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Reviewer Reports on the Initial Version: 

Referee #1 (Remarks to the Author): 

The main findings in Tao et al. are exciting and the approaches used are technically advanced and 

appear to open new doors to enquiry. That said, as currently presented, it is hard for the reader to 

evaluate the veracity of how the main findings were reached. I would like to see the authors wrestle 

directly with issues of correlation vs. causation, that pattern does not beget process, space-for-time 

substitutions, and strong inference. I have the following specific comments related to these common 

challenges to identifying causation that, if satisfactorily dealt with, I hope will help to provide the 

necessary rigor to support the exciting findings that are presented. Please note that, if I were the 

Editor, #1 would sink the current paper if not addressed fully; and I would regard #2 as important for 

ensuring statistical rigor in the work published in my journal. 

1. Strong inference and pattern does not beget process. I like the competing hypotheses shown in 

Fig. 1a, where the possibilities are that higher CUE favors accumulation of SOC vs. loss. These 

mutually exclusive hypotheses (at least as presented) lend themself well to a strong inference test. 

However, the CLM5 belowground carbon cycle module is structured around the first hypothesis 

being true. That is, CUE determines the proportion of plant C inputs into the soil that form SOC vs. 

are respired as CO2. As such the structure of the model is pre-determined to support the first 

hypothesis and falsify the second. This appears to add strong circularity to the results, meaning the 

work falls far short of a strong inference test of competing hypotheses and appears to fall into the 

trap of assigning process to pattern. It would seem that to reliably test between these two 

hypotheses, you would need a second-order process in CLM5 where the amount of microbial 

biomass regulates the rate at which SOC is formed and decomposed. If I have misinterpreted what 

was done, I apologize to the authors but would still ask that these issues be directly addressed in the 

main paper, so that the same concerns do not surface once the paper is accepted (because these 

concerns about circularity, if not resolved, suggest a fundamental flaw in the study design that 

questions the validity of the hypothesis testing). 

2. Correlation vs. causation. The authors do spend most of their time - in the Results - on the 

correlation side of the line, which is appreciated and appropriate given the observational nature of 

the work. However, the statistical analysis of the meta-analysis data are woefully shallow and 

inadequate given your recognition that CUE and SOC are outcomes of multiple causative predictors. 

Put simply, you recognize correlation and mention it, but do not perform the necessary data 

analytical steps to build confidence in your analysis of the relationships presented. The univariate 

correlations in Figs. 2a and 2b should be replaced with plots of the partial (or conditional) 

coefficients from the mixed effects models, so that the relationships shown are corrected for the 

influence of other predictors (e.g., both depth and MAT for a). Further, you need to present results 

from analyses showing that your predictors are not correlated, and at least evaluate two-way 
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interactions among the predictors. Currently, you have a single model shown in Extended Data Table 

2 of unstandardized coefficients (without a SE), a cumulative R2 (fixed + random), and no recognition 

that the predictors could be correlated and hence the possibility that the coefficients you present 

are spurious. Further, nor do you justify the use of both random slopes and random intercepts. 

Please revise this analysis to build credibility in your findings. When I analyzed your data given in 

Extended Data Table 1, I will note that your general findings are supported and your predictors 

appear uncorrelated in the various models I ran. For example, for SOC, using random intercepts and 

common slopes, the beta coefficients reveal a strong negative MAT effect on SOC, a weaker but still 

positive CUE effect on SOC, and then a strong negative MAT by CUE interaction. The variance 

inflation factors for the main effects model were all low and for the model with the pairwise 

interactions, fixed effect variance explained was 17.6% with a further ~60% of the variance explained 

by the “study id” random effect. As such, use a regular linear model (without random effects), the 

results were very different, revealing strong within-study associations in these data that should be 

mentioned. My take home is that the results from your meta-analysis will be bolstered by doing your 

due diligence in terms of the mixed-effects modeling. However, as currently presented, this part of 

your analysis falls far below publication standard. 

3. The remainder of my concerns are less consequential but I think important to address 

nonetheless. They are as follows, (a) Space-for-time. Your work uses spatial, observational data to 

build knowledge but in numerous instances you translate the significance for understanding change 

in time. Acknowledgement that you are making inferential jumps here by using space-for-time 

substitutions in terms of inferring process would be appreciated. (b) The main paper comes across as 

selectively choosing results that “agree” with the findings you present. For example, lines 202-205 

talk about data that are consistent with a positive CUE-SOC relationship and you also cite evidence 

where CUE and MAT are negatively correlated. Please acknowledge and include some discussion to 

resolve other observational syntheses combined with modeling work that find the opposite (e.g., Ye 

et al. 2020 in Global Biogeochemical Cycles, 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GB006507). It would be important for 

the reader to understand how your work therefore fits into the wider picture painted by the 

literature on regional to global observational data-model syntheses related to this topic. (c) You 

refer repeatedly (e.g., lines 176-177) to the five mechanisms in CLM5 that influence SOC turnover 

and the fact that CUE emerges as the one to which spatial patterns are most sensitive and best 

predicted by. However, looking into those mechanisms, they are less directly coupled to SOC stocks 

than CUE because they control how much is going into litter pools or how fast SOC decomposes 

(which itself is dependent on the size of the SOC pool), but they are not the process/ parameter that 

actually dictates allocation of inputs to SOC. As such, please address in the main paper the extent to 

which this close coupling of CUE to SOC formation rates essentially predetermines your finding that 

it is the mechanism most closely matched to storage in CLM5. (d) Coming back to right where I 

started, with regards to broader questions around how we do science and what we can learn (e.g., 

correlation vs. causation), I think it would be very helpful to explain in the main paper (i.e., in the 

paragraph starting line 110) the philosophy that underpins the PRODA tool. Although many new data 

science tools are exciting, they can also easily be misused, leading to spurious findings that are only 

revealed once the philosophy underpinning the approach is dug into. Given that most of the 

readership will be unfamiliar with the tools applied, and hence what they can do in terms of 

identifying mechanism (as opposed to, say, being optimized for outcome prediction; think of such 



things as IC-based model selection), I think it would be important to spend a handful of sentences 

explaining the philosophy of the approach. 

