g</b> GA <b>t</b> TGCCA-TGG | 4                    | FOXB2 - forkhead<br>box B2 | FOXB2 -<br>forkhead<br>box B2 |
| 20    | -      | 34652614  | 34652636  | GGCCGG <b>cTcCc</b> AGA <b>c</b> TGCCA-GGG                   | 4                    | -                          | -                             |
| 2     | +      | 134344765 | 134344787 | GGCCGGG <b>ag</b> C <b>c</b> AGA <b>t</b> TGCCA-GGG          | 4                    | -                          | -                             |

Number of potential off-targets for the predicted CD33 sgRNA shown through the Off-Spotter algorithm (<u>https://cm.jefferson.edu/Off-Spotter/</u>) together with genomic location information and annotation (ENSEMBL gene identifiers, transcript identifiers and common gene names). Mismatches are indicated by red lowercase letters for each off-target.

## Supplemental Table 3. OCI-AML3 CD33 KO vs WT heatmap path

| Genes   | Pathway                  | log2 Fold    | P adj     | OCI AML3        |
|---------|--------------------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|-----------------|
|         |                          | Change       |           | wt_1        | wt_2        | wt_3        | 33 KO_1     | 33 KO_2     | 33 KO_3         |
| NOTCH3  | MicroRNAs in<br>cancer   | -6,035209366 | 2,78E-30  | 0,151065887 | 0,144365548 | 0,126965717 | 0,002003954 | 0           | 0,00216746<br>3 |
| ZEB1    | MicroRNAs in<br>cancer   | -5,819443464 | 5,52E-108 | 0,994357278 | 0,829792336 | 0,920956757 | 0,005063049 | 0,013600178 | 0,02464272<br>4 |
| EFNA2   | MicroRNAs in<br>cancer   | -4,994753534 | 2,65E-27  | 0,808880653 | 0,734353574 | 0,493835875 | 0,037754225 | 0           | 0,00816694<br>5 |
| CYP1B1  | MicroRNAs in             | -4,244411692 | 2,92E-51  | 0,772096702 | 0,584132293 | 0,609418435 | 0,015693683 | 0,044966188 | 0,03734320<br>8 |
| THBS1   | MicroRNAs in<br>cancer   | -3,443317772 | 1,05E-30  | 0,60957097  | 0,44943397  | 0,37109655  | 0,041901321 | 0,020009565 | 0,04834154      |
| IRS1    | MicroRNAs in<br>cancer   | -3,341375747 | 1,17E-171 | 2,622380708 | 2,647517238 | 2,569267204 | 0,251791638 | 0,172403843 | 0,26833125      |
| PDGFA   | MicroRNAs in<br>cancer   | -2,954271957 | 5,58E-60  | 2,24039097  | 1,833340455 | 2,037303892 | 0,207431691 | 0,247642428 | 0,26174956<br>1 |
| TIMP3   | MicroRNAs in cancer      | -2,574401337 | 9,98E-308 | 102,6084129 | 98,63061295 | 104,7781989 | 16,29773495 | 15,516723   | 15,500614       |
| FGFR3   | MicroRNAs in<br>cancer   | -2,550576886 | 9,25E-32  | 0,650676866 | 0,735125765 | 0,603322949 | 0,094754767 | 0,130526569 | 0,09854436<br>5 |
| HMOX1   | MicroRNAs in<br>cancer   | -2,206109861 | 1,10E-06  | 0,322873955 | 0,696173346 | 0,706860831 | 0,213617678 | 0,054648765 | 0,06601356<br>8 |
| FZD3    | MicroRNAs in<br>cancer   | -2,004189619 | 2,18E-31  | 0,381666663 | 0,387349124 | 0,302101509 | 0,08211893  | 0,081931528 | 0,08120621<br>8 |
| TPM1    | MicroRNAs in<br>cancer   | -1,819804328 | 3,34E-25  | 1,456258909 | 1,925141236 | 1,638494791 | 0,357381109 | 0,527558849 | 0,47011753      |
| ST14    | MicroRNAs in<br>cancer   | -1,664020984 | 1,28E-17  | 0,719495256 | 0,812091205 | 0,90153106  | 0,26466398  | 0,219423073 | 0,22264576<br>3 |
| PTGS2   | MicroRNAs in cancer      | -1,526094871 | 1,93E-11  | 0,48560444  | 0,427896207 | 0,382577169 | 0,147591878 | 0,109589445 | 0,14016680<br>2 |
| PLAU    | MicroRNAs in<br>cancer   | 1,710703399  | 1,54E-40  | 2,194702699 | 1,783135448 | 2,224223471 | 6,217034512 | 5,782001901 | 6,36012510<br>6 |
| IGF2BP1 | MicroRNAs in cancer      | 2,020441789  | 9,98E-308 | 2,985728017 | 3,036176714 | 2,759390313 | 11,118295   | 10,46054273 | 11,2055567      |
| VEGFA   | MicroRNAs in<br>cancer   | 2,116538748  | 2,51E-302 | 12,28051258 | 12,77846922 | 13,00196463 | 46,82642311 | 54,93777605 | 50,7490228<br>2 |
| TNN     | MicroRNAs in<br>cancer   | 2,708249861  | 1,67E-120 | 0,743196788 | 0,818196836 | 0,752476005 | 4,741074228 | 4,800317869 | 4,54456228<br>5 |
| CDKN2A  | MicroRNAs in<br>cancer   | 3,876975738  | 9,98E-308 | 5,898315164 | 4,560515532 | 3,467872125 | 60,51595259 | 59,65604397 | 61,3875358      |
| DDIT4   | MicroRNAs in<br>cancer   | 4,256779658  | 9,98E-308 | 12,67307915 | 13,28999268 | 13,15075845 | 212,1348605 | 243,3492054 | 235,794098<br>7 |
| RASGRP4 | Ras signaling<br>pathway | -5,689897978 | 8,47E-138 | 2,273311569 | 2,926815587 | 2,691332625 | 0,020104301 | 0,063004015 | 0,06523404<br>2 |
| HTR7    | Ras signaling<br>pathway | -5,303530055 | 4,31E-30  | 0,268098114 | 0,515769004 | 0,512957094 | 0,009653184 | 0,008643344 | 0,01044082<br>1 |
| EFNA2   | Ras signaling<br>pathway | -4,994753534 | 2,65E-27  | 0,808880653 | 0,734353574 | 0,493835875 | 0,037754225 | 0           | 0,00816694<br>5 |
| BDNF    | Ras signaling<br>pathway | -4,808976873 | 3,81E-38  | 0,282290173 | 0,389446721 | 0,256613835 | 0,008370506 | 0           | 0,01810696<br>9 |
| VEGFC   | Ras signaling<br>pathway | -3,749092507 | 8,75E-99  | 3,164017925 | 3,737035931 | 3,59202658  | 0,193560434 | 0,291163599 | 0,25959859<br>5 |
| GNG11   | Ras signaling<br>pathway | -3,515808697 | 3,13E-106 | 16,68182099 | 15,04304394 | 14,13721663 | 1,135903526 | 1,700183812 | 0,97186642<br>4 |
| TGFA    | Ras signaling<br>pathway | -3,424260963 | 4,63E-42  | 0,774223276 | 0,66233808  | 0,682597763 | 0,075052946 | 0,073921648 | 0,03247071<br>1 |
| PDGFA   | Ras signaling<br>pathway | -2,954271957 | 5,58E-60  | 2,24039097  | 1,833340455 | 2,037303892 | 0,207431691 | 0,247642428 | 0,26174956<br>1 |
| PAK6    | Ras signaling<br>pathway | -2,796774165 | 7,02E-12  | 0,210225056 | 0,163022617 | 0,291034802 | 0,019869668 | 0,041512473 | 0,02865453<br>8 |
| FGFR3   | Ras signaling<br>pathway | -2,550576886 | 9,25E-32  | 0,650676866 | 0,735125765 | 0,603322949 | 0,094754767 | 0,130526569 | 0,09854436<br>5 |
| GNG2    | Ras signaling<br>pathway | -2,513274929 | 8,40E-52  | 1,453182055 | 1,469211079 | 1,420580338 | 0,274698418 | 0,186334571 | 0,22058316<br>7 |
| FGFR1   | Ras signaling<br>pathway | -2,326322276 | 1,26E-38  | 1,007924584 | 1,136890715 | 1,520907548 | 0,233511947 | 0,183809904 | 0,24978956<br>2 |
| GNG12   | Ras signaling<br>pathway | -2,202338942 | 5,82E-57  | 2,110415918 | 1,792643665 | 1,791884144 | 0,38151205  | 0,381016795 | 0,36106083<br>1 |
| CSF1R   | Ras signaling<br>pathway | -2,084433348 | 2,37E-58  | 3,589885545 | 3,065994133 | 3,616285705 | 0,784165199 | 0,76334352  | 0,66981942<br>5 |
| HGF     | Ras signaling<br>pathway | -1,882377412 | 1,46E-53  | 5,512371859 | 4,73250081  | 5,015520605 | 1,38558005  | 1,176402694 | 1,21279129<br>4 |
| GNG7    | Ras signaling pathway    | -1,612850209 | 9,27E-32  | 1,692692942 | 2,250218927 | 1,985236791 | 0,624710604 | 0,53207253  | 0,64272277<br>9 |
| GNG4    | Ras signaling            | 1,614371178  | 3,65E-40  | 0,77314697  | 0,647075357 | 0,740527208 | 1,957798205 | 1,952006164 | 2,04838412<br>8 |
| RRAS2   | Ras signaling<br>pathway | 1,988135578  | 5,97E-57  | 1,002674976 | 1,065536125 | 1,165132802 | 4,10224895  | 4,030942181 | 3,76951388<br>6 |

| PDGFC   | Ras signaling                | 2,111659615  | 1,14E-46  | 0,920017183 | 0,828922766 | 1,30328863  | 4,258233692 | 4,001521849   | 3,79626415      |
|---------|------------------------------|--------------|-----------|-------------|-------------|-------------|-------------|---------------|-----------------|
| VEGFA   | Ras signaling                | 2,116538748  | 2,51E-302 | 12,28051258 | 12,77846922 | 13,00196463 | 46,82642311 | 54,93777605   | 50,7490228      |
| RASGRP4 | MAPK                         | -5,689897978 | 8,47E-138 | 2,273311569 | 2,926815587 | 2,691332625 | 0,020104301 | 0,063004015   | 2 0,06523404    |
|         | signaling<br>pathway         |              | ,         |             |             |             | ,           |               | 2               |
| EFNA2   | МАРК                         | -4,994753534 | 2,65E-27  | 0,808880653 | 0,734353574 | 0,493835875 | 0,037754225 | 0             | 0,00816694      |
|         | signaling<br>pathway         |              |           |             |             |             |             |               | 5               |
| BDNF    | МАРК                         | -4,808976873 | 3,81E-38  | 0,282290173 | 0,389446721 | 0,256613835 | 0,008370506 | 0             | 0,01810696      |
|         | signaling<br>pathway         |              |           |             |             |             |             |               | 9               |
| MAP2K6  | МАРК                         | -4,62661573  | 7,82E-67  | 1,751059991 | 1,880654138 | 1,750967228 | 0,103845328 | 0,015496975   | 0,05615921      |
|         | signaling<br>pathway         |              |           |             |             |             |             |               | 6               |
| CD14    | МАРК                         | -3,852050901 | 8,58E-58  | 2,345126855 | 2,043033629 | 2,635705425 | 0,179113066 | 0,080187834   | 0,15498202      |
|         | signaling<br>pathway         |              |           |             |             |             |             |               | 1               |
| HSPA2   | МАРК                         | -3,768753437 | 8,94E-92  | 2,085737762 | 2,279292522 | 2,292083302 | 0,181073025 | 0,125520458   | 0,13267082      |
|         | signaling<br>pathway         |              |           |             |             |             |             |               | 3               |
| VEGFC   | МАРК                         | -3,749092507 | 8,75E-99  | 3,164017925 | 3,737035931 | 3,59202658  | 0,193560434 | 0,291163599   | 0,25959859      |
|         | signaling pathway            |              |           |             |             |             |             |               | 5               |
| NFATC1  | MAPK                         | -3,613310103 | 8,62E-162 | 4,707627254 | 4,390601548 | 4,253998427 | 0,314500634 | 0,373760073   | 0,32469993      |
|         | pathway                      |              |           |             |             |             |             |               | /               |
| TGFA    | MAPK                         | -3,424260963 | 4,63E-42  | 0,774223276 | 0,66233808  | 0,682597763 | 0,075052946 | 0,073921648   | 0,03247071      |
|         | pathway                      |              |           |             |             |             |             |               | 1               |
| PDGFA   | MAPK                         | -2,954271957 | 5,58E-60  | 2,24039097  | 1,833340455 | 2,037303892 | 0,207431691 | 0,247642428   | 0,26174956<br>1 |
|         | pathway                      |              |           |             |             |             |             |               | -               |
| MAPK11  | MAPK                         | -2,641543045 | 6,15E-18  | 0,659925941 | 0,663029412 | 0,503116881 | 0,099797881 | 0,107229375   | 0,06476444<br>3 |
|         | pathway                      |              |           |             |             |             |             |               |                 |
| FGFR3   | MAPK<br>signaling            | -2,550576886 | 9,25E-32  | 0,650676866 | 0,735125765 | 0,603322949 | 0,094754767 | 0,130526569   | 0,09854436<br>5 |
|         | pathway                      | 2 411264062  | 2.675.04  | 14.05042276 | 10.0017710  | 10.07740064 | 2 202002707 | 2 76 4006 404 | 2 00 4661 44    |
| ILIB    | MAPK<br>signaling<br>pathway | -2,411264962 | 3,67E-81  | 14,95043276 | 18,9917713  | 18,97748961 | 3,303882797 | 2,764906494   | 3,09466144<br>5 |
| MAP4K1  | МАРК                         | -2,348772492 | 5,00E-228 | 17,59459247 | 20,40021925 | 20,16048299 | 3,727131442 | 3,38872874    | 3,42779914      |
|         | signaling pathway            |              |           |             |             |             |             |               | 5               |
| FGFR1   | MAPK                         | -2,326322276 | 1,26E-38  | 1,007924584 | 1,136890715 | 1,520907548 | 0,233511947 | 0,183809904   | 0,24978956<br>2 |
|         | pathway                      |              |           |             |             |             |             |               | 2               |
| GNG12   | MAPK                         | -2,202338942 | 5,82E-57  | 2,110415918 | 1,792643665 | 1,791884144 | 0,38151205  | 0,381016795   | 0,36106083<br>1 |
|         | pathway                      |              |           |             |             |             |             |               |                 |
| MEF2C   | signaling                    | -2,164101895 | 4,38E-146 | 7,469811712 | 7,38136132  | 6,886695599 | 1,566965339 | 1,324977788   | 1,54190346<br>2 |
| CSE1P   | pathway                      | -2.084422248 | 2 275-59  | 2 580885545 | 3 06500/122 | 2 616285705 | 0 78/165100 | 0 76224252    | 0 66081042      |
| COLTR.  | signaling                    | 2,007733340  | 2,372.30  | 5,505000040 | 5,005554155 | 3,510203703 | 0,704103133 | 0,,0007002    | 5               |
| HGF     | pathway<br>MAPK              | -1,882377412 | 1,46E-53  | 5,512371859 | 4,73250081  | 5,015520605 | 1,38558005  | 1,176402694   | 1,21279129      |
|         | signaling                    |              |           |             |             |             |             |               | 4               |
| IL1R1   | MAPK                         | -1,769965655 | 1,27E-12  | 0,277902008 | 0,321770356 | 0,392117633 | 0,088315456 | 0,070896252   | 0,10540294      |
|         | signaling                    |              |           |             |             |             |             |               | 9               |
| FOS     | МАРК                         | 1,710991908  | 2,20E-28  | 44,06937728 | 57,69178774 | 50,91687008 | 105,5426317 | 182,9634587   | 172,406761      |
|         | signaling<br>pathway         |              |           |             |             |             |             |               | 8               |
| DDIT3   | МАРК                         | 1,783843112  | 1,43E-73  | 6,428014789 | 6,857845562 | 6,790819701 | 21,47368004 | 21,24343178   | 21,3101101      |
|         | signaling pathway            |              |           |             |             |             |             |               | 4               |
| JUN     | MAPK                         | 1,784371902  | 4,61E-182 | 12,68747439 | 11,86913973 | 10,91260438 | 34,24118452 | 39,69345564   | 38,1300370      |
|         | pathway                      |              |           |             |             |             |             |               | δ               |
| RRAS2   | MAPK                         | 1,988135578  | 5,97E-57  | 1,002674976 | 1,065536125 | 1,165132802 | 4,10224895  | 4,030942181   | 3,76951388      |
|         | pathway                      |              |           |             |             |             |             |               | Ū               |
| PDGFC   | MAPK                         | 2,111659615  | 1,14E-46  | 0,920017183 | 0,828922766 | 1,30328863  | 4,258233692 | 4,001521849   | 3,79626415<br>6 |
|         | pathway                      |              |           |             |             |             |             |               | Ū               |