Referee #2 (Remarks to the Author): 

This study proposes to use global and publicly available datasets complemented by a meta-analysis 

to draw conclusions on the potential drivers of global soil organic carbon (SOC) storage. The 

statistical modelling of SOC storage was made by a “PROcess-guided deep learning and DAta-driven 

modelling”, which, to summarize, aim to use a deep learning model to estimate the parameters of a 

process-based biochemical model.  

Overall I found this study of potential interest, but I also raise substantial concerns on specific 

aspects of the mapping, validation, and interpretation process. I am however positive that the 

authors could address these concerns by a revision and additional analyses, and that the revised 

manuscript could be a useful contribution.  

Cross-validation

The cross-validation should be used to estimate the validation statistics (as is done), but for 

prediction and uncertainty quantification a model fitted with all the data should be used. In this 

paper, the authors used 10 models, resulting from fitting 10 models on the 10 cross-validation folds, 

and use the mean value from the 10 model predictions as their final prediction. They also use the 

standard deviation of the 10 predictions as an estimate of prediction uncertainty.  

- Prediction The final model for mapping should be calibrated with all the available 

observations. This is the “best guess model”, calibrated with all data available. Map accuracy 

is estimated previously, using the 10-fold random cross-validation.  

- Prediction uncertainty Prediction uncertainty taken as the standard deviation of 10 model 

predictions is not correct. There are several options to estimate the prediction uncertainty. 

The authors could use bootstrapping and obtain confidence intervals. Note that 

bootstrapping requires fitting at least 100 models to get a realistic estimate. Another option 

is to use quantile regression. Currently, the prediction uncertainty maps are a standard 

deviation value obtained from 10 predicted values. This is too little to obtain a reliable 

estimate of the standard deviation and, again, not a correct way to obtain a valid estimate of 

prediction uncertainty. Why do the authors not propagate the uncertainty of the parameters 

as obtained by the posterior parameter distribution in the Bayesian analysis? There is a great 

opportunity here with the Bayesian analysis of the parameters and the distribution obtained 

by the posterior distribution. For the uncertainty, ideally, prediction intervals are reported. 

When obtaining prediction intervals is not possible, the authors could always obtain a 

confidence interval by bootstrapping.  

Permutation importance  

The permutation analysis suffers from the same problem of using 10 models. The authors report 

grouped permutation variable importance values from 10 models, with error bar representing the 



standard deviation obtained by cross-validation. This is not common, and I would say not correct. 

Authors should compute the permutation importance of a single model, the one calibrated using all 

data. This way they are sure that the permutation values indeed correspond to the model they are 

using for mapping. Since the permutation values are not additive, I am afraid that Extended Data Fig. 

7 is not realistic. Also, error bar usually represents the permutation error. Since permutation 

involves randomness, it is important to repeating the permutation many times and also show the 5% 

and 95% quantile of importance values from the repetitions. The permutation error obtained this 

way is likely to appear much larger than that currently reported. The MSE values obtained by 

permutation importance are not additive. This means that the permutation importance values for 

each individual covariate cannot be simply added to another one to calculate the permutation 

importance of the group. To compute the group permutation importance, the authors should make 

a permutation directly on the group of covariates. The results are likely to be different, because 

permutation importance is a method that is sensitive to dependence among covariates. Authors 

should make sure that they permuted the group of covariates simultaneously, not the individual 

covariates and then summed the individual permutation importance values. This is very unclear from 

the text at L. 663-668.  

Statistical validation of maps  

L. 579-590: There is a current hype about the idea that spatial autocorrelation should be accounted 

for when estimating validation statistics in a spatial context. This is a misconception and I urge the 

authors not to propagate this wrong idea in a scientific paper. It is good that they only tested this 

but did not include the results of spatial cross-validation in their analysis. In short, spatial 

autocorrelation does influence the estimation of map accuracy statistics, but spatial cross-validation 

is clearly not an answer to this problem. The only solution to obtain an unbiased estimate of map 

accuracy is to collect an additional probability sample from the population (that is, the world) and to 

use a design-based estimation of the statistics. I acknowledge this is no feasible for this kind of 

global study, or very difficult to implement. But spatial cross-validation is not the solution. It 

provides overpessimistic validation statistics and has no underlying theory. Why did the authors not 

use instead a model-based estimation of map accuracy? Why didn’t they use a heuristic method 

based on spatial weighting? There are many methods available for dealing with estimation of map 

accuracy in case of clustered data, but clearly spatial cross-validation is the worst. It is important 

that this paper does not propagate these recent misconceptions of statistical validation of maps. I 

recommend to simply remove this paragraph.  

Additional minor comments:  

There are a few sentences that are difficult to read, such that at L. 76-77, for example. The 

manuscript would benefit from shorter sentences.  

L. 87-90: This sentence suggests that deep learning IS a hypothesis. Perhaps adding “with” or “using” 

would clarify this point.  

L. 91-93: Consider rephrasing, this sentence is quite unclear: “We collated 132 pairs of data sets 

from 16 experimental studies *…+ where SOC content were measured at 46 locations”: what is 

collected? The 132 pairs of data sets or the 46 measurement at locations? AHA this is now clear at L. 

405-406.  



L. 415: How are the coarse fragments obtained? I think WoSIS has only few samples containing 

coarse fragment data.  

L. 418-419: How many observations were used to fit the pedotransfer function and to obtain the 

regression parameters for bulk density?  