| VEGFA  | MAPK                           | 2,116538748  | 2,51E-302 | 12,28051258 | 12,77846922 | 13,00196463 | 46,82642311 | 54,93777605 | 50,7490228           |
|--------|--------------------------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|----------------------|
|        | pathway                        |              |           |             |             |             |             |             | 2                    |
| CD14   | Hematopoiet                    | -3,852050901 | 8,58E-58  | 2,345126855 | 2,043033629 | 2,635705425 | 0,179113066 | 0,080187834 | 0,15498202<br>1      |
| CR1    | Hematopoiet<br>ic cell lineage | -3,521888721 | 8,92E-165 | 2,311605484 | 1,993399804 | 2,398112423 | 0,186634521 | 0,171469686 | 0,17377744           |
| CD36   | Hematopoiet                    | -2,785461868 | 9,98E-308 | 15,57277841 | 16,02374142 | 16,59811654 | 2,202417435 | 2,081426166 | 2,14358597           |
| ITGA6  | IC CEII lineage<br>Hematopoiet | -2,617343249 | 7,60E-47  | 0,93882132  | 0,885746412 | 0,859118239 | 0,147541691 | 0,164510655 | ر<br>0,09635026<br>۹ |
| IL1B   | Hematopoiet<br>ic cell lineage | -2,411264962 | 3,67E-81  | 14,95043276 | 18,9917713  | 18,97748961 | 3,303882797 | 2,764906494 | 3,09466144<br>5      |
| CD37   | Hematopoiet                    | -2,409961359 | 9,98E-308 | 130,9237002 | 132,2343201 | 125,6026902 | 22,17243964 | 23,16175589 | 22,2223552           |
| CSF1R  | Hematopoiet<br>ic cell lineage | -2,084433348 | 2,37E-58  | 3,589885545 | 3,065994133 | 3,616285705 | 0,784165199 | 0,76334352  | 0,66981942<br>5      |
| IL1R1  | Hematopoiet                    | -1,769965655 | 1,27E-12  | 0,277902008 | 0,321770356 | 0,392117633 | 0,088315456 | 0,070896252 | 0,10540294<br>9      |
| FCER2  | Hematopoiet<br>ic cell lineage | 3,339557689  | 1,21E-75  | 0,633513574 | 0,360874746 | 0,460712737 | 4,35812671  | 3,616275734 | 4,34800170<br>3      |
| PTK2   | Trans misreg<br>in cancer      | -6,036945062 | 1,30E-307 | 4,617028414 | 4,802913489 | 4,700059147 | 0,076194008 | 0,068223191 | 0,05244332<br>7      |
| ZEB1   | Trans misreg<br>in cancer      | -5,819443464 | 5,52E-108 | 0,994357278 | 0,829792336 | 0,920956757 | 0,005063049 | 0,013600178 | 0,02464272<br>4      |
| MEIS1  | Trans misreg<br>in cancer      | -5,541029076 | 3,06E-300 | 10,3488918  | 10,14017905 | 9,965682862 | 0,157620625 | 0,2549474   | 0,20897725<br>1      |
| WT1    | Trans misreg<br>in cancer      | -4,85250235  | 5,52E-193 | 4,376189155 | 3,885086429 | 3,870181619 | 0,156175352 | 0,078658603 | 0,12668868<br>3      |
| CD14   | Trans misreg                   | -3,852050901 | 8,58E-58  | 2,345126855 | 2,043033629 | 2,635705425 | 0,179113066 | 0,080187834 | 0,15498202<br>1      |
| IGFBP3 | Trans misreg<br>in cancer      | -3,834456472 | 1,19E-68  | 2,097576233 | 2,635038885 | 2,726409022 | 0,153685955 | 0,275217081 | 0,09308640<br>8      |
| PDGFA  | Trans misreg<br>in cancer      | -2,954271957 | 5,58E-60  | 2,24039097  | 1,833340455 | 2,037303892 | 0,207431691 | 0,247642428 | 0,26174956<br>1      |
| ITGB7  | Trans misreg<br>in cancer      | -2,723765492 | 9,99E-41  | 1,432492746 | 1,429204657 | 1,510413043 | 0,191807791 | 0,121229909 | 0,26847513<br>4      |
| CD86   | Trans misreg<br>in cancer      | -2,168976248 | 2,56E-12  | 0,57099629  | 0,42534313  | 0,384636797 | 0,083028285 | 0,128860367 | 0,07184228<br>2      |
| MEF2C  | Trans misreg<br>in cancer      | -2,164101895 | 4,38E-146 | 7,469811712 | 7,38136132  | 6,886695599 | 1,566965339 | 1,324977788 | 1,54190346<br>2      |
| CSF1R  | Trans misreg<br>in cancer      | -2,084433348 | 2,37E-58  | 3,589885545 | 3,065994133 | 3,616285705 | 0,784165199 | 0,76334352  | 0,66981942<br>5      |
| BAIAP3 | Trans misreg<br>in cancer      | -2,079302477 | 3,83E-15  | 0,353699519 | 0,359338542 | 0,396933951 | 0,108250578 | 0,074120077 | 0,05509793<br>9      |
| MITF   | Trans misreg<br>in cancer      | -1,94648696  | 1,93E-31  | 1,368704808 | 1,057801148 | 1,144355259 | 0,329050833 | 0,213842995 | 0,27840505           |
| PBX1   | Trans misreg<br>in cancer      | -1,596404112 | 1,60E-39  | 1,227089411 | 1,178733998 | 1,144490394 | 0,356139983 | 0,331470927 | 0,38013028<br>3      |
| CDKN2C | Trans misreg<br>in cancer      | 1,70237418   | 1,04E-275 | 14,11352025 | 13,69087683 | 12,75289296 | 41,90335011 | 40,25483632 | 38,8558314<br>7      |
| PLAU   | Trans misreg<br>in cancer      | 1,710703399  | 1,54E-40  | 2,194702699 | 1,783135448 | 2,224223471 | 6,217034512 | 5,782001901 | 6,36012510<br>6      |
| DDIT3  | Trans misreg<br>in cancer      | 1,783843112  | 1,43E-73  | 6,428014789 | 6,857845562 | 6,790819701 | 21,47368004 | 21,24343178 | 21,3101101<br>4      |
| BIRC3  | Trans misreg<br>in cancer      | 1,969599564  | 6,02E-17  | 0,046420138 | 0,078667249 | 0,105213405 | 0,320576629 | 0,293325983 | 0,26827562<br>8      |
| CCNA1  | Trans misreg<br>in cancer      | 4,082678093  | 2,98E-100 | 0,223010247 | 0,236206787 | 0,344633941 | 4,335057519 | 4,617607017 | 3,70845989<br>2      |
| CD226  | Cell adhesion                  | -4,100672117 | 5,74E-39  | 0,892092657 | 0,719910001 | 0,612718051 | 0,044969166 | 0,02684323  | 0,03782983<br>3      |
| CADM1  | Cell adhesion<br>molecules     | -3,492762542 | 2,25E-31  | 0,467336903 | 0,517089203 | 0,42128898  | 0,047851804 | 0,006591681 | 0,04777495<br>4      |
| SDC2   | Cell adhesion<br>molecules     | -2,794548237 | 9,98E-308 | 37,6556961  | 38,13145858 | 38,54810571 | 5,197928003 | 4,986601833 | 4,97450596<br>2      |
| ITGB7  | Cell adhesion<br>molecules     | -2,723765492 | 9,99E-41  | 1,432492746 | 1,429204657 | 1,510413043 | 0,191807791 | 0,121229909 | 0,26847513<br>4      |
| ITGA6  | Cell adhesion<br>molecules     | -2,617343249 | 7,60E-47  | 0,93882132  | 0,885746412 | 0,859118239 | 0,147541691 | 0,164510655 | 0,09635026<br>9      |
| CLDN23 | Cell adhesion<br>molecules     | -2,538214294 | 3,62E-39  | 2,202597489 | 2,069298686 | 2,015205188 | 0,40600491  | 0,296760714 | 0,26885649           |
| CD86   | Cell adhesion<br>molecules     | -2,168976248 | 2,56E-12  | 0,57099629  | 0,42534313  | 0,384636797 | 0,083028285 | 0,128860367 | 0,07184228<br>2      |
| JAM2   | Cell adhesion<br>molecules     | -1,591550608 | 2,07E-10  | 0,453458148 | 0,486528899 | 0,339763312 | 0,15585138  | 0,124042166 | 0,10863260<br>7      |
| HLA-A  | Cell adhesion<br>molecules     | 1,500948063  | 4,86E-29  | 14,54905664 | 18,58028755 | 14,15299304 | 47,35210804 | 30,59542168 | 45,4537583<br>1      |
| ICAM2  | Cell adhesion<br>molecules     | 1,539306295  | 2,55E-30  | 1,390446192 | 1,772370682 | 1,432505033 | 4,332866211 | 4,278966035 | 4,11208617<br>1      |
| HLA-B  | Cell adhesion<br>molecules     | 1,661902278  | 9,20E-84  | 42,46103157 | 34,45779917 | 31,47552833 | 106,0238205 | 106,7504417 | 103,346124<br>1      |
|        |                                |              |           |             |             |             |             |             |                      |

| HLA-C  | Cell adhesion         | 1,761752542  | 1,72E-45  | 19,84412887                             | 12,26175654  | 15,93441671 | 47,64374672 | 53,44147907 | 48,9925136                            |
|--------|-----------------------|--------------|-----------|-----------------------------------------|--------------|-------------|-------------|-------------|---------------------------------------|
| HLA-F  | Cell adhesion         | 3,078794235  | 2,70E-17  | 0,022534                                | 0,057963783  | 0,026117571 | 0,217242403 | 0,233927996 | 0,46993593                            |
| 14/2   | molecules             | 0.074264001  | 1 105 107 | 0.000162697                             | 0.025502422  | 0.042806858 | 0.002076428 | 0           | 8                                     |
| JAK3   | signaling             | -8,974264881 | 1,10E-127 | 0,980163687                             | 0,925592422  | 0,942896858 | 0,002976428 | U           | U                                     |
|        | pathway               | 6.000462572  | 1.625.42  | 4 33 4000553                            | 4 407702464  | 4 4250 4070 |             |             | 0.00000000                            |
| PRL    | PI3K-Akt<br>signaling | -6,099162572 | 1,63E-43  | 1,234909662                             | 1,107783161  | 1,13594979  | 0           | 0           | 0,03606926<br>9                       |
|        | pathway               |              |           |                                         |              |             |             |             |                                       |
| PTK2   | PI3K-Akt<br>signaling | -6,036945062 | 1,30E-307 | 4,617028414                             | 4,802913489  | 4,700059147 | 0,076194008 | 0,068223191 | 0,05244332<br>7                       |
|        | pathway               |              |           |                                         |              |             |             |             | ,                                     |
| COL6A2 | PI3K-Akt              | -5,887535352 | 1,85E-236 | 4,019936893                             | 4,906326762  | 4,309022249 | 0,081949797 | 0,026682493 | 0,08057851                            |
|        | pathway               |              |           |                                         |              |             |             |             | 5                                     |
| ITGB5  | PI3K-Akt              | -5,73179401  | 1,95E-188 | 2,725078292                             | 2,407494921  | 2,716942921 | 0,055390102 | 0,0132255   | 0,05192163                            |
|        | pathway               |              |           |                                         |              |             |             |             | 1                                     |
| EFNA2  | PI3K-Akt              | -4,994753534 | 2,65E-27  | 0,808880653                             | 0,734353574  | 0,493835875 | 0,037754225 | 0           | 0,00816694                            |
|        | signaling<br>pathway  |              |           |                                         |              |             |             |             | 5                                     |
| BDNF   | PI3K-Akt              | -4,808976873 | 3,81E-38  | 0,282290173                             | 0,389446721  | 0,256613835 | 0,008370506 | 0           | 0,01810696                            |
|        | signaling             |              |           |                                         |              |             |             |             | 9                                     |
| LAMA5  | PI3K-Akt              | -4,72477332  | 9,87E-84  | 0,376123725                             | 0,372048494  | 0,352799313 | 0,016978997 | 0,010135192 | 0,00918218                            |
|        | signaling             |              |           |                                         |              |             |             |             | 6                                     |
| VEGFC  | PI3K-Akt              | -3,749092507 | 8,75E-99  | 3,164017925                             | 3,737035931  | 3,59202658  | 0,193560434 | 0,291163599 | 0,25959859                            |
|        | signaling             |              |           |                                         |              |             |             |             | 5                                     |
| GNG11  | PI3K-Akt              | -3,515808697 | 3,13E-106 | 16,68182099                             | 15,04304394  | 14,13721663 | 1,135903526 | 1,700183812 | 0,97186642                            |
|        | signaling             | -,           | -,        | .,                                      | -,           | ,           | ,           | ,           | 4                                     |
| THRS1  | pathway<br>PI3K-Akt   | -3 443317772 | 1.05F-30  | 0.60957097                              | 0 44943397   | 0 37109655  | 0.041901321 | 0.020009565 | 0 04834154                            |
| 111051 | signaling             | 3,443317772  | 1,052 50  | 0,00557057                              | 0,44545557   | 0,37103033  | 0,041501521 | 0,020005505 | 2                                     |
| TCEA   | pathway               | 2 424260062  | 4 625 42  | 0 77/222276                             | 0 66222808   | 0 692507762 | 0.075052046 | 0.072021648 | 0.02247071                            |
| IGFA   | signaling             | -3,424200903 | 4,03E-42  | 0,774223276                             | 0,00233808   | 0,082597703 | 0,075052946 | 0,073921048 | 1                                     |
| 1001   | pathway               | 2 244275747  | 4 475 474 | 2 (22200700                             | 2 647517220  | 2 500207204 | 0.051701620 | 0.172402042 | 0.00000105                            |
| IK21   | signaling             | -3,3413/5/4/ | 1,1/E-1/1 | 2,622380708                             | 2,647517238  | 2,569267204 | 0,251791638 | 0,172403843 | 0,26833125                            |
| 22.054 | pathway               | 2.054274057  | 5 505 60  | 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4 0000 40455 | 2 027202002 | 0.007404604 | 0.047640400 | 0.00174050                            |
| PDGFA  | PI3K-Akt<br>signaling | -2,9542/195/ | 5,58E-60  | 2,24039097                              | 1,833340455  | 2,037303892 | 0,207431691 | 0,247642428 | 0,26174956<br>1                       |
|        | pathway               |              |           |                                         |              |             |             |             |                                       |
| IL2RG  | PI3K-Akt<br>signaling | -2,875492074 | 5,10E-32  | 1,673303742                             | 1,519132122  | 1,702369603 | 0,179241505 | 0,28321883  | 0,17105862<br>7                       |
|        | pathway               |              |           |                                         |              |             |             |             |                                       |
| ITGB7  | PI3K-Akt<br>signaling | -2,723765492 | 9,99E-41  | 1,432492746                             | 1,429204657  | 1,510413043 | 0,191807791 | 0,121229909 | 0,26847513<br>4                       |
|        | pathway               |              |           |                                         |              |             |             |             |                                       |
| FN1    | PI3K-Akt<br>signaling | -2,68895037  | 3,29E-161 | 6,442144829                             | 5,357421837  | 6,39023966  | 0,933491402 | 0,806792358 | 0,83813327<br>3                       |
|        | pathway               |              |           |                                         |              |             |             |             | , , , , , , , , , , , , , , , , , , , |
| ITGA6  | PI3K-Akt<br>signaling | -2,617343249 | 7,60E-47  | 0,93882132                              | 0,885746412  | 0,859118239 | 0,147541691 | 0,164510655 | 0,09635026<br>9                       |
|        | pathway               |              |           |                                         |              |             |             |             | 5                                     |
| FGFR3  | PI3K-Akt              | -2,550576886 | 9,25E-32  | 0,650676866                             | 0,735125765  | 0,603322949 | 0,094754767 | 0,130526569 | 0,09854436<br>E                       |
|        | pathway               |              |           |                                         |              |             |             |             | J                                     |
| GNG2   | PI3K-Akt              | -2,513274929 | 8,40E-52  | 1,453182055                             | 1,469211079  | 1,420580338 | 0,274698418 | 0,186334571 | 0,22058316                            |
|        | pathway               |              |           |                                         |              |             |             |             | /                                     |
| FGFR1  | PI3K-Akt              | -2,326322276 | 1,26E-38  | 1,007924584                             | 1,136890715  | 1,520907548 | 0,233511947 | 0,183809904 | 0,24978956                            |
|        | signaling             |              |           |                                         |              |             |             |             | 2                                     |
| F2R    | PI3K-Akt              | -2,227794826 | 1,28E-11  | 0,589499199                             | 0,463827055  | 0,425131445 | 0,152824346 | 0,053214415 | 0,06428092                            |
|        | signaling<br>pathway  |              |           |                                         |              |             |             |             | 9                                     |
| GNG12  | PI3K-Akt              | -2,202338942 | 5,82E-57  | 2,110415918                             | 1,792643665  | 1,791884144 | 0,38151205  | 0,381016795 | 0,36106083                            |
|        | signaling             |              |           |                                         |              |             |             |             | 1                                     |
| CSF1R  | PI3K-Akt              | -2,084433348 | 2,37E-58  | 3,589885545                             | 3,065994133  | 3,616285705 | 0,784165199 | 0,76334352  | 0,66981942                            |
|        | signaling             |              |           |                                         |              |             |             |             | 5                                     |
| HGF    | PI3K-Akt              | -1,882377412 | 1,46E-53  | 5,512371859                             | 4,73250081   | 5,015520605 | 1,38558005  | 1,176402694 | 1,21279129                            |
|        | signaling             |              |           |                                         |              |             |             |             | 4                                     |
|        | pathway               |              |           | 1                                       | 1            | 1           |             | 1           | 1                                     |