L. 447-460: This description is quite unclear. The authors used what is commonly referred to as a 

Nash-Sutcliffe modelling efficiency, that some would call the coefficient of determination (of the 1:1 

line). I agree with their use of the term “coefficient of efficiency”. Several authors (e.g. Janssen & 

Heuberger, 1995) call it a modelling efficiency. But the description that the authors make of this 

statistic is a bit surprising. A modelling efficiency of 0.75 is very high. It means that 75% of the SOC 

depth distribution variance is explained by CLM5. The authors should also consider rephrasing this 

paragraph and make shorter sentences.  

L. 557-560: Calling deep learning a neural network with four hidden layers and 256, 512, 512, and 

256 neuros, respectively, is a bit misleading. I agree that it is not clear when a neural network 

becomes “deep”, but we usually agree that this is a complex model with many layers/neurons.  

L. 563-564: The average in the MSE equation is missing.  

L. 649: How many permutations were made. The number of permutations should be sufficiently high 

to obtain reliable results.  

Reference:  

Janssen, P. H. M., & Heuberger, P. S. C. (1995). Calibration of process-oriented models. Ecological 

Modelling, 83(1-2), 55-66. 

Referee #3 (Remarks to the Author): 

This is an interesting study that aims to show the importance of carbon use efficiency for soil carbon 

storage. The authors leverage a literature synthesis of CUE measurements, 50K+ WoSIS soil profiles 

with SOC measurements, the CLM5 biogeochemical model, and their PRODA approach to estimate 

CUE for the soil profiles and globally. What stands out most is the computational framework, which 

will be an important tool for ongoing and future data-model integration. I also agree that better 

constraining CUE in models – especially given the interpretability of CUE across different types of 

measurements and model formulations – is crucial. However, there are several conceptual and 

practical considerations that compromise the present study and the novelty of its purported 

findings. I outline these main concerns below. 

1. I am not convinced that the main conclusions are particularly novel. 

– The finding that CUE and SOC have a positive relationship has been previously demonstrated 

(Kallenbach et al., 2015; Malik et al., 2018; Buckeridge et al., 2020) and is largely expected. CUE by 

definition dictates how much carbon stays in the system versus how much leaves the system, 

especially here where the model-derived CUE is an emergent property of the whole system (rather 



than the fraction of C acquired that is specifically used for microbial growth and biosynthesis in the 

empirical measurements). 

– While the positive relationship between CUE and SOC may be expected, the slope and how it is 

affected by climate and vegetation type, etc., would be interesting to explore further. CUE is a 

dynamic property that is affected by many factors, including some of those treated as separate 

mechanisms herein. Understanding the processes shaping CUE is an important step in improving its 

representation in process-based models, but, other than Ext. Data Fig. 7, this study does not yet 

provide clear insights on the processes leading to differences (and spread) in observed CUE. 

– Furthermore, the CUE that is estimated from CLM5 is an emergent system value (including litter 

pools, it seems) which is quite different to those measured in soils (that also vary between different 

methods; Geyer et al. 2018). The slope of the CUE and SOC relationship looks significantly lower in 

the literature synthesis compared to the global estimates... why? What does this mean and what 

drives this slope? If the authors used their same framework with SOC values from the CUE literature 

synthesis to estimate the corresponding CLM5-derived bulk CUEs, how would these compare to the 

measured ones? Fig. 2b/d with MAT is interesting (though also well-documented; Hagerty et al. 

2014, Allison et al. 2010) and the slopes seem to somewhat agree between the literature synthesis 

and global estimates. How do these slopes compare to the temperature sensitivities reported in 

other studies? 

2. The findings of CUE importance rely on the selected model (i.e., CLM5) and may not be robust. 

The study is also framed around two alternative hypotheses that are not mutually exclusive and, 

ultimately, the current study does not appear equipped to truly address them. 

— It would be helpful to include several global soil models, including process-based (i.e., microbial-

explicit) models. The authors discuss microbial feedbacks extensively, but the approach they take is 

not appropriate to support their claims (more on this below). 

– The authors support their choice of CLM5 as a “process-oriented biogeochemical model... because 

it is depth resolved and expressed in matrix form” (L113). First, this is a little deceiving because 

CLM5 is not process-based, or at least does not include the processes outlined in the hypotheses. It 

does not include microbes, and hence the CUE is simply a fraction that stays in the system versus 

leaving the system when transferred between first-order pools. Second, the two reasons given for 

the selection of CLM5 alone as the backbone of their study are not convincing nor appropriate. 

There are several models that are depth-resolved and virtually any existing model can be written in 

matrix notation. Indeed, all first-order global models can be easily written in matrix notation and 

even process-based models can be linearized, as needed, near the steady-state (given that they 

invoke a steady-state assumption anyway). 

– Regarding the framing of negative vs. positive CUE-SOC relationships, the authors propose two 

alternative hypotheses, but these two hypotheses are by no means mutually exclusive. Both 

schemes can, and do, occur in real life. The positive feedback of microbial biomass and enzyme 

production (as in Fig. 1b) could, in addition to catalyzing decomposition, promote mineral-organic 

associations through the increase in sorption of microbial necromass and byproducts. This should be 



discussed, and makes me wary of the current framing of these two simple pathways as conflicting 

hypotheses. 

– Furthermore, I am not sure that the alternative hypothesis of high CUE leading to loss of SOC truly 

makes sense. High CUE could drive more microbial biomass, and more subsequent decomposition 

that passes through microbial biomass, but that could just result in a faster cycling system. It does 

not imply a decrease in storage. (It also doesn’t imply young radiocarbon ages, as microbial recycling 

contributes to older carbon.) Yet, the authors state that microbial models that “simulate direct 

dependence of SOC loss on microbial biomass via enzyme activities... always generate a negative 

relationship between CUE and SOC” (L193). I do not believe that this is always the case and I would 

challenge the authors to demonstrate this. It would be interesting to try a microbial-explicit model in 

the same framework. The cited studies (e.g., Allison et al. 2010 and others) with simple microbial-

explicit models show that microbial feedbacks can indeed lead to losses, but not that higher CUE 

(and all else equal) increases losses. I feel that they may be conflating trends in microbial biomass 

with a dependence on the value of CUE. 