| OSMR     | PI3K-Akt    | -1,743668305  | 4,98E-172 | 9,040549519     | 8,665672163   | 8,265379121  | 2,418061363   | 2,341797834      | 2,35353889      |
|----------|-------------|---------------|-----------|-----------------|---------------|--------------|---------------|------------------|-----------------|
|          | signaling   |               |           |                 |               |              |               |                  | 6               |
| LPAR1    | PI3K-Akt    | -1.731847146  | 1.91E-09  | 0.405121203     | 0.570082141   | 0.615628849  | 0.12252962    | 0.237708329      | 0.11596133      |
|          | signaling   | _,            | _,        | -,              | -,            | -,           | -,            | -,               | 5               |
|          | pathway     |               |           |                 |               |              |               |                  |                 |
| GNG7     | PI3K-Akt    | -1,612850209  | 9,27E-32  | 1,692692942     | 2,250218927   | 1,985236791  | 0,624710604   | 0,53207253       | 0,64272277      |
|          | pathway     |               |           |                 |               |              |               |                  | 5               |
| GNG4     | PI3K-Akt    | 1,614371178   | 3,65E-40  | 0,77314697      | 0,647075357   | 0,740527208  | 1,957798205   | 1,952006164      | 2,04838412      |
|          | signaling   |               |           |                 |               |              |               |                  | 8               |
| COL441   | pathway     | 1 742221206   | 2 145 40  | 0.270195241     | 0.241299422   | 0 21020720   | 1 120491226   | 0.070100018      | 1 01954212      |
| COL4AI   | signaling   | 1,745551290   | 5,146-40  | 0,370183341     | 0,341288432   | 0,31929729   | 1,130481220   | 0,979190918      | 2               |
|          | pathway     |               |           |                 |               |              |               |                  |                 |
| PDGFC    | PI3K-Akt    | 2,111659615   | 1,14E-46  | 0,920017183     | 0,828922766   | 1,30328863   | 4,258233692   | 4,001521849      | 3,79626415      |
|          | signaling   |               |           |                 |               |              |               |                  | 6               |
| VEGFA    | PI3K-Akt    | 2,116538748   | 2.51E-302 | 12.28051258     | 12.77846922   | 13.00196463  | 46.82642311   | 54.93777605      | 50.7490228      |
|          | signaling   | _,            | _,        |                 | ,             | ,            |               | ,                | 2               |
|          | pathway     |               |           |                 |               |              |               |                  |                 |
| COL9A2   | PI3K-Akt    | 2,439950421   | 6,57E-74  | 0,884025694     | 0,857451973   | 0,68891282   | 3,98206118    | 4,286771927      | 3,85588261      |
|          | pathway     |               |           |                 |               |              |               |                  | 5               |
| TNN      | PI3K-Akt    | 2,708249861   | 1,67E-120 | 0,743196788     | 0,818196836   | 0,752476005  | 4,741074228   | 4,800317869      | 4,54456228      |
|          | signaling   |               |           |                 |               |              |               |                  | 5               |
| DDIT4    | PI3K-Akt    | 4 256779658   | 9 98F-308 | 12 67307915     | 13 28999268   | 13 15075845  | 212 1348605   | 243 3492054      | 235 794098      |
| 00114    | signaling   | 4,230773030   | 5,502 500 | 12,07507515     | 13,20333200   | 13,13073043  | 212,1340003   | 243,3452034      | 7               |
|          | pathway     |               |           |                 |               |              |               |                  |                 |
| BMPR1B   | Cytokine-   | -8,896698793  | 2,93E-112 | 0,723329458     | 0,89191508    | 0,800821669  | 0             | 0                | 0,00294306      |
|          | interaction |               |           |                 |               |              |               |                  | 8               |
| PRL      | Cytokine-   | -6,099162572  | 1,63E-43  | 1,234909662     | 1,107783161   | 1,13594979   | 0             | 0                | 0,03606926      |
|          | receptor    |               |           |                 |               |              |               |                  | 9               |
| LIED     | Interaction | -4 472788400  | 6 91E-42  | 0 21/59/926     | 0 229607555   | 0.276447571  | 0.006218941   | 0.025057628      | 0.00672636      |
| LIFN     | receptor    | -4,472766499  | 0,012-45  | 0,314394930     | 0,229007555   | 0,270447371  | 0,000218941   | 0,023037038      | 6               |
|          | interaction |               |           |                 |               |              |               |                  |                 |
| CX3CR1   | Cytokine-   | -4,004267431  | 1,36E-215 | 5,404629241     | 5,681964      | 6,146615925  | 0,327281743   | 0,348484881      | 0,32050065      |
|          | interaction |               |           |                 |               |              |               |                  | 0               |
| TNFRSF11 | Cytokine-   | -3,149833812  | 2,32E-157 | 7,153419035     | 7,005928866   | 7,355404732  | 0,725413769   | 0,882851816      | 0,65510525      |
| Α        | receptor    |               |           |                 |               |              |               |                  | 8               |
| 11.286   | Interaction | -2 875/0207/  | 5 10E-22  | 1 672202742     | 1 510122122   | 1 702269602  | 0 1702/1505   | 0.29221992       | 0 17105862      |
| ILZING   | receptor    | 2,073452074   | 3,10L 32  | 1,075505742     | 1,515152122   | 1,702303003  | 0,175241505   | 0,20321005       | 7               |
|          | interaction |               |           |                 |               |              |               |                  |                 |
| IL18RAP  | Cytokine-   | -2,726061607  | 6,79E-35  | 1,201257928     | 1,403211326   | 1,348977588  | 0,248270425   | 0,097594388      | 0,17683529      |
|          | interaction |               |           |                 |               |              |               |                  | 0               |
| CCL23    | Cytokine-   | -2,676514165  | 9,54E-19  | 4,510435677     | 2,729907925   | 2,904293352  | 0,542575252   | 0,323876868      | 0,47506569      |
|          | receptor    |               |           |                 |               |              |               |                  | 6               |
| 1116     | Interaction | -2 /19/298563 | 8 76F-50  | 0.684800559     | 0 7/15115/183 | 0.673806188  | 0 11//197/6   | 0 1//5861093     | 0.09/38990      |
| 1210     | receptor    | -2,494298303  | 8,701-30  | 0,084800333     | 0,743113483   | 0,075800188  | 0,114419740   | 0,143801093      | 5               |
|          | interaction |               |           |                 |               |              |               |                  |                 |
| IL1B     | Cytokine-   | -2,411264962  | 3,67E-81  | 14,95043276     | 18,9917713    | 18,97748961  | 3,303882797   | 2,764906494      | 3,09466144      |
|          | interaction |               |           |                 |               |              |               |                  | 5               |
| CSF1R    | Cytokine-   | -2,084433348  | 2,37E-58  | 3,589885545     | 3,065994133   | 3,616285705  | 0,784165199   | 0,76334352       | 0,66981942      |
|          | receptor    |               |           |                 |               |              |               |                  | 5               |
| GDE15    | Interaction | -1 968944159  | 5 2/F-13  | 1 871659956     | 1 796310/137  | 1 3222/15555 | 0 363912973   | 0 5551/0375      | 0 20155002      |
| 60115    | receptor    | 1,500544155   | J,24L 1J  | 1,071055550     | 1,750510457   | 1,522245555  | 0,505512575   | 0,555140575      | 7               |
|          | interaction |               |           |                 |               |              |               |                  |                 |
| IL1R1    | Cytokine-   | -1,769965655  | 1,27E-12  | 0,277902008     | 0,321770356   | 0,392117633  | 0,088315456   | 0,070896252      | 0,10540294      |
|          | interaction |               |           |                 |               |              |               |                  | 9               |
| OSMR     | Cytokine-   | -1,743668305  | 4,98E-172 | 9,040549519     | 8,665672163   | 8,265379121  | 2,418061363   | 2,341797834      | 2,35353889      |
|          | receptor    |               |           |                 |               |              |               |                  | 6               |
| THEFT    | interaction | 1 74064750    | 1 405 50  | 7 42 44 4 40 44 | 7 67222 4067  | 7 002702055  | 2 10005 17 17 | 2 15 6 6 9 5 9 5 | 2.00040040      |
| INFSF12  | receptor    | -1,/1861/59   | 1,19E-52  | 7,424114041     | 7,672224867   | 7,892788852  | 2,199051/4/   | 2,15009250/      | 2,08846618<br>7 |
|          | interaction |               |           |                 |               |              |               |                  |                 |
| IL18R1   | Cytokine-   | -1,711493642  | 9,19E-42  | 1,984854176     | 2,245943003   | 2,10712881   | 0,639474114   | 0,584262621      | 0,56931820      |
|          | receptor    |               |           |                 |               |              |               |                  | 1               |
| TNFRSF10 | Cytokine-   | -1,568087824  | 6,41E-25  | 4,080497896     | 4,926384135   | 5,796993565  | 1,753797459   | 1,454008316      | 1,41681731      |
| C        | receptor    |               | ,         | ,               | ,             | ,            | ,             | ,                | 7               |
|          | interaction |               |           |                 |               |              |               |                  |                 |

| IL15RA        | Cytokine-<br>receptor | 1,511673431  | 1,35E-42  | 1,944581772 | 2,591032938 | 2,915398951 | 6,722669923 | 6,615441905 | 6,76482327<br>9      |
|---------------|-----------------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|----------------------|
| IL18          | Cytokine-             | 1,5271106    | 7,70E-30  | 2,349773615 | 2,895158554 | 2,420850624 | 6,345474678 | 7,676555429 | 6,95473375           |
| BMP8B         | interaction           | 1 6297523    | 1 05F-303 | 46 97610661 | 47 37799176 | 46 24179724 | 132 73/9//7 | 136 83555/9 | 131 3897/6           |
| DIVIFOD       | receptor              | 1,0237323    | 1,051-505 | 40,97010001 | 47,37733170 | 40,24173724 | 132,7343447 | 130,8333349 | 4                    |
| EDA2R         | Cytokine-<br>receptor | 2,134352156  | 1,37E-54  | 0,930795627 | 0,622943044 | 0,663888982 | 2,891904113 | 2,803474042 | 2,78628817<br>6      |
| CCB3          | interaction           | 2 215492521  | 0.085.208 | 9.091970509 | 7 082577606 | 9 160196106 | 27 70492772 | 25 26455276 | 27 5000574           |
| CCRZ          | receptor              | 2,313463331  | 9,902-308 | 8,001879308 | 7,982377000 | 8,100180190 | 57,79462772 | 33,20433370 | 37,3909374           |
| IL32          | Cytokine-<br>receptor | 2,540677417  | 5,07E-32  | 0,268948862 | 0,748784849 | 0,471043052 | 3,294434288 | 3,131882723 | 2,74208079<br>2      |
|               | interaction           | 2 826006028  | 5 7/F-22  | 0.078996141 | 0.021874554 | 0.040692826 | 0.477850426 | 0 701217427 | 0 57/26657           |
| MIDE          | receptor              | 3,030330320  | 5,742 25  | 0,070550141 | 0,031074354 | 0,040032020 | 0,477030430 | 0,701217437 | 8                    |
| JAK3          | Pathways in           | -8,974264881 | 1,10E-127 | 0,980163687 | 0,925592422 | 0,942896858 | 0,002976428 | 0           | 0                    |
| ADCY1         | Pathways in           | -6,060183507 | 3,18E-25  | 0,124064648 | 0,087103487 | 0,066465054 | 0,001250786 | 0,002239877 | 0                    |
| PTK2          | Pathways in           | -6,036945062 | 1,30E-307 | 4,617028414 | 4,802913489 | 4,700059147 | 0,076194008 | 0,068223191 | 0,05244332           |
| <b>NOTCH3</b> | Pathways in           | -6,035209366 | 2,78E-30  | 0,151065887 | 0,144365548 | 0,126965717 | 0,002003954 | 0           | 0,00216746           |
| RASGRP4       | Pathways in           | -5,689897978 | 8,47E-138 | 2,273311569 | 2,926815587 | 2,691332625 | 0,020104301 | 0,063004015 | 3<br>0,06523404<br>2 |
| FZD6          | Pathways in<br>cancer | -5,458597499 | 8,50E-41  | 0,391586261 | 0,597449338 | 0,479074476 | 0,016449438 | 0           | 0,00889580<br>3      |
| SMO           | Pathways in cancer    | -5,193372036 | 2,29E-176 | 2,489918058 | 2,556711149 | 2,512160407 | 0,069248745 | 0,069755047 | 0,05149305<br>6      |
| LAMA5         | Pathways in cancer    | -4,72477332  | 9,87E-84  | 0,376123725 | 0,372048494 | 0,352799313 | 0,016978997 | 0,010135192 | 0,00918218<br>6      |
| CTNNA2        | Pathways in<br>cancer | -4,121485015 | 1,66E-25  | 0,296963897 | 0,245093466 | 0,285086599 | 0,020413012 | 0,018277564 | 0,00367976<br>3      |
| RB1           | Pathways in<br>cancer | -3,808377037 | 9,98E-308 | 15,20905815 | 15,66343959 | 15,99468245 | 1,067640742 | 1,062169528 | 0,96412733<br>7      |
| VEGFC         | Pathways in<br>cancer | -3,749092507 | 8,75E-99  | 3,164017925 | 3,737035931 | 3,59202658  | 0,193560434 | 0,291163599 | 0,25959859<br>5      |
| GNG11         | Pathways in<br>cancer | -3,515808697 | 3,13E-106 | 16,68182099 | 15,04304394 | 14,13721663 | 1,135903526 | 1,700183812 | 0,97186642<br>4      |
| TGFA          | Pathways in<br>cancer | -3,424260963 | 4,63E-42  | 0,774223276 | 0,66233808  | 0,682597763 | 0,075052946 | 0,073921648 | 0,03247071<br>1      |
| PDGFA         | Pathways in<br>cancer | -2,954271957 | 5,58E-60  | 2,24039097  | 1,833340455 | 2,037303892 | 0,207431691 | 0,247642428 | 0,26174956<br>1      |
| IL2RG         | Pathways in<br>cancer | -2,875492074 | 5,10E-32  | 1,673303742 | 1,519132122 | 1,702369603 | 0,179241505 | 0,28321883  | 0,17105862<br>7      |
| FN1           | Pathways in<br>cancer | -2,68895037  | 3,29E-161 | 6,442144829 | 5,357421837 | 6,39023966  | 0,933491402 | 0,806792358 | 0,83813327<br>3      |
| EPAS1         | Pathways in<br>cancer | -2,640478086 | 1,22E-154 | 7,341304357 | 7,679865696 | 7,294618335 | 1,177195146 | 0,986766712 | 1,11070448<br>5      |
| ITGA6         | Pathways in<br>cancer | -2,617343249 | 7,60E-47  | 0,93882132  | 0,885746412 | 0,859118239 | 0,147541691 | 0,164510655 | 0,09635026<br>9      |
| PLCB4         | Pathways in<br>cancer | -2,59203244  | 3,04E-23  | 0,294883556 | 0,387842289 | 0,444020246 | 0,068606193 | 0,046071865 | 0,05565300<br>8      |
| TCF7          | Pathways in<br>cancer | -2,591096166 | 3,59E-26  | 0,61290543  | 0,55179778  | 0,505155895 | 0,084963233 | 0,055327308 | 0,10024983<br>2      |
| FGFR3         | Pathways in<br>cancer | -2,550576886 | 9,25E-32  | 0,650676866 | 0,735125765 | 0,603322949 | 0,094754767 | 0,130526569 | 0,09854436<br>5      |
| GNG2          | Pathways in cancer    | -2,513274929 | 8,40E-52  | 1,453182055 | 1,469211079 | 1,420580338 | 0,274698418 | 0,186334571 | 0,22058316<br>7      |
| FGFR1         | Pathways in cancer    | -2,326322276 | 1,26E-38  | 1,007924584 | 1,136890715 | 1,520907548 | 0,233511947 | 0,183809904 | 0,24978956<br>2      |
| GSTM3         | Pathways in<br>cancer | -2,260655214 | 3,07E-38  | 1,243929217 | 1,491641487 | 1,625974362 | 0,23906191  | 0,371961187 | 0,26280662<br>2      |
| F2R           | Pathways in<br>cancer | -2,227794826 | 1,28E-11  | 0,589499199 | 0,463827055 | 0,425131445 | 0,152824346 | 0,053214415 | 0,06428092<br>9      |
| HMOX1         | Pathways in cancer    | -2,206109861 | 1,10E-06  | 0,322873955 | 0,696173346 | 0,706860831 | 0,213617678 | 0,054648765 | 0,06601356<br>8      |
| GNG12         | Pathways in<br>cancer | -2,202338942 | 5,82E-57  | 2,110415918 | 1,792643665 | 1,791884144 | 0,38151205  | 0,381016795 | 0,36106083<br>1      |
| DLL1          | Pathways in cancer    | -2,194239888 | 2,16E-40  | 1,725449144 | 1,836352304 | 1,507999085 | 0,356705566 | 0,297513822 | 0,35409997<br>2      |
| CSF1R         | Pathways in cancer    | -2,084433348 | 2,37E-58  | 3,589885545 | 3,065994133 | 3,616285705 | 0,784165199 | 0,76334352  | 0,66981942<br>5      |
| FZD3          | Pathways in<br>cancer | -2,004189619 | 2,18E-31  | 0,381666663 | 0,387349124 | 0,302101509 | 0,08211893  | 0,081931528 | 0,08120621<br>8      |

| MITF     | Pathways in<br>cancer | -1,94648696  | 1,93E-31  | 1,368704808 | 1,057801148 | 1,144355259 | 0,329050833 | 0,213842995 | 0,27840505      |
|----------|-----------------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|-----------------|
| HGF      | Pathways in           | -1,882377412 | 1,46E-53  | 5,512371859 | 4,73250081  | 5,015520605 | 1,38558005  | 1,176402694 | 1,21279129      |
| LPAR1    | Pathways in           | -1,731847146 | 1,91E-09  | 0,405121203 | 0,570082141 | 0,615628849 | 0,12252962  | 0,237708329 | 0,11596133      |
| PTCH1    | Pathways in           | -1,694956338 | 1,07E-07  | 0,156880361 | 0,228744823 | 0,124892624 | 0,035946016 | 0,064371254 | 0,05248661      |
| GSTM2    | Pathways in           | -1,633159807 | 1,10E-26  | 2,194158918 | 2,607881115 | 2,522619121 | 0,753393226 | 0,645873664 | 0,78019009      |
| GNG7     | Pathways in           | -1,612850209 | 9,27E-32  | 1,692692942 | 2,250218927 | 1,985236791 | 0,624710604 | 0,53207253  | 0,64272277      |
| GSTT1    | Pathways in<br>cancer | -1,533752554 | 1,18E-38  | 9,396115586 | 8,998919937 | 9,790337305 | 2,919915515 | 3,204818196 | 2,86708680      |
| PTGS2    | Pathways in cancer    | -1,526094871 | 1,93E-11  | 0,48560444  | 0,427896207 | 0,382577169 | 0,147591878 | 0,109589445 | 0,14016680<br>2 |
| IL15RA   | Pathways in cancer    | 1,511673431  | 1,35E-42  | 1,944581772 | 2,591032938 | 2,915398951 | 6,722669923 | 6,615441905 | 6,76482327<br>9 |
| AGT      | Pathways in<br>cancer | 1,529595159  | 2,06E-246 | 36,05123511 | 37,38700298 | 35,10533772 | 99,15527949 | 94,69079023 | 95,1065997<br>7 |
| GNG4     | Pathways in cancer    | 1,614371178  | 3,65E-40  | 0,77314697  | 0,647075357 | 0,740527208 | 1,957798205 | 1,952006164 | 2,04838412<br>8 |
| PMAIP1   | Pathways in<br>cancer | 1,656902691  | 5,32E-181 | 12,49614764 | 12,9898482  | 13,9156783  | 35,96522837 | 40,15442238 | 38,8636130<br>4 |
| WNT10B   | Pathways in<br>cancer | 1,703174917  | 1,98E-54  | 2,302470186 | 2,04114542  | 2,093043829 | 6,315266635 | 5,917476274 | 6,74193871<br>6 |
| FOS      | Pathways in cancer    | 1,710991908  | 2,20E-28  | 44,06937728 | 57,69178774 | 50,91687008 | 105,5426317 | 182,9634587 | 172,406761<br>8 |
| COL4A1   | Pathways in<br>cancer | 1,743331296  | 3,14E-40  | 0,370185341 | 0,341288432 | 0,31929729  | 1,130481226 | 0,979190918 | 1,01854313<br>2 |
| JUN      | Pathways in<br>cancer | 1,784371902  | 4,61E-182 | 12,68747439 | 11,86913973 | 10,91260438 | 34,24118452 | 39,69345564 | 38,1300370<br>8 |
| BIRC3    | Pathways in<br>cancer | 1,969599564  | 6,02E-17  | 0,046420138 | 0,078667249 | 0,105213405 | 0,320576629 | 0,293325983 | 0,26827562<br>8 |
| VEGFA    | Pathways in<br>cancer | 2,116538748  | 2,51E-302 | 12,28051258 | 12,77846922 | 13,00196463 | 46,82642311 | 54,93777605 | 50,7490228<br>2 |
| WNT10A   | Pathways in<br>cancer | 2,943538864  | 2,81E-17  | 0,027019452 | 0,089943282 | 0,041755123 | 0,463084578 | 0,42683562  | 0,48613781<br>6 |
| CDKN2A   | Pathways in<br>cancer | 3,876975738  | 9,98E-308 | 5,898315164 | 4,560515532 | 3,467872125 | 60,51595259 | 59,65604397 | 61,3875358      |
| CCNA1    | Pathways in<br>cancer | 4,082678093  | 2,98E-100 | 0,223010247 | 0,236206787 | 0,344633941 | 4,335057519 | 4,617607017 | 3,70845989<br>2 |
| AR       | Pathways in<br>cancer | 4,332244652  | 3,20E-134 | 0,053288502 | 0,043003297 | 0,051850375 | 0,8700304   | 0,820437407 | 0,95877429<br>5 |
| HLA-A    | HLA                   | 1,500948063  | 4,86E-29  | 14,54905664 | 18,58028755 | 14,15299304 | 47,35210804 | 30,59542168 | 45,4537583<br>1 |
| HLA-B    | HLA                   | 1,661902278  | 9,20E-84  | 42,46103157 | 34,45779917 | 31,47552833 | 106,0238205 | 106,7504417 | 103,346124<br>1 |
| HLA-C    | HLA                   | 1,761752542  | 1,72E-45  | 19,84412887 | 12,26175654 | 15,93441671 | 47,64374672 | 53,44147907 | 48,9925136<br>1 |
| HLA-H    | HLA                   | 2,199677426  | 4,89E-51  | 0,191619372 | 0,182018221 | 0,175480498 | 0,751276505 | 0,860074381 | 0,70665072      |
| HLA-F    | HLA                   | 3,078794235  | 2,70E-17  | 0,022534    | 0,057963783 | 0,026117571 | 0,217242403 | 0,233927996 | 0,46993593      |
| HOXB-AS3 | HOX                   | -8,726126463 | 9,98E-308 | 34,/2152666 | 34,1630436  | 35,67815556 | 0,080182273 | 0,061537916 | 0,07433539      |
| нохве    | HOX                   | -8,603181421 | 4,48E-268 | 9,036039883 | 8,945053584 | 8,796562016 | 0,028950913 | 0           | 0,02087541      |
| HOXB2    | HOX                   | -8,392894083 | 1,56E-297 | 12,09/19222 | 13,69795049 | 11,69964466 | 0,020192147 | 0,072319215 | 0,02183969      |
| HOXB7    | HOX                   | -8,023055739 | 3,91E-175 | 5,637294157 | 6,340504568 | 5,80/813566 | 0,023680688 | 0           | 0,02561287      |
| НОХВЯ    | HUX                   | -7,743274673 | 4,00E-287 | 9,856245517 | 9,427493952 | 9,265873267 | 0,062104975 | 0,015888012 | 0,02878814      |
| HOXB4    | HUX                   | -7,50050364  | 5,11E-293 | 8,364666798 | 9,303818696 | 9,430674151 | 0,031822745 | 0,01424685  | 0,07744336<br>5 |
| HOXA-AS3 | HOX                   | -7,334/46166 | 3,/5E-45  | 0,338/15539 | 0,391373338 | 0,436201449 | 0,003880497 | 0 015905462 | 0               |
| HOYB3    | НОХ                   | -7,080830331 | 0.085-208 | 1,235363620 | 11 825211/7 | 11 54862448 | 0,008881884 | 0,013903402 | 7               |
| НОХАЗ    | НОХ                   | -0,943322402 | 2.48E-122 | 1 /05258768 | 1 560870118 | 1 52157141  | 0,102819217 | 0,104071308 | 3               |
| НОХАБ    | нох                   | -6,445089585 | 7,35E-50  | 2,880502675 | 2,833029872 | 2,225725062 | 0,04033394  | 0           | 0,02181246      |
| HOXB-AS1 | НОХ                   | -6,427587706 | 1,35E-37  | 1,529802724 | 1,803071956 | 2,15673679  | 0,040586976 | 0           | 3               |
| НОХВ9    | нох                   | -6,132389064 | 8,42E-251 | 4,705887889 | 5,257669386 | 5,056364947 | 0,047922696 | 0,064364101 | 0,08422842      |
|          |                       |              |           |             |             |             |             |             | 3               |

| HOXA5 | нох | -5,617956521 | 4,40E-110 | 3,2918237  | 4,301136409 | 3,77043467  | 0,068326717 | 0,034959379 | 0,09501651 |
|-------|-----|--------------|-----------|------------|-------------|-------------|-------------|-------------|------------|
|       |     |              |           |            |             |             |             |             | 2          |
| MEIS1 | HOX | -5,541029076 | 3,06E-300 | 10,3488918 | 10,14017905 | 9,965682862 | 0,157620625 | 0,2549474   | 0,20897725 |
|       |     |              |           |            |             |             |             |             | 1          |

Statistically significant differential expressed genes (adjusted p-value<0.05 and absolute log Fold Change (logFC) > 1.5) were identified for each comparison

#### Supplemental Table 4. OCI-AML3 CD123 KO vs WT heatmap path

| Genes  | Pathway     | log2 Fold    | P adj     | OCI AML3    |
|--------|-------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|
|        |             | Change       |           | wt_1        | wt_2        | wt_3        | 123 KO_1    | 123 KO_2    | 123 KO_3    |
| CTNNA2 | Pathways in | -6,568137157 | 7,37E-26  | 0,296963897 | 0,245093466 | 0,285086599 | 0,007316361 | 0           | 0           |
|        | cancer      |              |           |             |             |             |             |             |             |
| SMO    | Pathways in | -3,922843744 | 3,03E-107 | 2,489918058 | 2,556711149 | 2,512160407 | 0,158226827 | 0,137206013 | 0,184463849 |
|        | cancer      |              |           |             |             |             |             |             |             |
| GSTM3  | Pathways in | -3,348538135 | 1,64E-55  | 1,243929217 | 1,491641487 | 1,625974362 | 0,176986085 | 0,144946777 | 0,107377767 |
|        | cancer      |              |           |             |             |             |             |             |             |
| TCF7   | Pathways in | -2,567933208 | 4,40E-20  | 0,61290543  | 0,55179778  | 0,505155895 | 0,116272138 | 0,09522371  | 0,064663967 |
|        | cancer      |              |           |             |             |             |             |             |             |
| NOTCH3 | Pathways in | -2,422742289 | 1,76E-10  | 0,151065887 | 0,144365548 | 0,126965717 | 0,030166504 | 0,031764271 | 0,015251726 |
|        | cancer      |              |           |             |             |             |             |             |             |
| ADCY1  | Pathways in | -2,089291259 | 1,70E-07  | 0,124064648 | 0,087103487 | 0,066465054 | 0,02958795  | 0,017623072 | 0,015231203 |
|        | cancer      |              |           |             |             |             |             |             |             |
| ITGA6  | Pathways in | -2,01530875  | 1,05E-30  | 0,93882132  | 0,885746412 | 0,859118239 | 0,191570283 | 0,225530579 | 0,220345174 |
|        | cancer      |              |           |             |             |             |             |             |             |
| TRAF5  | Pathways in | -1,978513009 | 9,25E-12  | 0,482958765 | 0,504465704 | 0,433365258 | 0,160441275 | 0,069156331 | 0,125517371 |
|        | cancer      |              |           |             |             |             |             |             |             |

| VEGFC     | Pathways in                          | -1,945720985 | 3,62E-30  | 3,164017925 | 3,737035931 | 3,59202658  | 0,649352419 | 1,077239792 | 0,91924758  |
|-----------|--------------------------------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|
| FZD6      | Pathways in cancer                   | -1,767867168 | 2,89E-08  | 0,391586261 | 0,597449338 | 0,479074476 | 0,168028887 | 0,072426882 | 0,18779051  |
| GNG12     | Pathways in cancer                   | -1,667226542 | 4,06E-30  | 2,110415918 | 1,792643665 | 1,791884144 | 0,591664429 | 0,587929199 | 0,547220438 |
| FZD3      | Pathways in<br>cancer                | -1,606261767 | 9,95E-17  | 0,381666663 | 0,387349124 | 0,302101509 | 0,090821155 | 0,130165086 | 0,117855673 |
| HGF       | Pathways in cancer                   | -1,593889481 | 1,57E-36  | 5,512371859 | 4,73250081  | 5,015520605 | 1,623808571 | 1,875095459 | 1,407968552 |
| JUP       | Pathways in cancer                   | -1,565347358 | 3,88E-07  | 0,621955744 | 0,642152333 | 0,433461342 | 0,138810637 | 0,267965011 | 0,147379148 |
| F2R       | Pathways in cancer                   | -1,56410435  | 3,11E-07  | 0,589499199 | 0,463827055 | 0,425131445 | 0,118678671 | 0,231771726 | 0,122773591 |
| WNT3      | Pathways in<br>cancer                | -1,517338271 | 1,09E-14  | 1,740560078 | 1,811721647 | 1,950854098 | 0,425055488 | 0,832065063 | 0,601724452 |
| WNT7B     | Pathways in<br>cancer                | 1,516567926  | 6,28E-53  | 2,772222021 | 2,874215837 | 2,906777038 | 7,806384991 | 8,089821681 | 7,99876683  |
| PTGER4    | Pathways in<br>cancer                | 1,532311562  | 6,65E-130 | 21,09609365 | 19,49347581 | 21,55035752 | 63,35289141 | 56,02035718 | 55,36467735 |
| CXCL8     | Pathways in<br>cancer                | 1,669349021  | 2,74E-82  | 88,93638829 | 88,45301958 | 93,60412815 | 323,95181   | 240,3808031 | 275,4333319 |
| LAMB2     | Pathways in<br>cancer                | 1,679115255  | 2,32E-08  | 0,110487601 | 0,130400021 | 0,091063743 | 0,25152258  | 0,446311956 | 0,356064774 |
| PTGER2    | Pathways in<br>cancer                | 1,854723408  | 1,21E-21  | 0,517927349 | 0,548575488 | 0,440214925 | 2,021228838 | 1,712808077 | 1,649237186 |
| BIRC3     | Pathways in<br>cancer                | 2,239734946  | 9,27E-20  | 0,046420138 | 0,078667249 | 0,105213405 | 0,377408633 | 0,391510678 | 0,359744346 |
| FOS       | Pathways in<br>cancer                | 2,576679952  | 1,91E-184 | 44,06937728 | 57,69178774 | 50,91687008 | 302,5613165 | 266,2033975 | 321,3176986 |
| MMP9      | Pathways in<br>cancer                | 2,621082605  | 2,47E-83  | 2,499819804 | 2,277809421 | 2,122611657 | 14,04084193 | 15,19388867 | 11,77217385 |
| JUN       | Pathways in<br>cancer                | 2,715097085  | 9,98E-308 | 12,68747439 | 11,86913973 | 10,91260438 | 69,52209102 | 76,28420095 | 79,9776498  |
| CCNA1     | Pathways in<br>cancer                | 3,40029493   | 2,16E-68  | 0,223010247 | 0,236206787 | 0,344633941 | 2,765031393 | 2,734706295 | 2,823416446 |
| BIRC7     | Pathways in<br>cancer                | 4,230693892  | 4,54E-58  | 0           | 0,184542719 | 0,338293819 | 3,38158135  | 3,539863862 | 4,229198772 |
| CDKN2A    | Pathways in<br>cancer                | 4,32630044   | 9,98E-308 | 5,898315164 | 4,560515532 | 3,467872125 | 92,12705279 | 88,9794674  | 83,26501069 |
| IL16      | Cytokine-<br>receptor<br>interaction | -1,960658365 | 6,76E-32  | 0,684800559 | 0,745115483 | 0,673806188 | 0,200184055 | 0,174191862 | 0,159405772 |
| BMPR1B    | Cytokine-<br>receptor<br>interaction | -1,926414957 | 4,82E-26  | 0,723329458 | 0,89191508  | 0,800821669 | 0,216509631 | 0,201277035 | 0,21123589  |
| CSF1      | Cytokine-<br>receptor<br>interaction | -1,876411474 | 2,26E-07  | 0,195842925 | 0,323988795 | 0,329552554 | 0,035383499 | 0,115912483 | 0,075135308 |
| CX3CR1    | Cytokine-<br>receptor                | -1,630089355 | 5,76E-42  | 5,404629241 | 5,681964    | 6,146615925 | 1,769058847 | 2,064166139 | 1,608974915 |
| TNFRSF11A | Cytokine-<br>receptor                | -1,562372116 | 3,90E-50  | 7,153419035 | 7,005928866 | 7,355404732 | 2,127963481 | 2,573803501 | 2,374562546 |
| CCR2      | interaction<br>Cytokine-             | 1.606773695  | 4.32E-91  | 8.081879508 | 7.982577606 | 8.160186196 | 23.81608879 | 26.76729489 | 21.25746618 |
|           | receptor<br>interaction              | , i          | ,         | ,           |             | ,           | ,           | ,           |             |
| CXCL8     | Cytokine-<br>receptor                | 1,669349021  | 2,74E-82  | 88,93638829 | 88,45301958 | 93,60412815 | 323,95181   | 240,3808031 | 275,4333319 |
| CXCL10    | Cytokine-                            | 1,720779098  | 2,44E-14  | 0,580496039 | 0,63880172  | 0,924267041 | 2,431306139 | 2,342556967 | 2,206831912 |
| 07013     | interaction                          | 1 770204075  | 5 015 21  | 0.000107550 | 4 22002740  | 1 (21207144 | 4 220020204 | 4.040000000 | 5 126702654 |
|           | receptor<br>interaction              | 1,770294075  | 5,916-21  | 0,960167558 | 1,33983749  | 1,621207144 | 4,279079784 | 4,049060063 | 5,136702654 |
| OSM       | Cytokine-<br>receptor<br>interaction | 2,639390294  | 6,73E-77  | 1,038929279 | 1,268088638 | 1,070355279 | 7,114069221 | 6,456506715 | 7,480132797 |
| INHBA     | Cytokine-<br>receptor                | 2,853717541  | 1,09E-48  | 0,324543992 | 0,455355488 | 0,547136092 | 3,694086109 | 3,195613896 | 2,88640489  |
| IL32      | Cytokine-<br>receptor                | 3,30082719   | 1,76E-52  | 0,268948862 | 0,748784849 | 0,471043052 | 4,839738988 | 5,993175753 | 5,530580052 |
| CCL3      | Cytokine-<br>receptor                | 3,358030574  | 1,54E-57  | 1,531724587 | 1,585769094 | 1,86875157  | 21,58580141 | 13,38388728 | 15,24790523 |
| 1         | interaction                          |              |           | 1           |             |             | 1           | 1           | 1           |