3. Proportional changes in the selected ‘mechanisms’ are difficult to interpret in a meaningful way. 

– When considering proportional changes in the selected mechanisms, what if the mechanisms or 

relative changes were normalized and based on the distribution of potential values? That is, an 8% 

change in one mechanism might constitute a small change within the potential range of values for 

that mechanism, whereas it might span the range of potential values for another mechanism. 

Instead, maybe values could be varied from their respective means to plus/minus one (or two) 

standard deviations. A supplemental figure depicting the distributions of all mechanisms (as with 

CUE in Ext. Data Fig. 5) would be helpful in that regard; from the box plots in Fig. 3, it seems that 

some of the distributions are indeed wider than others. 

– The results also state that a 10% increase in SOC needs a 3% increase in CUE and a 7% decrease in 

the environmental modifier. The latter is a model construct and not very meaningful. How much 

does the overall ‘environmental modifier’ vary spatially in the best fit model? How much can it 

change under future conditions? It is not apparent what a 7% decrease in the environmental 

modifier really means with regards to temperature, moisture, etc. sensitivity, so it is unintuitive to 

interpret this. 

Other comments: 

- The “6 mechanisms” in this study are not really mechanisms per se. For example, “environmental 

modifier” is not a mechanism... I’d argue that neither is baseline decomposition, but rather it is a 

model construct of a suite of mechanisms. 

- The following sentence in the abstract “Our findings support a hypothesis that high microbial CUE 

favors preservation of carbon as SOC instead of stimulation of soil respiration” seems trivial, by 

definition of CUE. 

- The authors should consider mentioning more explicitly in the abstract that the ‘synthetic analysis’ 



of all of these profiles relies on a data-model integration (and specifically CLM5) to quantify the 

various “mechanisms”, as the majority of these mechanisms (e.g., carbon inputs, vertical transport, 

CUE) are not directly measured within the globally-distributed soil profiles. Simply saying “the 

retrieved CUE from the global SOC database” could be deceiving. The finding that CUE is “twice as 

important” may largely depend on the choice of model (i.e., CLM5), so this context is important. 

- The depth findings are interesting, but I would like to see them supported empirically, not just 

using model-derived values. The mixed-effects model results suggest that depth is important for 

SOC, of course, but what about exploring depth effects on CUE. You give results from a mixed-effects 

model of SOC, but could also explore variation in CUE. 

- Furthermore, with regards to depth in Ext. Data Fig. 4, how can we interpret these findings in the 

context of studies that have shown that similar amounts (or at times more) of SOC is microbially-

derived at depth compared to the surface? Microbial recycling plays an important role at depth. This 

could be discussed further. 

- Can carbon input be included in Ext. Data Fig. 7? I understand it is not estimated in the same way, 

because it is CLM5 derived. But, the environmental variables listed do also affect carbon inputs. 

- Why is there no/little uncertainty in input carbon (Ext. Data Fig. 10)? I suppose this again has to do 

with the fact that input carbon is derived from CLM5. How much of a difference does it make if 

MODIS NPP or similar is used? Of course NPP is only a proxy for what actually enters the soil, and 

inputs are very difficult to measure accurately (e.g., roots, exudation), especially at scale. 

- It is not apparent why CUE is weighted in the way it is. I understand that the goal is to weight CUE 

by the flux going through each pathway. In contrast, all of the other “mechanisms” are weighted 

simply by the pool carbon densities. Why isn’t the decomposition rate weighted by the fluxes as with 

the CUE? In the present way, the weighting of CUE incorporates the decomposition rates, 

environmental modifiers, and soil thickness... so it is an amalgamation of various “mechanisms” 

presented herein. It would be helpful if the authors elaborated on their choice of weighting and the 

ranges of each value. Even the weighting for carbon input allocation, inspired by the ‘beta’ 

exponential functions of Jackson et al. 1996, could be explained more clearly. What about the 

proportion of input carbon allocated as surface litter? (Furthermore, I assume that soil depth Dz and 

thickness delta-z are in units of meters, but this should be specified as with the other variables. 

Though eventually B should come out as unit-less.) 

- How large are the uncertainties from the profile-level data assimilation? (L602: “uncertainties of 

parameters and SOC simulation did not propagate from the profile-level data assimilation but only 

reflected uncertainties generated by the deep learning model”) 

- How would the results change if CLM5 were assimilated to global SOC (e.g., SoilGrids) instead of 

the profile values? This would introduce some uncertainty from the scale-up of SOC and it’s 

underlying covariates, but you are also introducing uncertainty with the parameter estimation from 

similar covariates. 



- As the authors say themselves, the findings are based on (and interpreted with) CLM5, which does 

not explicitly represent microbial processes. However, they say that “CLM5 explicitly represents CUE 

via partitioning... to respiration versus accrual to SOC” (L188). This is by definition of CUE. This 

sentence tries to support their choice of model, but really CUE is a necessary construct in any soil 

model that dictates the allocation of carbon staying in the system versus leaving the system. 

- What fraction of the WoSIS and NCSCD profiles were from natural/undisturbed ecosystems? Is the 

steady-state assumption (L501-505) reasonable? 

- L165: ‘Deep learning’ here is jargon-y and doesn’t give much information. Specify neural network in 

the text. 

- L152: The authors state that boreal regions have high quality (low C:N ratio) SOC substrates. They 

cite Reich et al. 2004, which focuses on N:P ratios, and states that “N is the major limiting nutrient in 

younger temperate and high-latitude soils,” implying that boreal regions are N-limited. Indeed, 

boreal regions can have high C:N ratio litter and soil stocks, which is seemingly the opposite of what 

the authors state. 

I won’t go into minor details and typos (e.g., L153 lability not liability, L486 are not is, L649 

specifically not specially), given the above major comments that need re-thinking.



This study proposes to use global and publicly available datasets complemented by a meta-analysis 

to draw conclusions on the potential drivers of global soil organic carbon (SOC) storage. The 

statistical modelling of SOC storage was made by a “PROcess-guided deep learning and DAta-driven 

modelling”, which, to summarize, aim to use a deep learning model to estimate the parameters of a 

process-based biochemical model.  

Overall I found this study of potential interest, but I also raise substantial concerns on specific 

aspects of the mapping, validation, and interpretation process. I am however positive that the 

authors could address these concerns by a revision and additional analyses, and that the revised 

manuscript could be a useful contribution.  

Cross-validation  

The cross-validation should be used to estimate the validation statistics (as is done), but for 

prediction and uncertainty quantification a model fitted with all the data should be used. In this 

paper, the authors used 10 models, resulting from fitting 10 models on the 10 cross-validation folds, 

and use the mean value from the 10 model predictions as their final prediction. They also use the 

standard deviation of the 10 predictions as an estimate of prediction uncertainty.  

- Prediction The final model for mapping should be calibrated with all the available 

observations. This is the “best guess model”, calibrated with all data available. Map accuracy 

is estimated previously, using the 10-fold random cross-validation.  

- Prediction uncertainty Prediction uncertainty taken as the standard deviation of 10 model 

predictions is not correct. There are several options to estimate the prediction uncertainty. 

The authors could use bootstrapping and obtain confidence intervals. Note that 

bootstrapping requires fitting at least 100 models to get a realistic estimate. Another option 

is to use quantile regression. Currently, the prediction uncertainty maps are a standard 

deviation value obtained from 10 predicted values. This is too little to obtain a reliable 

estimate of the standard deviation and, again, not a correct way to obtain a valid estimate of 

prediction uncertainty. Why do the authors not propagate the uncertainty of the parameters 

as obtained by the posterior parameter distribution in the Bayesian analysis? There is a great 

opportunity here with the Bayesian analysis of the parameters and the distribution obtained 

by the posterior distribution. For the uncertainty, ideally, prediction intervals are reported. 

When obtaining prediction intervals is not possible, the authors could always obtain a 

confidence interval by bootstrapping.  

Permutation importance  

The permutation analysis suffers from the same problem of using 10 models. The authors report 

grouped permutation variable importance values from 10 models, with error bar representing the 

standard deviation obtained by cross-validation. This is not common, and I would say not correct. 

Authors should compute the permutation importance of a single model, the one calibrated using all 

data. This way they are sure that the permutation values indeed correspond to the model they are 

using for mapping. Since the permutation values are not additive, I am afraid that Extended Data Fig. 

7 is not realistic. Also, error bar usually represents the permutation error. Since permutation 

involves randomness, it is important to repeating the permutation many times and also show the 5% 

and 95% quantile of importance values from the repetitions. The permutation error obtained this 

way is likely to appear much larger than that currently reported.  

The MSE values obtained by permutation importance are not additive. This means that the 

permutation importance values for each individual covariate cannot be simply added to another one 



to calculate the permutation importance of the group. To compute the group permutation 

importance, the authors should make a permutation directly on the group of covariates. The results 

are likely to be different, because permutation importance is a method that is sensitive to 

dependence among covariates. Authors should make sure that they permuted the group of 

covariates simultaneously, not the individual covariates and then summed the individual 

permutation importance values. This is very unclear from the text at L. 663-668. 

Statistical validation of maps 

L. 579-590: There is a current hype about the idea that spatial autocorrelation should be accounted 

for when estimating validation statistics in a spatial context. This is a misconception and I urge the 

authors not to propagate this wrong idea in a scientific paper. It is good that they only tested this 

but did not include the results of spatial cross-validation in their analysis. In short, spatial 

autocorrelation does influence the estimation of map accuracy statistics, but spatial cross-validation 

is clearly not an answer to this problem. The only solution to obtain an unbiased estimate of map 

accuracy is to collect an additional probability sample from the population (that is, the world) and to 

use a design-based estimation of the statistics. I acknowledge this is no feasible for this kind of 

global study, or very difficult to implement. But spatial cross-validation is not the solution. It 

provides overpessimistic validation statistics and has no underlying theory. Why did the authors not 

use instead a model-based estimation of map accuracy? Why didn’t they use a heuristic method 

based on spatial weighting? There are many methods available for dealing with estimation of map 

accuracy in case of clustered data, but clearly spatial cross-validation is the worst. It is important 

that this paper does not propagate these recent misconceptions of statistical validation of maps. I 

recommend to simply remove this paragraph.  

Additional minor comments: 

There are a few sentences that are difficult to read, such that at L. 76-77, for example. The 

manuscript would benefit from shorter sentences.  

L. 87-90: This sentence suggests that deep learning IS a hypothesis. Perhaps adding “with” or “using” 

would clarify this point.  

L. 91-93: Consider rephrasing, this sentence is quite unclear: “We collated 132 pairs of data sets 

from 16 experimental studies *…+ where SOC content were measured at 46 locations”: what is 

collected? The 132 pairs of data sets or the 46 measurement at locations? AHA this is now clear at L. 

405-406.  

L. 415: How are the coarse fragments obtained? I think WoSIS has only few samples containing 

coarse fragment data.  

L. 418-419: How many observations were used to fit the pedotransfer function and to obtain the 

regression parameters for bulk density?  