| TRAF5   | IL-17     | -1,978513009 | 9,25E-12    | 0,482958765 | 0,504465704 | 0,433365258 | 0,160441275 | 0,069156331 | 0,125517371 |
|---------|-----------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|         | signaling |              |             |             |             |             |             |             |             |
|         | pathway   |              |             |             |             |             |             |             |             |
| CXCL8   | IL-17     | 1,669349021  | 2,74E-82    | 88,93638829 | 88,45301958 | 93,60412815 | 323,95181   | 240,3808031 | 275,4333319 |
|         | signaling |              |             |             |             |             |             |             |             |
|         | pathway   |              |             |             |             |             |             |             |             |
| CXCL10  | IL-17     | 1,720779098  | 2,44E-14    | 0,580496039 | 0,63880172  | 0,924267041 | 2,431306139 | 2,342556967 | 2,206831912 |
|         | signaling |              |             |             |             |             |             |             |             |
|         | pathway   |              |             |             |             |             |             |             |             |
| CXCL2   | IL-17     | 1,770294075  | 5,91E-21    | 0,960167558 | 1,33983749  | 1,621207144 | 4,279079784 | 4,049060063 | 5,136702654 |
|         | signaling |              |             |             |             |             |             |             |             |
|         | pathway   |              |             |             |             |             |             |             |             |
| TNFAIP3 | IL-17     | 2,286425551  | 9,98E-308   | 6,85323479  | 6,934976005 | 7,018673641 | 32,322/2186 | 33,68598897 | 32,90/18/38 |
|         | signaling |              |             |             |             |             |             |             |             |
| 505     | patriway  | 2 576670052  | 1.015.194   | 44.06027728 | F7 C0170774 | F0.01697009 | 202 5612165 | 266 2022075 | 221 2176096 |
| FUS     | rL-17     | 2,5/00/9952  | 1,910-184   | 44,00937728 | 57,09178774 | 50,91087008 | 302,5013105 | 200,2033975 | 321,3170980 |
|         | nathway   |              |             |             |             |             |             |             |             |
| MMP9    | II -17    | 2 621082605  | 2 47F-83    | 2 499819804 | 2 277809421 | 2 122611657 | 14 04084193 | 15 19388867 | 11 77217385 |
|         | signaling | 2,021002005  | 2,472 00    | 2,433013004 | 2,277003421 | 2,122011037 | 14,04004155 | 13,13300007 | 11,77217505 |
|         | pathway   |              |             |             |             |             |             |             |             |
| JUN     | IL-17     | 2.715097085  | 9.98E-308   | 12.68747439 | 11.86913973 | 10.91260438 | 69.52209102 | 76.28420095 | 79.9776498  |
|         | signaling | ,            | -,          | ,           | ,           | -,          |             | -,          | -,          |
|         | pathway   |              |             |             |             |             |             |             |             |
| FOSB    | IL-17     | 3,523901057  | 3,52E-130   | 1,750432586 | 2,309159946 | 2,328636902 | 22,17166973 | 19,85535404 | 30,66333062 |
|         | signaling |              |             |             |             |             |             |             |             |
|         | pathway   |              |             |             |             |             |             |             |             |
| S100A8  | IL-17     | 3,613000319  | 1,97E-179   | 5,766818985 | 6,535075952 | 5,498822337 | 73,48773892 | 66,66585677 | 75,27020648 |
|         | signaling |              |             |             |             |             |             |             |             |
|         | pathway   |              |             |             |             |             |             |             |             |
| S100A9  | IL-17     | 3,731994258  | 9,98E-308   | 11,23274012 | 8,514994435 | 9,166347002 | 116,9446108 | 112,4115545 | 131,5875766 |
|         | signaling |              |             |             |             |             |             |             |             |
|         | pathway   |              |             |             |             |             |             |             |             |
| HLA-E   | HLA       | -1,617325301 | 0,000317246 | 0,320270552 | 2,058262062 | 1,985071343 | 0,462913542 | 0,51975247  | 0,402967555 |
|         | шл        | 1 5/118/729  | 8 25E-06    | 0.022534    | 0.057062792 | 0.026117571 | 0 12510102  | 0 112521575 | 0 10500256  |
| IILA-F  | TILA      | 1,341104738  | 0,33E-00    | 0,022554    | 0,037303783 | 0,02011/5/1 | 0,12319192  | 0,112331373 | 0,10390350  |
|         |           |              |             |             |             |             |             |             |             |

Statistically significant differential expressed genes (adjusted p-value<0.05 and absolute log Fold Change (logFC) > 1.5) were identified for each comparison

### Supplemental Table 5. OCI-AML3 CD33/CD123 KO vs WT heatmap path

| Genes  | Pathway       | log2 Fold    | P adj    | OCI AML3    |
|--------|---------------|--------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|
|        |               | Change       |          | wt_1        | wt_2        | wt_3        | 33/123      | 33/123      | 33/123      |
|        |               |              |          |             |             |             | KO_1        | КО_2        | КО_3        |
| CLDN23 | Cell adhesion | -4,942256621 | 2,92E-49 | 2,202597489 | 2,069298686 | 2,015205188 | 0,064942522 | 0,119024888 | 0           |
|        | molecules     |              |          |             |             |             |             |             |             |
| CD226  | Cell adhesion | -4,37238523  | 1,59E-24 | 0,892092657 | 0,719910001 | 0,612718051 | 0,052216169 | 0           | 0,03432815  |
|        | molecules     |              |          |             |             |             |             |             |             |
| ITGA6  | Cell adhesion | -3,552875452 | 1,17E-45 | 0,93882132  | 0,885746412 | 0,859118239 | 0,087275596 | 0,039989085 | 0,076502735 |
|        | molecules     |              |          |             |             |             |             |             |             |
| CADM1  | Cell adhesion | -2,809132297 | 4,44E-16 | 0,467336903 | 0,517089203 | 0,42128898  | 0,038466941 | 0,052875872 | 0,101156325 |
|        | molecules     |              |          |             |             |             |             |             |             |
| ITGB7  | Cell adhesion | -2,599345131 | 1,14E-24 | 1,432492746 | 1,429204657 | 1,510413043 | 0,338990754 | 0,22285511  | 0,077516723 |
|        | molecules     |              |          |             |             |             |             |             |             |
| NTNG2  | Cell adhesion | -2,343841672 | 4,88E-08 | 0,373691871 | 0,326696137 | 0,320829559 | 0,082023813 | 0,037582754 | 0,053924405 |
|        | molecules     |              |          |             |             |             |             |             |             |

| JAM2    | Cell adhesion<br>molecules | -2,180707057 | 7,17E-11  | 0,453458148 | 0,486528899 | 0,339763312                             | 0,08143542    | 0,111939467 | 0,071383441 |
|---------|----------------------------|--------------|-----------|-------------|-------------|-----------------------------------------|---------------|-------------|-------------|
| CLDN7   | Cell adhesion              | -1,808988888 | 1,63E-09  | 0,910452425 | 0,997580768 | 1,245265506                             | 0,351443682   | 0,170501406 | 0,299002557 |
| OCLN    | Cell adhesion              | -1,667657886 | 1,99E-42  | 3,571572179 | 3,204111304 | 3,548910287                             | 1,008847584   | 0,962769445 | 1,047666336 |
| NEGR1   | Cell adhesion              | -1,638626439 | 9,83E-79  | 9,961307933 | 9,51624128  | 9,662025422                             | 2,77283606    | 2,971318084 | 2,999011133 |
| ITGAL   | Cell adhesion              | 1,697801269  | 1,42E-132 | 8,327842231 | 8,253970636 | 8,66224411                              | 24,76624457   | 23,70644912 | 27,94538147 |
| РТК2    | Trans misreg               | -8,145788709 | 2,75E-200 | 4,617028414 | 4,802913489 | 4,700059147                             | 0             | 0,024875437 | 0,02379448  |
| CD14    | Trans misreg               | -5,757514577 | 1,84E-47  | 2,345126855 | 2,043033629 | 2,635705425                             | 0,046795055   | 0,032161764 | 0,030764181 |
| WT1     | Trans misreg               | -5,175999848 | 2,14E-115 | 4,376189155 | 3,885086429 | 3,870181619                             | 0,114756611   | 0,105161398 | 0,08382636  |
| ZEB1    | Trans misreg               | -4,945809301 | 7,93E-59  | 0,994357278 | 0,829792336 | 0,920956757                             | 0,006613857   | 0,036365093 | 0,04348107  |
| PBX1    | Trans misreg               | -3,541837436 | 7,12E-58  | 1,227089411 | 1,178733998 | 1,144490394                             | 0,055092483   | 0,075729003 | 0,160973813 |
| IGFBP3  | Trans misreg               | -3,251425495 | 4,57E-45  | 2,097576233 | 2,635038885 | 2,726409022                             | 0,20879025    | 0,242845154 | 0,295644835 |
| PDGFA   | Trans misreg               | -2,955729808 | 7,40E-35  | 2,24039097  | 1,833340455 | 2,037303892                             | 0,331182956   | 0,227618668 | 0,138553894 |
| MITF    | Trans misreg               | -2,826381131 | 1,35E-35  | 1,368704808 | 1,057801148 | 1,144355259                             | 0,124791931   | 0,114357629 | 0,227892172 |
| SPINT1  | Trans misreg               | -2,787318137 | 1,13E-31  | 2,241788594 | 1,857926527 | 1,850303923                             | 0,301947924   | 0,207525729 | 0,26467699  |
| MEIS1   | Trans misreg               | -2,699228694 | 1,10E-92  | 10,3488918  | 10,14017905 | 9,965682862                             | 1,567494583   | 1,332959015 | 1,449697973 |
| ITGB7   | Trans misreg               | -2,599345131 | 1,14E-24  | 1,432492746 | 1,429204657 | 1,510413043                             | 0,338990754   | 0,22285511  | 0,077516723 |
| ETV4    | Trans misreg               | -2,331744065 | 5,29E-58  | 5,275937    | 4,860168218 | 5,004515049                             | 0,887665411   | 0,904606396 | 1,006159208 |
| CSF1R   | Trans misreg               | -2,299353996 | 1,66E-48  | 3,589885545 | 3,065994133 | 3,616285705                             | 0,693409168   | 0,577664302 | 0,649260378 |
| BAIAP3  | Trans misreg               | -1,825891225 | 9,03E-08  | 0,353699519 | 0,359338542 | 0,396933951                             | 0,091499071   | 0,022867774 | 0,174992477 |
| MEF2C   | Trans misreg<br>in cancer  | -1,770338614 | 8,38E-78  | 7,469811712 | 7,38136132  | 6,886695599                             | 1,994598306   | 2,056300608 | 1,89409471  |
| MMP9    | Trans misreg<br>in cancer  | -1,690288621 | 6,44E-16  | 2,499819804 | 2,277809421 | 2,122611657                             | 0,723560522   | 0,397836614 | 0,8324503   |
| JUP     | Trans misreg<br>in cancer  | -1,674301302 | 1,57E-07  | 0,621955744 | 0,642152333 | 0,433461342                             | 0,168638279   | 0,19869149  | 0,126704929 |
| RUNX2   | Trans misreg<br>in cancer  | -1,503269251 | 2,49E-136 | 31,70184013 | 35,05554269 | 34,60895802                             | 10,87711262   | 10,93419693 | 11,64364271 |
| CEBPE   | Trans misreg<br>in cancer  | 1,654935439  | 3,60E-07  | 0,290367414 | 0,539781259 | 0,470093766                             | 1,857403713   | 0,976204127 | 1,185186606 |
| CDKN2C  | Trans misreg<br>in cancer  | 1,942507885  | 5,59E-198 | 14,11352025 | 13,69087683 | 12,75289296                             | 51,89056038   | 47,88777619 | 45,17902528 |
| CCNA1   | Trans misreg<br>in cancer  | 3,932854855  | 4,36E-71  | 0,223010247 | 0,236206787 | 0,344633941                             | 3,909867091   | 4,440838237 | 3,234168088 |
| EFNA2   | MAPK<br>signaling          | -8,194578983 | 2,02E-20  | 0,808880653 | 0,734353574 | 0,493835875                             | 0             | 0           | 0           |
| RASGRP4 | pathway<br>MAPK            | -6 481598563 | 7 80F-88  | 2 273311569 | 2 926815587 | 2 691332625                             | 0             | 0.036099531 | 0.051796251 |
|         | signaling                  | -,           | .,        |             | _,          | _,                                      |               | -,          | -,          |
| CD14    | MAPK                       | -5,757514577 | 1,84E-47  | 2,345126855 | 2,043033629 | 2,635705425                             | 0,046795055   | 0,032161764 | 0,030764181 |
| VECEC   | pathway                    | 4 55080125   | 2 405 71  | 2 164017025 | 2 727025021 | 2 50202658                              | 0.18205.046   | 0.082414282 | 0 122082555 |
| VEGFC   | signaling                  | -4,35369135  | 3,402-71  | 5,104017925 | 3,737033331 | 5,59202058                              | 0,18203040    | 0,083414285 | 0,132982333 |
| NFATC1  | MAPK                       | -4,102564864 | 1,19E-141 | 4,707627254 | 4,390601548 | 4,253998427                             | 0,216620488   | 0,195085516 | 0,314287355 |
| CNC12   | pathway                    | 4.000100027  | 1 165 65  | 2 110/15019 | 1 702642665 | 1 701994144                             | 0 124176240   | 0 121720054 | 0.027804567 |
| GNG12   | signaling                  | -4,066169627 | 1,166-65  | 2,110415918 | 1,792643665 | 1,791884144                             | 0,134176249   | 0,131739954 | 0,037804567 |
| MAP2K6  | MAPK                       | -4,046429599 | 9,17E-37  | 1,751059991 | 1,880654138 | 1,750967228                             | 0,158261927   | 0,093232978 | 0,029727186 |
|         | pathway                    |              | 2 005     | 0.77.000    | 0.00000     | 0.0000000000000000000000000000000000000 | 0.00000000000 | 0.01015-5   | 0.007770    |
| TGFA    | MAPK<br>signaling          | -3,75156522  | 3,83E-30  | 0,774223276 | 0,66233808  | 0,682597763                             | 0,068629128   | 0,0404298   | 0,025781954 |
| MAP4K1  | МАРК                       | -3,73861965  | 8,27E-210 | 17,59459247 | 20,40021925 | 20,16048299                             | 1,352430335   | 1,445906895 | 1,284284227 |
|         | signaling<br>pathway       |              |           |             |             |                                         |               |             |             |