L. 447-460: This description is quite unclear. The authors used what is commonly referred to as a 

Nash-Sutcliffe modelling efficiency, that some would call the coefficient of determination (of the 1:1 

line). I agree with their use of the term “coefficient of efficiency”. Several authors (e.g. Janssen & 

Heuberger, 1995) call it a modelling efficiency. But the description that the authors make of this 

statistic is a bit surprising. A modelling efficiency of 0.75 is very high. It means that 75% of the SOC 

depth distribution variance is explained by CLM5. The authors should also consider rephrasing this 

paragraph and make shorter sentences.  



L. 557-560: Calling deep learning a neural network with four hidden layers and 256, 512, 512, and 

256 neuros, respectively, is a bit misleading. I agree that it is not clear when a neural network 

becomes “deep”, but we usually agree that this is a complex model with many layers/neurons.  

L. 563-564: The average in the MSE equation is missing.  

L. 649: How many permutations were made. The number of permutations should be sufficiently high 

to obtain reliable results.  

Reference:  

Janssen, P. H. M., & Heuberger, P. S. C. (1995). Calibration of process-oriented models. Ecological 

Modelling, 83(1-2), 55-66. 
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Summary of responses to comments by three referees 

 

We greatly appreciate three referees for offering us constructive and insightful comments, 

which were extremely helpful for us to improve our manuscript. Following their suggestions, 

we have conducted additional analyses and found that our original findings are robust 

regarding the role of microbial carbon use efficiency (CUE) in determining the global soil 

organic carbon (SOC) storage. Now, we have thoroughly revised the manuscript to address 

all these comments and to reflect the new insights we obtained from the new analyses. Here 

are a summary of the revision of our manuscript.  

 

1. Microbial model: Both referees #1 and #3 suggested that we use a microbial model, in 

addition to the Community Land Model (CLM5), to examine the CUE-SOC relationship. In 

the revision, we followed this suggestion and included a microbial model that explicitly 

represents the direct dependence of SOC loss on microbial biomass via enzyme activities 

(i.e., the second possible CUE-SOC relationship as described by Fig. 1b in the original 

manuscript). We conducted a parameter sensitivity analysis and found that the microbial 

model generated either a positive or a negative CUE-SOC relationship, depending on 

parameter values. Constrained parameter values by the globally distributed SOC vertical 

profiles yielded a positive correlation between CUE and SOC. Thus, the positive CUE-SOC 

relationship is supported by both CLM5 and the microbial model regardless of their structural 

differences. Moreover, we found that, although described by the Michaelis-Menten equation, 

the nonlinear kinetics of SOC decomposition where the enzyme was involved can be 

approximated by a first-order kinetics with respect to SOC after the microbial model was 

constrained by globally distributed SOC profiles. Thus, model structures that use first-order 

kinetics, such as in CLM5, were effective in simulating SOC at the regional and global 

scales. Detailed results are presented and discussed in the Response Letter section 1.1 (R1.1). 

 

2. Novelty of this study: Referee #3 raised concerns about the novelty of our study. Our 

response in R3.1 highlights the novel contributions of our study in at least two aspects. First, 

we identified CUE from the global SOC database as the most important mechanism for 

determining global SOC storage among the six mechanisms. While microbial physiology in 

general and microbial CUE in particular have been extensively studied, their relatively 

importance to SOC storage has not been carefully evaluated. SOC research has been 

traditionally focused on carbon balance between carbon input and decomposition. Our study, 

Author Rebuttals to Initial Comments:
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for the first time, retrieved the global patterns of CUE and other mechanisms (e.g., organic 

carbon input, decomposition, and vertical transport) from 52,819 soil profiles and quantified 

their relative importance to global SOC storage and its spatial distributions by the PROcess-

guided deep learning and DAta-driven modelling (PRODA) approach. Second, we resolved a 

controversy on the CUE-SOC relationship at the global scale. Both our meta-analysis and 

analyses of globally distributed SOC data using two structurally different models support that 

a high microbial CUE favours the accumulation of SOC rather than SOC loss. Our findings 

have the potential to shift the SOC research from a classic paradigm that focuses on the roles 

of plant carbon inputs and decomposition to a new paradigm that emphasizes the role of 

microbial physiology and ecology in soil carbon sequestration.  

 

3. Correlation vs. causation: Following the suggestions of referee #1, we conducted mixed-

effects modeling to ensure the statistical rigor of the findings reported in the manuscript. Our 

new results showed that the positive relationship between CUE and SOC was robust, even 

after using different model structures and considering potential interactions among the 

predictors. This empirical relationship was also consistent with results obtained from data 

assimilation. As the referee suggested, results of the mixed-effects modeling highlighted the 

importance of within-study association of the data in explaining the CUE-SOC relationship. 

The explained variance in SOC was only 37% for the fixed-effects and increased to 55% after 

considering the random effects in the meta-analysis. Moreover, we investigated relationships 

among CUE, microbial biomass, and non-microbial biomass storage. We found that a high 

CUE accompanied not only high microbial biomass carbon, but also high non-microbial 

biomass carbon. The revised manuscript now shows both statistical (from the meta-analysis) 

and process-based (from the microbial model results) evidence that microbial partitioning of 

carbon toward microbial growth over respiration will enhance SOC accumulation via 

microbial by-products and necromass. The detailed information and statistics can be found in 

R1.2 and R3.1b. 

 

4. Uncertainty of modeling results: Following the suggestions of referee #2, we presented 

the results of predictions from the best-guess neural network. Meanwhile, we applied a 200-

time bootstrapping method to quantify the prediction uncertainties. The main conclusions, as 

well as the spatial patterns of CUE and the other five mechanisms, did not change. Yet the 

uncertainty ranges (e.g., the permutation importance), as suggested by referee #2, did 

increase in comparison to those from the ten-fold cross-validation method. Moreover, as 
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suggested by referee #2, validation methods that considered spatial correlation of data may 

not be well-grounded. We removed results and discussions about spatial autocorrelation from 

the manuscript to avoid potential confusion.  