| FGFR1     | MAPK                  | -3,384218353 | 1,02E-39  | 1,007924584 | 1,136890715 | 1,520907548    | 0,154194271  | 0,064507222 | 0,096963545 |
|-----------|-----------------------|--------------|-----------|-------------|-------------|----------------|--------------|-------------|-------------|
|           | signaling             |              |           |             |             |                |              |             |             |
| BDNF      | MAPK                  | -3,039356789 | 1,10E-16  | 0,282290173 | 0,389446721 | 0,256613835    | 0,021868772  | 0,03757546  | 0,050319677 |
|           | signaling             |              |           |             |             |                |              |             |             |
| PDGFA     | MAPK                  | -2.955729808 | 7.40E-35  | 2.24039097  | 1.833340455 | 2.037303892    | 0.331182956  | 0.227618668 | 0.138553894 |
|           | signaling             | ,            | ,         | ,           | ,           | ,              | -,           | -,          | -,          |
| 50582     | pathway               | 2 701882002  | 1 595 20  | 0.650676866 | 0 725125765 | 0 (02222040    | 0 122200 478 | 0.078527461 | 0.063505880 |
| FUFKS     | signaling             | -2,701883092 | 1,585-20  | 0,050070800 | 0,735125765 | 0,003322949    | 0,133299478  | 0,078527461 | 0,062595889 |
|           | pathway               |              |           |             |             |                |              |             |             |
| CSF1R     | MAPK                  | -2,299353996 | 1,66E-48  | 3,589885545 | 3,065994133 | 3,616285705    | 0,693409168  | 0,577664302 | 0,649260378 |
|           | pathway               |              |           |             |             |                |              |             |             |
| HSPA1A    | МАРК                  | -2,190997161 | 5,88E-38  | 0,671036822 | 0,722737478 | 0,710387176    | 0,153088606  | 0,1530418   | 0,123517745 |
|           | signaling             |              |           |             |             |                |              |             |             |
| TGFB3     | MAPK                  | -2,063666444 | 1,59E-11  | 0,50104753  | 0,567199769 | 0,64047464     | 0,122197613  | 0,167970346 | 0,096402738 |
|           | signaling             |              |           |             |             |                |              |             |             |
| MAD2K12   | pathway               | -1 996876872 | 1 10F-/11 | 2 067524222 | 3 163683068 | 2 022172182    | 0 742961485  | 0.67020168  | 0 747024578 |
| WIAF SK12 | signaling             | -1,550870872 | 1,190-41  | 3,007324323 | 3,103083008 | 3,0331/3183    | 0,742901485  | 0,07020108  | 0,747924378 |
|           | pathway               |              |           |             |             |                |              |             |             |
| IL1B      | MAPK                  | -1,927283377 | 6,16E-42  | 14,95043276 | 18,9917713  | 18,97748961    | 4,372276264  | 4,575386634 | 4,1169375   |
|           | pathway               |              |           |             |             |                |              |             |             |
| TNF       | МАРК                  | -1,781056567 | 4,54E-09  | 0,137780351 | 0,129553162 | 0,141947993    | 0,032402373  | 0,035631713 | 0,04260418  |
|           | signaling             |              |           |             |             |                |              |             |             |
| MEF2C     | МАРК                  | -1,770338614 | 8,38E-78  | 7,469811712 | 7,38136132  | 6,886695599    | 1,994598306  | 2,056300608 | 1,89409471  |
|           | signaling             |              |           |             |             |                |              |             |             |
| MADK11    | pathway<br>MAPK       | -1 752693636 | 2 07E-06  | 0.6599259/1 | 0.663029412 | 0 503116881    | 0 191203323  | 0.047786216 | 0 251/03219 |
| WAFKII    | signaling             | -1,752055050 | 2,071-00  | 0,033323941 | 0,003029412 | 0,505110881    | 0,191203323  | 0,047780210 | 0,231403219 |
|           | pathway               |              |           |             |             |                |              |             |             |
| HSPA2     | MAPK                  | -1,743313008 | 3,93E-22  | 2,085737762 | 2,279292522 | 2,292083302    | 0,518852211  | 0,671250509 | 0,702276599 |
|           | pathway               |              |           |             |             |                |              |             |             |
| IL1R1     | МАРК                  | -1,563263732 | 3,51E-07  | 0,277902008 | 0,321770356 | 0,392117633    | 0,111388266  | 0,087492594 | 0,115074605 |
|           | signaling             |              |           |             |             |                |              |             |             |
| HGF       | МАРК                  | -1,523514684 | 2,55E-34  | 5,512371859 | 4,73250081  | 5,015520605    | 1,647231806  | 1,721915613 | 1,556305644 |
|           | signaling             |              |           |             |             |                |              |             |             |
| JUN       | MAPK                  | 1.680148167  | 3.30E-153 | 12.68747439 | 11.86913973 | 10.91260438    | 36.26660401  | 33.54302599 | 35.68019197 |
|           | signaling             | , i          | ,         | ,           |             |                | ,            |             | ,           |
| DUSD2     | pathway               | 1 772440520  | 3 70F-40  | 2 60/1282/  | 3 115965616 | 2 86421144     | 10 08/02510  | 0 802262064 | 10 7/02152/ |
| DUSPZ     | signaling             | 1,773449329  | 3,70E-40  | 5,09412854  | 3,443903040 | 2,00421144     | 10,98403319  | 9,893203904 | 10,74931334 |
|           | pathway               |              |           |             |             |                |              |             |             |
| PDGFD     | MAPK                  | 1,81/164091  | 6,47E-44  | 2,973120892 | 2,504653075 | 2,458/210/3    | 9,143282591  | 9,338848349 | 7,360705979 |
|           | pathway               |              |           |             |             |                |              |             |             |
| FOS       | MAPK                  | 2,060637616  | 1,85E-121 | 44,06937728 | 57,69178774 | 50,91687008    | 220,2673804  | 186,9835771 | 189,2339293 |
|           | pathway               |              |           |             |             |                |              |             |             |
| DUSP1     | МАРК                  | 2,218056378  | 3,16E-41  | 1,83889798  | 2,331500033 | 1,453555514    | 9,081685522  | 7,404006698 | 8,344996982 |
|           | signaling             |              |           |             |             |                |              |             |             |
| CACNA2D3  | MAPK                  | 2,408346315  | 6,76E-91  | 1,763616612 | 2,050284095 | 1,789978677    | 9,520520747  | 9,246047663 | 9,32805137  |
|           | signaling             |              |           | -           |             | -              |              |             | -           |
| EENA2     | pathway               | -8 10/578082 | 2 025-20  | 0 808880653 | 0 72/25257/ | 0.402825875    | 0            | 0           | 0           |
| LFINAZ    | signaling             | -8,194378983 | 2,021-20  | 0,808880033 | 0,734333374 | 0,493833873    | 0            | 0           | 0           |
|           | pathway               |              |           |             |             |                |              |             |             |
| РТК2      | PI3K-Akt<br>signaling | -8,145788709 | 2,75E-200 | 4,617028414 | 4,802913489 | 4,700059147    | 0            | 0,024875437 | 0,02379448  |
|           | pathway               |              |           |             |             |                |              |             |             |
| JAK3      | PI3K-Akt              | -7,795454423 | 2,18E-70  | 0,980163687 | 0,925592422 | 0,942896858    | 0            | 0           | 0,010224533 |
|           | signaling<br>pathway  |              |           |             |             |                |              |             |             |
| F2R       | PI3K-Akt              | -6,310017584 | 7,60E-25  | 0,589499199 | 0,463827055 | 0,425131445    | 0            | 0           | 0,014582706 |
|           | signaling             |              |           |             |             |                |              |             |             |
| PRL       | PI3K-Akt              | -6.173868612 | 1.09E-24  | 1.234909662 | 1.107783161 | 1,13594979     | 0            | 0.039920375 | 0           |
|           | signaling             | 1,1,0000012  | _, 27     | _,          | _,, 00101   | _,             | Ť            | 1,110020070 | Ŭ           |
| ITCOL     | pathway               | 5.672022261  | 2 275 405 | 2 725070202 | 2 407404025 | 2 74 60 4202 5 | 0.020500001  | 0.020702665 | 0.002424705 |
| ITGB5     | PI3K-Akt<br>signaling | -5,673808364 | 2,3/E-105 | 2,725078292 | 2,40/494921 | 2,716942921    | 0,038589894  | 0,039783661 | 0,063424785 |
|           | pathway               |              |           |             |             |                |              |             |             |

| THBS1    | PI3K-Akt              | -4,815271876   | 2,50E-26  | 0,60957097   | 0,44943397    | 0,37109655   | 0,014596178  | 0               | 0,028787623   |
|----------|-----------------------|----------------|-----------|--------------|---------------|--------------|--------------|-----------------|---------------|
|          | signaling             |                |           |              |               |              |              |                 |               |
| GNG11    | PI3K-Akt              | -4,732657663   | 1,69E-104 | 16,68182099  | 15,04304394   | 14,13721663  | 0,93016208   | 0,243539394     | 0,291195553   |
|          | signaling             |                |           |              |               |              |              |                 |               |
| VEGFC    | PI3K-Akt              | -4,55989135    | 3,40E-71  | 3,164017925  | 3,737035931   | 3,59202658   | 0,18205046   | 0,083414283     | 0,132982555   |
|          | signaling             |                |           |              |               |              |              |                 |               |
| GNG12    | pathway               | -4.066169627   | 1 16F-65  | 2 110/15918  | 1 7926/3665   | 1 79188/11// | 0 13/1762/9  | 0 13173995/     | 0.03780/1567  |
| 0//012   | signaling             | 4,000103027    | 1,102 05  | 2,110415510  | 1,752045005   | 1,751004144  | 0,134170243  | 0,131733334     | 0,037804307   |
|          | pathway               |                |           |              |               |              |              |                 |               |
| GHR      | PI3K-Akt<br>signaling | -3,991055432   | 4,57E-18  | 0,25070955   | 0,259222681   | 0,231387591  | 0,006878713  | 0,028366016     | 0,009044459   |
|          | pathway               |                |           |              |               |              |              |                 |               |
| COL6A2   | PI3K-Akt              | -3,853055098   | 6,04E-103 | 4,019936893  | 4,906326762   | 4,309022249  | 0,262761453  | 0,254168302     | 0,345491251   |
|          | pathway               |                |           |              |               |              |              |                 |               |
| IRS1     | PI3K-Akt              | -3,828149039   | 4,40E-132 | 2,622380708  | 2,647517238   | 2,569267204  | 0,159620632  | 0,212762438     | 0,146277766   |
|          | signaling             |                |           |              |               |              |              |                 |               |
| TGFA     | PI3K-Akt              | -3,75156522    | 3,83E-30  | 0,774223276  | 0,66233808    | 0,682597763  | 0,068629128  | 0,0404298       | 0,025781954   |
|          | signaling             |                |           |              |               |              |              |                 |               |
| ITGA6    | PI3K-Akt              | -3,552875452   | 1,17E-45  | 0,93882132   | 0,885746412   | 0,859118239  | 0,087275596  | 0,039989085     | 0,076502735   |
|          | signaling             |                |           | -            |               | -            | -            |                 |               |
| I DAR1   | PI3K-Akt              | -3 527397337   | 1 /1F-16  | 0.405121203  | 0 5700821/1   | 0.615628849  | 0.040015089  | 0.018334642     | 0.070151656   |
| LIANI    | signaling             | 3,327337337    | 1,412 10  | 0,403121203  | 0,570002141   | 0,013020043  | 0,040013003  | 0,010334042     | 0,070151050   |
| 50504    | pathway               | 2 204240252    | 1 025 20  | 1.007024504  | 1 12000715    | 1 520007540  | 0.154104071  | 0.004507222     | 0.000002545   |
| FGFRI    | signaling             | -3,384218353   | 1,02E-39  | 1,007924584  | 1,136890715   | 1,520907548  | 0,154194271  | 0,064507222     | 0,096963545   |
|          | pathway               |                |           |              |               |              |              |                 |               |
| BDNF     | PI3K-Akt              | -3,039356789   | 1,10E-16  | 0,282290173  | 0,389446721   | 0,256613835  | 0,021868772  | 0,03757546      | 0,050319677   |
|          | pathway               |                |           |              |               |              |              |                 |               |
| PDGFA    | PI3K-Akt              | -2,955729808   | 7,40E-35  | 2,24039097   | 1,833340455   | 2,037303892  | 0,331182956  | 0,227618668     | 0,138553894   |
|          | pathway               |                |           |              |               |              |              |                 |               |
| LAMA5    | PI3K-Akt              | -2,748570664   | 2,12E-30  | 0,376123725  | 0,372048494   | 0,352799313  | 0,048055914  | 0,040650264     | 0,0631862     |
|          | signaling<br>nathway  |                |           |              |               |              |              |                 |               |
| FGFR3    | PI3K-Akt              | -2,701883092   | 1,58E-20  | 0,650676866  | 0,735125765   | 0,603322949  | 0,133299478  | 0,078527461     | 0,062595889   |
|          | signaling             |                |           |              |               |              |              |                 |               |
| ITGB7    | PI3K-Akt              | -2,599345131   | 1,14E-24  | 1,432492746  | 1,429204657   | 1,510413043  | 0,338990754  | 0,22285511      | 0,077516723   |
|          | signaling             |                | ,         | ,            | ,             | ,            | ,            | ,               | ,             |
| CSF1R    | PI3K-Akt              | -2 299353996   | 1 66F-48  | 3 589885545  | 3 065994133   | 3 616285705  | 0 693409168  | 0 577664302     | 0 649260378   |
|          | signaling             | 2,233030350    | 1,002 10  | 0,000000010  | 0,000000 1200 | 5,010205705  | 0,000 100100 | 0,077001002     | 0,010200070   |
| 01942    | pathway               | -2 20/279817   | 2 21E-12  | 0 884025604  | 0 857451072   | 0.68801282   | 0 16/187665  | 0 184654649     | 0 127270204   |
| COLSAZ   | signaling             | -2,204275817   | 2,211-15  | 0,884023034  | 0,837431373   | 0,00091202   | 0,104187005  | 0,184034049     | 0,137379294   |
| 514      | pathway               | 2.04.04.00.020 | 2 245 74  | 6 4424 44020 | 5 257424027   | 6 20022066   | 4 552700000  | 4 20 40 50 04 4 | 4 250 400 447 |
| FN1      | PI3K-AKt<br>signaling | -2,010189838   | 2,31E-71  | 6,442144829  | 5,35/42183/   | 6,39023966   | 1,553700098  | 1,384959014     | 1,250489417   |
|          | pathway               |                |           |              |               |              |              |                 |               |
| COL6A1   | PI3K-Akt<br>signaling | -1,768481163   | 6,96E-27  | 2,506094142  | 2,256807099   | 2,456716593  | 0,670094109  | 0,797368152     | 0,499712245   |
|          | pathway               |                |           |              |               |              |              |                 |               |
| IL7R     | PI3K-Akt              | -1,57824713    | 5,23E-06  | 0,292955471  | 0,333510046   | 0,467097615  | 0,110232873  | 0,164150846     | 0,072469711   |
|          | pathway               |                |           |              |               |              |              |                 |               |
| HGF      | PI3K-Akt              | -1,523514684   | 2,55E-34  | 5,512371859  | 4,73250081    | 5,015520605  | 1,647231806  | 1,721915613     | 1,556305644   |
|          | signaling             |                |           |              |               |              |              |                 |               |
| PDGFD    | PI3K-Akt              | 1,817164091    | 6,47E-44  | 2,973120892  | 2,504653075   | 2,458721073  | 9,143282591  | 9,338848349     | 7,360705979   |
|          | signaling             |                |           |              |               |              |              |                 |               |
| TNN      | PI3K-Akt              | 2,332773888    | 2,97E-67  | 0,743196788  | 0,818196836   | 0,752476005  | 3,552266057  | 3,491079836     | 3,949560641   |
|          | signaling             |                |           |              |               |              |              |                 |               |
| GNG4     | PI3K-Akt              | 2,514228953    | 3,32E-81  | 0,77314697   | 0,647075357   | 0,740527208  | 3,762623684  | 3,859883921     | 3,681694135   |
| -        | signaling             |                | , -       |              | ,             |              |              |                 |               |
| DDIT4    | PI3K-Akt              | 3,539350609    | 1.28F-28  | 12.67307915  | 13,28999268   | 13,15075845  | 80.29109924  | 96.01123606     | 247,1663864   |
| 55.14    | signaling             | 0,00000000     | 1,20C 20  | 12,0,00,010  | 10,2000200    | 10,100,0040  | 00,201000024 | 55,51125000     | 2,1003004     |
| DMDD4D   | pathway               | 0.050524.044   | 6 765 65  | 0 70000450   | 0.00101500    | 0.900834665  | 0            | 0               | 0             |
| DIVIPK1B | receptor              | -9,950531844   | 0,/0E-05  | 0,723329458  | 0,93131208    | 0,800821669  | U            | U               | U             |
|          | interaction           |                |           |              |               |              |              |                 |               |

| PRL       | Cytokine-                  | -6,173868612 | 1,09E-24  | 1,234909662 | 1,107783161 | 1,13594979  | 0           | 0,039920375 | 0           |
|-----------|----------------------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|
|           | interaction                |              |           |             |             |             |             |             |             |
| LIFR      | Cytokine-<br>receptor      | -6,073612066 | 6,01E-34  | 0,314594936 | 0,229607555 | 0,276447571 | 0,004061899 | 0,005583403 | 0           |
| CCL2      | Cytokine-                  | -4,425271319 | 1,08E-67  | 9,363668856 | 9,670791019 | 11,10721668 | 0,395972612 | 0,233269661 | 0,669398934 |
|           | receptor                   |              |           |             |             |             |             |             |             |
| GHR       | Cytokine-                  | -3,991055432 | 4,57E-18  | 0,25070955  | 0,259222681 | 0,231387591 | 0,006878713 | 0,028366016 | 0,009044459 |
|           | receptor                   |              |           |             |             |             |             |             |             |
| CX3CR1    | Cytokine-                  | -2,944050992 | 6,67E-90  | 5,404629241 | 5,681964    | 6,146615925 | 0,658624081 | 0,667086167 | 0,774833384 |
|           | receptor                   |              |           |             |             |             |             |             |             |
| CCL23     | Cytokine-                  | -2,701964522 | 1,38E-12  | 4,510435677 | 2,729907925 | 2,904293352 | 0,540011942 | 0,463930875 | 0,355016687 |
|           | receptor                   |              |           |             |             |             |             |             |             |
| TNFRSF11A | Cytokine-                  | -2,634268645 | 4,07E-82  | 7,153419035 | 7,005928866 | 7,355404732 | 1,26961005  | 1,062283525 | 0,870961904 |
|           | receptor                   |              |           |             |             |             |             |             |             |
| CSF1R     | Cytokine-                  | -2,299353996 | 1,66E-48  | 3,589885545 | 3,065994133 | 3,616285705 | 0,693409168 | 0,577664302 | 0,649260378 |
|           | receptor<br>interaction    |              |           |             |             |             |             |             |             |
| TNFRSF10C | Cytokine-                  | -2,216010592 | 2,11E-28  | 4,080497896 | 4,926384135 | 5,796993565 | 0,989931531 | 0,933078644 | 1,07847606  |
|           | receptor<br>interaction    |              |           |             |             |             |             |             |             |
| TSLP      | Cytokine-                  | -2,139863395 | 3,56E-17  | 0,677228877 | 0,947296209 | 1,01556149  | 0,23783828  | 0,136219854 | 0,182420629 |
|           | receptor                   |              |           |             |             |             |             |             |             |
| TGFB3     | Cytokine-                  | -2,063666444 | 1,59E-11  | 0,50104753  | 0,567199769 | 0,64047464  | 0,122197613 | 0,167970346 | 0,096402738 |
|           | receptor<br>interaction    |              |           |             |             |             |             |             |             |
| IL16      | Cytokine-                  | -1,959856353 | 5,85E-25  | 0,684800559 | 0,745115483 | 0,673806188 | 0,1722664   | 0,146255043 | 0,186532748 |
|           | interaction                |              |           |             |             |             |             |             |             |
| IL1B      | Cytokine-                  | -1,927283377 | 6,16E-42  | 14,95043276 | 18,9917713  | 18,97748961 | 4,372276264 | 4,575386634 | 4,1169375   |
|           | interaction                |              |           |             |             |             |             |             |             |
| TNF       | Cytokine-                  | -1,781056567 | 4,54E-09  | 0,137780351 | 0,129553162 | 0,141947993 | 0,032402373 | 0,035631713 | 0,04260418  |
|           | interaction                |              |           |             |             |             |             |             |             |
| LIF       | Cytokine-                  | -1,75974402  | 1,29E-16  | 0,970086145 | 0,978562474 | 1,041072653 | 0,266162349 | 0,336592428 | 0,223976262 |
|           | interaction                |              |           |             |             |             |             |             |             |
| IL18      | Cytokine-                  | -1,659660846 | 1,82E-11  | 2,349773615 | 2,895158554 | 2,420850624 | 0,921009906 | 0,607680686 | 0,726592565 |
|           | interaction                |              |           |             |             |             |             |             |             |
| IL7R      | Cytokine-<br>receptor      | -1,57824713  | 5,23E-06  | 0,292955471 | 0,333510046 | 0,467097615 | 0,110232873 | 0,164150846 | 0,072469711 |
|           | interaction                |              |           |             |             |             |             |             |             |
| IL1R1     | Cytokine-<br>receptor      | -1,563263732 | 3,51E-07  | 0,277902008 | 0,321770356 | 0,392117633 | 0,111388266 | 0,087492594 | 0,115074605 |
|           | interaction                |              |           |             |             |             |             |             |             |
| GDF15     | Cytokine-<br>receptor      | -1,51497259  | 5,05E-07  | 1,871659956 | 1,796310437 | 1,322245555 | 0,56341246  | 0,435631092 | 0,601901208 |
|           | interaction                |              |           |             |             |             |             |             |             |
| CCR2      | Cytokine-<br>receptor      | 1,724663381  | 1,16E-112 | 8,081879508 | 7,982577606 | 8,160186196 | 27,3052869  | 25,67640392 | 21,64377423 |
| DMDDD     | interaction                | 1 000554517  | 4.005.201 | 46.07610661 | 47 27700176 | 46 24170724 | 102 0707722 | 157 7021506 | 160 2162260 |
| DIVIPOD   | receptor                   | 1,900554517  | 4,002-201 | 40,97010001 | 47,37799170 | 40,24179724 | 103,0707723 | 157,7031506 | 109,3102309 |
| SMO       | interaction<br>Pathways in | -8 674170202 | 7 255-115 | 2 480018058 | 2 5567111/0 | 2 512160407 | 0.011207448 | 0           | 0           |
| 51410     | cancer                     | 3,074170302  | 7,252 115 | 2,405510050 | 2,330711143 | 2,312100407 | 0,011307440 | Ŭ           | Ŭ           |
| PTK2      | Pathways in<br>cancer      | -8,145788709 | 2,75E-200 | 4,617028414 | 4,802913489 | 4,700059147 | 0           | 0,024875437 | 0,02379448  |
| JAK3      | Pathways in                | -7,795454423 | 2,18E-70  | 0,980163687 | 0,925592422 | 0,942896858 | 0           | 0           | 0,010224533 |
| RASGRP4   | Pathways in                | -6,481598563 | 7,80E-88  | 2,273311569 | 2,926815587 | 2,691332625 | 0           | 0,036099531 | 0,051796251 |
| FZD6      | cancer<br>Pathways in      | -6,429723103 | 8,29E-26  | 0,391586261 | 0,597449338 | 0,479074476 | 0           | 0           | 0,014126649 |
| EDD       | cancer<br>Pathways in      | -6 310017594 | 7 605.25  | 0 580400100 | 0.462827055 | 0 /25121//  | 0           | 0           | 0.014582706 |
| F2N       | cancer                     | -0,310017384 | 7,002-23  | 0,009499199 | 0,403827035 | 0,420101440 | 0           | 0           | 0,014362700 |
| GSTT1     | Pathways in<br>cancer      | -6,23290274  | 4,43E-113 | 9,396115586 | 8,998919937 | 9,790337305 | 0,246082813 | 0           | 0,046223054 |
| ADCY1     | Pathways in<br>cancer      | -5,643824882 | 9,01E-15  | 0,124064648 | 0,087103487 | 0,066465054 | 0           | 0,004491853 | 0           |
| CTNNA2    | Pathways in                | -4,965719442 | 1,91E-17  | 0,296963897 | 0,245093466 | 0,285086599 | 0,017777002 | 0           | 0           |
|           | cancer                     |              | l         |             |             |             |             |             | l           |

| NOTCH3 | Pathways in<br>cancer | -4,778760458 | 1,36E-15  | 0,151065887 | 0,144365548 | 0,126965717 | 0,005235527 | 0,007196648 | 0           |
|--------|-----------------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|
| GNG11  | Pathways in           | -4,732657663 | 1,69E-104 | 16,68182099 | 15,04304394 | 14,13721663 | 0,93016208  | 0,243539394 | 0,291195553 |
| VEGFC  | Pathways in           | -4,55989135  | 3,40E-71  | 3,164017925 | 3,737035931 | 3,59202658  | 0,18205046  | 0,083414283 | 0,132982555 |
| PTCH1  | Pathways in           | -4,342633885 | 3,54E-15  | 0,156880361 | 0,228744823 | 0,124892624 | 0,009391251 | 0,006454511 | 0,006174032 |
| GNG12  | Pathways in           | -4,066169627 | 1,16E-65  | 2,110415918 | 1,792643665 | 1,791884144 | 0,134176249 | 0,131739954 | 0,037804567 |
| PLCB4  | Pathways in           | -3,856415425 | 8,67E-22  | 0,294883556 | 0,387842289 | 0,444020246 | 0,022405055 | 0,030797532 | 0,019639488 |
| TGFA   | Pathways in           | -3,75156522  | 3,83E-30  | 0,774223276 | 0,66233808  | 0,682597763 | 0,068629128 | 0,0404298   | 0,025781954 |
| TCF7   | Pathways in           | -3,618362876 | 4,08E-21  | 0,61290543  | 0,55179778  | 0,505155895 | 0           | 0,027738369 | 0,106132018 |
| ITGA6  | Pathways in           | -3,552875452 | 1,17E-45  | 0,93882132  | 0,885746412 | 0,859118239 | 0,087275596 | 0,039989085 | 0,076502735 |
| LPAR1  | Pathways in cancer    | -3,527397337 | 1,41E-16  | 0,405121203 | 0,570082141 | 0,615628849 | 0,040015089 | 0,018334642 | 0,070151656 |
| RB1    | Pathways in cancer    | -3,451681846 | 9,98E-308 | 15,20905815 | 15,66343959 | 15,99468245 | 1,505345528 | 1,302389685 | 1,152651097 |
| FGFR1  | Pathways in cancer    | -3,384218353 | 1,02E-39  | 1,007924584 | 1,136890715 | 1,520907548 | 0,154194271 | 0,064507222 | 0,096963545 |
| LRP5   | Pathways in cancer    | -3,30251856  | 1,61E-180 | 9,1347755   | 9,221848077 | 9,232005907 | 0,765706266 | 0,944016564 | 0,923753021 |
| FZD3   | Pathways in cancer    | -3,037672715 | 4,89E-30  | 0,381666663 | 0,387349124 | 0,302101509 | 0,061298229 | 0,025277789 | 0,028209239 |
| PDGFA  | Pathways in cancer    | -2,955729808 | 7,40E-35  | 2,24039097  | 1,833340455 | 2,037303892 | 0,331182956 | 0,227618668 | 0,138553894 |
| MITF   | Pathways in cancer    | -2,826381131 | 1,35E-35  | 1,368704808 | 1,057801148 | 1,144355259 | 0,124791931 | 0,114357629 | 0,227892172 |
| LAMA5  | Pathways in cancer    | -2,748570664 | 2,12E-30  | 0,376123725 | 0,372048494 | 0,352799313 | 0,048055914 | 0,040650264 | 0,0631862   |
| FGFR3  | Pathways in cancer    | -2,701883092 | 1,58E-20  | 0,650676866 | 0,735125765 | 0,603322949 | 0,133299478 | 0,078527461 | 0,062595889 |
| TRAF5  | Pathways in cancer    | -2,636408368 | 6,15E-14  | 0,482958765 | 0,504465704 | 0,433365258 | 0,051293924 | 0,141015163 | 0,026977476 |
| CSF1R  | Pathways in<br>cancer | -2,299353996 | 1,66E-48  | 3,589885545 | 3,065994133 | 3,616285705 | 0,693409168 | 0,577664302 | 0,649260378 |
| ADCY6  | Pathways in<br>cancer | -2,211190057 | 4,18E-50  | 4,01429265  | 4,635995236 | 4,367674366 | 0,712887518 | 0,884530136 | 1,05346882  |
| FZD4   | Pathways in<br>cancer | -2,152532845 | 1,24E-09  | 0,225649332 | 0,265266    | 0,219062862 | 0,085723427 | 0,023566735 | 0,030056863 |
| DLL1   | Pathways in<br>cancer | -2,072200235 | 1,86E-23  | 1,725449144 | 1,836352304 | 1,507999085 | 0,34468587  | 0,350961605 | 0,436423836 |
| TGFB3  | Pathways in<br>cancer | -2,063666444 | 1,59E-11  | 0,50104753  | 0,567199769 | 0,64047464  | 0,122197613 | 0,167970346 | 0,096402738 |
| EPAS1  | Pathways in<br>cancer | -2,031594282 | 8,25E-66  | 7,341304357 | 7,679865696 | 7,294618335 | 1,676822797 | 1,484147738 | 1,935892386 |
| FN1    | Pathways in<br>cancer | -2,010189838 | 2,31E-71  | 6,442144829 | 5,357421837 | 6,39023966  | 1,553700098 | 1,384959014 | 1,250489417 |
| F2RL3  | Pathways in<br>cancer | -1,850367144 | 9,31E-25  | 3,924053514 | 3,626503796 | 2,917074137 | 0,866471011 | 0,914543486 | 0,915490669 |
| KIF7   | Pathways in<br>cancer | -1,839800147 | 1,13E-25  | 2,041426894 | 2,249568707 | 2,016148883 | 0,667491725 | 0,369556872 | 0,585099902 |
| HMOX1  | Pathways in<br>cancer | -1,822318423 | 5,76E-05  | 0,322873955 | 0,696173346 | 0,706860831 | 0,212608475 | 0,146123637 | 0,104830399 |
| FZD1   | Pathways in<br>cancer | -1,809842719 | 8,03E-59  | 7,936575813 | 8,004435198 | 7,903076881 | 2,10793972  | 2,096370311 | 2,145769823 |
| GSTM3  | Pathways in<br>cancer | -1,735081454 | 6,12E-20  | 1,243929217 | 1,491641487 | 1,625974362 | 0,378839248 | 0,422225434 | 0,44426549  |
| MMP9   | Pathways in<br>cancer | -1,690288621 | 6,44E-16  | 2,499819804 | 2,277809421 | 2,122611657 | 0,723560522 | 0,397836614 | 0,8324503   |
| JUP    | Pathways in<br>cancer | -1,674301302 | 1,57E-07  | 0,621955744 | 0,642152333 | 0,433461342 | 0,168638279 | 0,19869149  | 0,126704929 |
| GSTM2  | Pathways in<br>cancer | -1,643932535 | 4,84E-17  | 2,194158918 | 2,607881115 | 2,522619121 | 0,837580465 | 0,748358664 | 0,605709838 |
| PTGS2  | Pathways in<br>cancer | -1,627716476 | 5,64E-08  | 0,48560444  | 0,427896207 | 0,382577169 | 0,169287073 | 0,116349279 | 0,086561491 |
| IL7R   | Pathways in<br>cancer | -1,57824713  | 5,23E-06  | 0,292955471 | 0,333510046 | 0,467097615 | 0,110232873 | 0,164150846 | 0,072469711 |
| HGF    | Pathways in<br>cancer | -1,523514684 | 2,55E-34  | 5,512371859 | 4,73250081  | 5,015520605 | 1,647231806 | 1,721915613 | 1,556305644 |
| ADCY3  | Pathways in<br>cancer | -1,521034946 | 4,84E-50  | 10,086965   | 10,01459745 | 9,888267203 | 3,422000153 | 2,787933284 | 3,513583028 |
| PTGER2 | Pathways in<br>cancer | 1,512557525  | 2,70E-13  | 0,517927349 | 0,548575488 | 0,440214925 | 1,313037512 | 1,265756199 | 1,479809265 |
| JUN    | Pathways in<br>cancer | 1,680148167  | 3,30E-153 | 12,68747439 | 11,86913973 | 10,91260438 | 36,26660401 | 33,54302599 | 35,68019197 |