 

We hope that our responses and revision of the manuscript are satisfactory to the referees. 

And we look forward to further feedbacks and comments. 

 

Below are our point-by-point responses (in blue) to referees’ comments (in black). 
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Point-by-point responses to comments by three referees 

 

Referee #1 (Remarks to the Author): 

 

The main findings in Tao et al. are exciting and the approaches used are technically advanced 

and appear to open new doors to enquiry. That said, as currently presented, it is hard for the 

reader to evaluate the veracity of how the main findings were reached. I would like to see the 

authors wrestle directly with issues of correlation vs. causation, that pattern does not beget 

process, space-for-time substitutions, and strong inference. I have the following specific 

comments related to these common challenges to identifying causation that, if satisfactorily 

dealt with, I hope will help to provide the necessary rigor to support the exciting findings that 

are presented. Please note that, if I were the Editor, #1 would sink the current paper if not 

addressed fully; and I would regard #2 as important for ensuring statistical rigor in the work 

published in my journal. 

 

Response: We appreciate the referee’s generally positive assessments of our findings and 

approaches. We have done additional analyses to clarify the causation and revised the text to 

avoid confusion regarding space-for-time substitution. 

 

1. Strong inference and pattern does not beget process. I like the competing hypotheses 

shown in Fig. 1a, where the possibilities are that higher CUE favors accumulation of SOC vs. 

loss. These mutually exclusive hypotheses (at least as presented) lend themself well to a 

strong inference test. However, the CLM5 belowground carbon cycle module is structured 

around the first hypothesis being true. That is, CUE determines the proportion of plant C 

inputs into the soil that form SOC vs. are respired as CO2. As such the structure of the model 

is pre-determined to support the first hypothesis and falsify the second. This appears to add 

strong circularity to the results, meaning the work falls far short of a strong inference test of 

competing hypotheses and appears to fall into the trap of assigning process to pattern. It 

would seem that to reliably test between these two hypotheses, you would need a second-

order process in CLM5 where the amount of microbial biomass regulates the rate at which 

SOC is formed and decomposed. If I have misinterpreted what was done, I apologize to the 

authors but would still ask that these issues be directly addressed in the main paper, so that 

the same concerns do not surface once the paper is accepted (because these concerns about 
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circularity, if not resolved, suggest a fundamental flaw in the study design that questions the 

validity of the hypothesis testing). 

 

R1.1 We appreciate the referee’s point that the CUE-SOC relationship may always be 

positive because of the structure of CLM5. As suggested by the referee, we used a microbial 

model to examine the CUE-SOC relationship. Our new results showed that CUE and SOC 

are positively correlated regardless of the model structures once constrained by data. Below 

we describe what we have done in response to these comments. 

First, we developed a vertically-resolved microbial model, in addition to CLM5, to 

examine the relationship between microbial CUE and SOC storage. The model structure is 

shown in Response Letter Fig. 1b. Briefly, the microbial model shares the same structure 

with CLM5 (Response Letter Fig. 1a) in describing vertical transport and litter dynamics. In 

each soil layer, the model follows the one proposed by Allison et al.1 (which is widely used 

as the basis for microbial model development) and has four pools, which are enzyme carbon 

pool (ENZ), microbial biomass carbon pool (MIC), dissolved organic carbon pool (DOC) and 

soil organic carbon pool (SOC), respectively. Similar to CLM5, the microbial model was also 

expressed in the matrix equation (Equation 2 of the manuscript) but the decomposability 

matrix K(X) is dependent on the carbon pool state (i.e., a nonlinear microbial model). Five 

major processes included in K(X) are (1) assimilation of dissolved organic carbon to 

microbial biomass (ASSIM): 𝐴𝑆𝑆𝐼𝑀 = 𝑣!"#,"%%&!𝑀𝐼𝐶
'()

*!,#$$%!+'()
; (2) decomposition of 

soil organic carbon (DECOM): 𝐷𝐸𝐶𝑂𝑀 = 𝑣!"#,,-./!𝐸𝑁𝑍
0()

*!,&'()!+0()
; (3) enzyme 

production (PRODENZ): 𝑃𝑅𝑂𝐷123 = 𝑘-45,67/,𝑀𝐼𝐶8; (4) microbial mortality (DEATH): 

𝐷𝐸𝐴𝑇𝐻 = 𝑘,-"9:𝑀𝐼𝐶; and (5) enzyme decay (DECAYENZ): 𝐷𝐸𝐶𝐴𝑌123 = 𝑘-45,,-.";𝐸𝑁𝑍. 

Parameters 𝑣!"#,"%%&! and 𝑣!"#,,-./! represent the maximum assimilation and 

decomposition rates, respectively. 𝑘!,"%%&! and 𝑘!,,-./! are the Michaelis constants for 

assimilation and decomposition, respectively. 𝑘-45,67/, describes the enzyme production rate. 

𝑘,-"9: is the mortality rate of the microbes. Note that for enzyme production, Sinsabaugh et 

al.2 found allometric relationships between microbial biomass and extracellular enzyme 

production in a meta-analysis. We therefore applied an allometric equation (varying 𝛽 value) 

instead of the first-order equation (𝛽 = 1) used by Allison et al.1 to describe enzyme 

production in the microbial model.  
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Response Letter Fig. 1 | Structures of vertically-resolved CLM5 (a) and the microbial 

model (b). 
 