| AGT      | Pathways in<br>cancer | 1,838006421  | 4,72E-200 | 36,05123511 | 37,38700298 | 35,10533772 | 120,8902829 | 115,0880746 | 126,51173   |
|----------|-----------------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|
| FOS      | Pathways in<br>cancer | 2,060637616  | 1,85E-121 | 44,06937728 | 57,69178774 | 50,91687008 | 220,2673804 | 186,9835771 | 189,2339293 |
| GNG4     | Pathways in<br>cancer | 2,514228953  | 3,32E-81  | 0,77314697  | 0,647075357 | 0,740527208 | 3,762623684 | 3,859883921 | 3,681694135 |
| CCNA1    | Pathways in<br>cancer | 3,932854855  | 4,36E-71  | 0,223010247 | 0,236206787 | 0,344633941 | 3,909867091 | 4,440838237 | 3,234168088 |
| CDKN2A   | Pathways in<br>cancer | 4,804144913  | 9,98E-308 | 5,898315164 | 4,560515532 | 3,467872125 | 111,8419825 | 116,0005795 | 126,5743829 |
| HOXB5    | HOX                   | -7,161987444 | 1,13E-37  | 1,233383826 | 2,015540452 | 2,051259579 | 0           | 0,03189684  | 0           |
| HOXB7    | HOX                   | -7,09950834  | 1,07E-96  | 5,637294157 | 6,340504568 | 5,807813566 | 0           | 0           | 0,122020743 |
| HOXB6    | HOX                   | -6,821399141 | 2,55E-156 | 9,036039883 | 8,945053584 | 8,796562016 | 0,075637114 | 0,034656411 | 0,099451274 |
| HOXA6    | HOX                   | -6,517840015 | 9,21E-29  | 2,880502675 | 2,833029872 | 2,225725062 | 0           | 0           | 0,069276947 |
| HOXB2    | HOX                   | -6,382323093 | 3,96E-156 | 12,09719222 | 13,69795049 | 11,69964466 | 0,184638915 | 0,145029078 | 0,069363435 |
| HOXA-AS3 | HOX                   | -6,156205958 | 5,89E-24  | 0,338715539 | 0,391373338 | 0,436201449 | 0           | 0           | 0,013330161 |
| НОХВЗ    | HOX                   | -5,940343065 | 1,73E-220 | 10,03894371 | 11,83531147 | 11,54863448 | 0,186869804 | 0,144487924 | 0,168922395 |
| HOXB-AS3 | HOX                   | -5,693656059 | 2,69E-279 | 34,72152666 | 34,1630436  | 35,67815556 | 0,598525984 | 0,699313367 | 0,590227813 |
| HOXB8    | HOX                   | -5,417860658 | 2,01E-153 | 9,856245517 | 9,427493952 | 9,265873267 | 0,208614048 | 0,063723692 | 0,335250261 |
| HOXB4    | HOX                   | -5,331586694 | 2,48E-141 | 8,364666798 | 9,303818696 | 9,430674151 | 0,290990203 | 0,171423942 | 0,136645626 |
| HOXB-AS1 | HOX                   | -5,170407136 | 1,10E-19  | 1,529802724 | 1,803071956 | 2,15673679  | 0,053018738 | 0,072878476 | 0           |
| HOXA5    | HOX                   | -4,724258475 | 5,06E-59  | 3,2918237   | 4,301136409 | 3,77043467  | 0,127507346 | 0,140215198 | 0,134122176 |
| HOXA3    | НОХ                   | -4,703567473 | 7,60E-60  | 1,495358768 | 1,569879118 | 1,52157141  | 0,060782414 | 0,05013016  | 0,047951765 |
| НОХВ9    | HOX                   | -4,219789706 | 7,47E-106 | 4,705887889 | 5,257669386 | 5,056364947 | 0,328657268 | 0,172101172 | 0,22635601  |
| MEIS1    | HOX                   | -2,699228694 | 1,10E-92  | 10,3488918  | 10,14017905 | 9,965682862 | 1,567494583 | 1,332959015 | 1,449697973 |

Statistically significant differential expressed genes (adjusted p-value<0.05 and absolute log Fold Change (logFC) > 1.5) were identified for each comparison

|                   | WT           | N18K         | E22R         | E43N         | F113A        | Mut4         |
|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| RMSD (nm)*        | 0.15 (0.02)  | 0.16 (0.02)  | 0.15 (0.02)  | 0.17 (0.03)  | 0.17 (0.03)  | 0.17 (0.03)  |
| HBond median (n°) | 5            | 4            | 5            | 4            | 4            | 4            |
| HBond max (n°)    | 11           | 9            | 11           | 9            | 10           | 8            |
| HBond min (n°)    | 2            | 1            | 1            | 1            | 1            | 0            |
| ΔG (KCal/mol)*    | -44.31 (0.9) | -31.27 (0.4) | -42.16 (0.7) | -34.41 (0.9) | -35.96 (0.8) | -24.65 (0.5) |

Supplemental Table 6. Summary of the calculated parameters for all the system obtained after 30ns MD simulations.

\*Results are reported as mean and (Standard Error of Mean).

Supplemental Table 7. Results of the HB interactions where a percentage of occupancy is greater than 33% (one third of the 100ns trajectory).

|        | WT     |           |        | Mut4   |           |
|--------|--------|-----------|--------|--------|-----------|
| IL-3Ra | IL3    | Occupancy | IL-3Rα | IL3    | Occupancy |
| LYS116 | GLU276 | 95%       | LYS116 | GLU276 | 94%       |
| LYS116 | ASN233 | 83%       | LYS116 | ASN233 | 86%       |
| LYS28  | GLU280 | 82%       | ASN120 | ASN233 | 77%       |
| GLY71  | GLU43  | 80%       | ALA72  | ASN43  | 58%       |
| ALA72  | GLU43  | 76%       | ARG234 | ALA121 | 51%       |
| ARG277 | ASP21  | 71%       | GLY71  | ASN43  | 43%       |
| LYS235 | GLU119 | 50%       | LYS28  | ARG277 | 42%       |
| GLN178 | THR117 | 47%       | ARG277 | ASP21  | 36%       |
| ARG234 | GLU119 | 46%       | ARG255 | ASP21  | 36%       |
| LYS54  | GLU43  | 38%       | ARG234 | ASN120 | 35%       |

#### Supplemental Table 8. AML patients' characteristics

| ID   | Subtype | CD33% | CD123% | Karyotype                                                | Prognosis |
|------|---------|-------|--------|----------------------------------------------------------|-----------|
| UPN1 | M4      | 93    | 99     | 46, XY, inv(16)(p13q22)(20)                              | HR        |
| UPN2 | M5a     | 56    | 97     | 48, XXY, +21c(22)                                        | HR        |
| UPN3 | M5a     | 73    | 45     | 47, XY, +9, t(11;17)(q23;q12 or<br>q21)(20)              | HR        |
| PDX  | M5a     | 98    | 96.5   | 46,XY,t(10;11)(p12;q23),der(14)t(1;14)<br>(q?21;q11)[20] | HR        |

#### **Supplemental Figure Legends**

# Supplemental Figure 1: Gene Ontology (GO)-term enrichment analysis reveals massive gene deregulation in KO clones compared to OCI-AML3 wt.

Bar plots represent up and down different expressed genes (DEGs) identified for each comparison (OCI-AML3 CD33 KO, CD123 KO and CD33/CD123 KO vs OCI-AML3 wt). In y axis per each GO-Terms p-value has been reported in round brackets; x axis represents number of DEGs, with up regulated and down regulated genes distinguished by red and blue color, respectively. Bar plots were generated with the ggplot2 R package.

#### Supplemental Figure 2: CD33.CCR does not induce CIK cell effector functions per se.

#### (A) CD33.CCR and CD33.CAR vector scheme.

(**B**) Flow cytometric analysis of CD3<sup>+</sup>/CD56<sup>+</sup>, CD3<sup>+</sup>/CD4<sup>+</sup>, CD3<sup>+</sup>/CD8<sup>+</sup> and memory phenotype. Mean ± SEM from 3 independent CAR-CIK donors is shown. Tn=T naïve; Tcm= T central memory; Tem= T effector memory; Temra= Terminally differentiated effector memory.

(C) Short-term (E:T ratio of 5:1) cytotoxicity. Mean ± SEM from 3 independent CAR-CIK donors is shown.

(D) Cytokine release against KG-1 cells. Mean ± SEM from 3 independent CAR-CIK donors is shown.

#### Supplemental Figure 3A: IL3 mutants do not affect conformational stability of CD123 binding.

(A) Time dependence graphical representation of backbone conformation (RMSD) for IL3 in complex with IL3R $\alpha$  during 30ns molecular dynamics simulation and respect to the first frame.

- (B) Probability distribution functions of RMSD.
- (C) Total number of hydrogen bonds between IL3 and IL3Ra during 30ns molecular dynamics simulation.
- (D) Probability distribution functions of hydrogen bonds. Wild-type (purple), mutants (red).

#### Supplemental Figure 3B: IL3 Mut4 shows the lowest free binding energy among mutants.

Box-plot of free binding energy of the last 10ns of trajectories of WT and all mutants. Data are reported as Mean± SEM.

#### Supplemental Figure 3C. IL3 Mut4 do not affect conformational stability during 100ns MD simulation

(A) Time dependence graphical representation of backbone conformation (RMSD), Radius of Gyration and Hydrogen Bonds for IL3 in complex with IL3Rα during 100ns molecular dynamics simulation.

(B) Probability distribution functions of RMSD, Radius of Gyration and Hydrogen Bonds.

# Supplemental Figure 3D: Th1/Tc1 cytokine release after long-term cytotoxicity assays of KG-1 and TIME cells co-cultured with NT, IL3z wt- and IL3z mut- engineered CIK cells.

Median from 3 independent experiments is shown for each condition.

# Supplemental Figure 4: CAR expression profile of IL3z CARs and DC CARs (wild type and mutated variants) before colony assays.

Flow cytometric analysis on CAR CIK cells at the end of the 21-days differentiation process performed as described in Materials and Methods.

# Supplementary Figure 5: Low affinity dual CAR CIK cells unveil reduced toxicity against CD34<sup>+</sup>CD38<sup>+</sup> CMP subpopulation.

Residual quantification of CD34+CD38+ HSPCs after exposure with different CIK conditions was evaluated by staining HSPC within different lineage markers including CD123 and CD45RA (common myeloid progenitors CMP: CD123<sup>+</sup>/CD45RA<sup>-</sup>; granulocyte–monocyte progenitors GMP: CD123<sup>+</sup>/CD45RA<sup>+</sup>; megakaryocyte-erythroid progenitor MEP: CD123<sup>-</sup>/CD45<sup>-</sup>).

#### Supplementary Figure 6: Low affinity Dual CAR CIK cells preserve anti-leukemic efficacy in vitro.

(A) Flow cytometric analysis of CD3<sup>+</sup>/CD56<sup>+</sup>, CD3<sup>+</sup>/CD4<sup>+</sup>, CD3<sup>+</sup>/CD8<sup>+</sup> and memory phenotype of DC wtand DC mut- CIK cells. Mean ± SEM from 4 independent CAR CIK donors is shown. Tn=T naïve; Tcm= T central memory; Tem= T effector memory; Temra= Terminally differentiated effector memory.

(**B**) Expression of IL3 and scFv CD33 on the surface of DC wt- (n=4) and DC mut- CIK cells (n=4) by flow cytometry at the end of the differentiation.

(C) Representative dot plots of long-term cytotoxicity of NT and all the single and Dual CAR CIK cells against KG-1 cells. Y axis represents CD3<sup>+</sup> CIK cells and X axis KG-1 cells labelled with Ct-PE.

(**D**) Percentage of KG-1 cell survival after 1-week long-term cytotoxicity with NT and all the single and dual CAR CIK cells.

(E) CD3 events representing CIK cell proliferation after 1-week long-term cytotoxicity against KG-1 cells. Mean  $\pm$  SEM from 2 independent CAR CIK donors is shown.

# Supplementary Figure 7: Low affinity dual CAR CIK cells improve *in vivo* efficacy in an "AML treatment model".

(A) Schematic of the Luc KG-1 xenograft model. Not-irradiated NSG mice were injected via tail vein on day 0 with  $1 \times 10^6$  KG-1 cells stably expressing GFP/luciferase. Mice were randomized to 3 treatment groups each receiving tree injection of vehicle or gene-modified CIK cells at day 14, 24 and 34 (n = 4 per group). BLI was measured weekly to quantify AML burden.

(**B**) Tumor burden imaged for 94 days showing suppression of leukemic growth in mice treated with Dual CAR CIK cells.

(C) Average BLI for KG-1–engrafted mice with leukemic progression in those untreated or treated with single targeting IL3z mut (blue), and leukemic control in those treated with DC mut (orange) CIK cells.

(**D**) Kaplan–Meier curves of overall survival. P-values indicate comparisons between the KG-1 only cohort and the CAR CIK-treated ones.

#### Supplementary Figure 8: Dimerization rational for the design of the novel Dual CAR.

**A** and **B**, IL2 and IFNg production by IL3z mut-, CD33 CAR-, CD33 CCR- and DC mut- redirected CIK cells (former version, with the two chimeric receptors carrying the same spacer/transmembrane domains IgG1-Fc spacer - CD28 transmembrane) following stimulation with wt-, CD123 KO- or CD33KO- KG-1 and CD123-CD33- KG-1.



#### OCI-AML3 CD33 KO vs. WT

pattern specification process (p-value=2.49e-08) G-protein coupled receptor signaling pathway (p-value=2.49e-08) embryonic organ development (p-value=3.72e-07) regulation of receptor activity (p-value=5.43e-07)

- nervous system process (p-value=1.66e-06)
- positive regulation of cell proliferation (p-value=3.39e-06)
- transmembrane receptor protein tyrosine kinase signaling pathway (p-value=3.45e-06)
  - regulation of response to external stimulus (p-value=4.27e-06)
    - extracellular structure organization (p-value=4.49e-06)
    - regulation of ERK1 and ERK2 cascade (p-value=2.46e-05)
      - leukocyte migration (p-value=2.77e-05)
      - regulation of system process (p-value=3.74e-05)

#### OCI-AML3 CD123 KO vs. WT





G-protein coupled receptor signaling pathway (p-value=8.01e-08)

- chemotaxis (p-value=5.48e-06)
  - nervous system process (p-value=6.59e-06)
  - inflammatory response (p-value=3.24e-05)
- regulation of response to external stimulus (p-value=3.92e-05)
  - cell-cell adhesion (p-value=5.39e-05)
  - myeloid leukocyte migration (p-value=5.39e-05)

### OCI-AML3 CD33/CD123 KO vs. WT



- G-protein coupled receptor signaling pathway (p-value=1.25e-13)
  - chemotaxis (p-value=4.14e-10)
  - pattern specification process (p-value=7.08e-10)
  - embryonic organ development (p-value=1.95e-09)
  - cellular response to growth factor stimulus (p-value=4.97e-08)
    - extracellular structure organization (p-value=5.4e-08)
      - cell-cell adhesion (p-value=1.44e-07)
      - regulation of cell motility (p-value=2.23e-07)
- negative regulation of developmental process (p-value=8.91e-07)
  - ERK1 and ERK2 cascade (p-value=9.96e-07)
  - positive regulation of cell proliferation (p-value=1.17e-06)
    - regulation of MAPK cascade (p-value=1.43e-06)
      - leukocyte migration (p-value=3.56e-06)
- cell morphogenesis involved in neuron differentiation (p-value=1.72e-05)
  - negative regulation of cell differentiation (p-value=3.1e-05)
    - mesenchymal cell differentiation (p-value=3.65e-05)



Α



# Supplemental Figure 3A

Supplemental Figure 3B









Supplemental Figure 4







В

С



KG-1 alone KG-1 + NT KG-1 + DC wt KG-1 + DC mut KG-1 + IL3z wt KG-1 + IL3z mut 104 105 10<sup>4</sup> 10<sup>5</sup> Q2 Q2 Q2 Q2 Q2 Q1 Q2 <sup>10</sup>4 ₹0 ₫. CD3 .Q4 Qł a Ct-PE



Α





#### References

- 1. Pliatsika V, Rigoutsos I. "Off-Spotter": very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. *Biol. Direct.* 2015;10:4.
- 2. Spinozzi G, Tini V, Adorni A, Falini B, Martelli MP. ARPIR: automatic RNA-Seq pipelines with interactive report. *BMC Bioinformatics*. 2020;21(Suppl 19):574.
- 3. Tettamanti S, Marin V, Pizzitola I, et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. *Br. J. Haematol.* 2013;161(3):389–401.
- 4. Rotiroti MC, Buracchi C, Arcangeli S, et al. Targeting CD33 in Chemoresistant AML Patient-Derived Xenografts by CAR-CIK Cells Modified with an Improved SB Transposon System. *Mol. Ther.* 2020;28(9):1974–1986.
- 5. Broughton SE, Hercus TR, Nero TL, et al. A dual role for the N-terminal domain of the IL-3 receptor in cell signalling. *Nat. Commun.* 2018;9(1):1–15.
- 6. Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. *Curr. Protoc. Bioinforma.* 2016;54:5.6.1-5.6.37.
- 7. Schymkowitz J, Borg J, Stricher F, et al. The FoldX web server: an online force field. *Nucleic Acids Res.* 2005;33(Web Server issue):W382-8.
- 8. Piana S, Robustelli P, Tan D, Chen S, Shaw DE. Development of a Force Field for the Simulation of Single-Chain Proteins and Protein-Protein Complexes. *J. Chem. Theory Comput.* 2020;16(4):2494–2507.
- 9. Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. *J. Comput. Chem.* 2005;26(16):1701–18.
- 10. Piana S, Donchev AG, Robustelli P, Shaw DE. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. *J. Phys. Chem. B.* 2015;119(16):5113–23.
- 11. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx\_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. *J. Chem. Theory Comput.* 2021;17(10):6281–6291.