Microbial carbon use efficiency in the microbial model is a predefined parameter as 

the proportion of carbon assimilation that is allocated to microbial growth (Response Letter 

Fig. 1b). Different from the first-order kinetics used in CLM5, the microbial model specifies 

the decomposition of soil organic carbon and dissolved organic carbon (i.e., assimilation 

process) as Michaelis-Menten kinetics, where the decomposition of substrate is determined 

by both the catalyst (i.e., microbes for assimilation and enzyme for decomposition) and the 

substrate (i.e., DOC for assimilation and SOC for decomposition) per se. Notably, when the 

Michaelis constants (i.e., 𝑘!,,-./! and 𝑘!,"%%&!) are much larger (e.g., 100 times larger) than 

their corresponding substrate concentration, the corresponding Michaelis-Menten kinetics 

could be approximated by a first-order functional form with respect to the substrate. 

Second, we conducted a parameter sensitivity analysis for the microbial model. By 

this analysis, we explored how parameters representing enzyme dynamics (i.e., allocation 

slope 𝛽 and enzyme turnover term 𝜏 in enzyme production) could influence the CUE-SOC 

relationship. We chose values of parameters in the microbial model that have been reported 

in the literature3 (Response Letter Table 1) and assessed the CUE-SOC relationship at steady 

state with different value combinations of the above-mentioned two parameters.  

Because of the strong nonlinearity of the microbial model, it is no longer feasible to 

analytically solve the soil carbon pool sizes at steady state as what we did using CLM5. 

Instead, we numerically integrated the model forward until all soil carbon pools reached 

steady state (i.e., the total SOC storage change < 1g C m-2 year-1) for given parameters values. 

A maximum of 10,000-year simulation by recycling the 20-year forcing from CLM5 was 

used in the forward simulation. We discarded those parameter sets for which the forward 

integration did not reach steady state after 10,000-year simulation. Response Letter Fig. 2 

shows that the CUE-SOC relationship can be either negative or positive, depending on the 
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choice of parameters values for enzyme production (i.e., the allometric slope and turnover 

rate of enzyme production). Notably, lower values of the exponent 𝛽 tend to cause positive 

relations between SOC and CUE. This means that less-than-linear scaling of enzyme 

production and biomass does not allow decomposition to speed up at high CUE (argument 

illustrated in Fig. 1b), while necromass contributions to SOC become more important and 

drive the positive SOC-CUE relation (argument illustrated in Fig. 1a). 

 

 
Response Letter Fig. 2 | Varying steady-state CUE-SOC relationships under different 

parameter values for enzymes production in the microbial model. 𝛽 is the allocation slope 

and 𝜏 is the enzyme turnover term in enzyme production. 

 

Third, we applied data assimilation at each soil profile to estimate parameters in the 

microbial model. By constraining model parameters from the data, we can distinguish one 

CUE-SOC relationship at the global scale. The numerical forward integration with the 

microbial model requires much longer time than the analytical solution of the matrix equation 

with CLM5 to get the SOC storage at steady state. Considering the fact that Bayesian MCMC 

requires a sufficiently long Markov chain (e.g., 50,000 iterations in our study and therefore 

50,000 times 10,000-year forward integrations using the microbial model) to gain reliable 

results, it is no longer computationally feasible for us to use MCMC to assimilate soil data 

into the microbial model. As an alternative to Bayesian MCMC, we applied the Shuffled 

Complex Evolution (SCE) method4 to assimilate SOC data into the microbial model at each 

soil profile. The SCE method is an efficient global optimization algorithm that calibrates 

model parameters to their global optima against observations. Parameters selected for data 
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assimilation are listed in Response Letter Table 1. We kept the prior ranges of parameters in 

the microbial model to be the same as in CLM5 except those newly introduced microbe-

related parameters (Response Letter Table 1). Because soil profile data from field 

measurements contained all components of the organic carbon, we used the total carbon 

amount of the four soil carbon pools in the microbial model to be compared with soil profile 

data of WoSIS database. 

We applied empirical constraints to model simulations in data assimilation. Simulated 

SOC at steady state had to exceed microbial biomass carbon (MIC) by at least 50-fold over 

the entire soil profile and by at least 15-fold for the top 15 cm of soil, consistent with general 

patterns measured in the field5. Similarly, simulated SOC at steady state had to be at least 10-

fold higher than DOC for the entire soil profile and at least 100-fold higher for the top 15 cm 

of soil6,7. Additionally, simulated microbial biomass carbon (MIC) was constrained to be 

larger than the total pool of soil enzymes (ENZ). 

 Fourth, we tested the robustness of the estimated CUE-SOC relationship. Even after 

applying the Shuffled Complex Evolution method, the computational cost for data 

assimilation with the microbial model was approximately 2,600 times higher than with 

CLM5 model. It is prohibitively high. To make the analysis feasible, we randomly sampled a 

subset of 1000 profiles for data assimilation with the microbial model. To avoid over-

representation of any specific regions in random sampling, we assigned weights to each soil 

profile according to its shared area of the corresponding climate types (i.e., total climate 

zonal area over the number of soil profiles that belongs to this climate zone). Our analysis 

indicates that this subset of 1,000 sampled profiles offers robust estimates of slope and 

intercept of the CUE-SOC relationship (Response Letter Fig. 3).  
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Response Letter Fig. 3 | Robustness of the regression slopes and intercepts of the CUE-

SOC relationship in the mixed-effects model. Results from the 1,000 soil profiles in data 

assimilation with the microbial model were randomly sampled with different subset sizes 

(each for 1,000 times) and regressed in the mixed-effects model. The regression slope and 

intercept of the CUE-SOC relationship remain stable under different sample sizes. Thus, the 

results from the data assimilation of 1,000 profiles with the microbial model are robust. The 

lower, middle, and upper hinges in the boxplot show the first, median, and third quartiles of 

the distribution. Whiskers represent the 1.5 interquartile range from the hinges. Red dashed 

lines are the regression results from the 1,000 soil profiles.  
 

Fifth, we compared the CUE-SOC relationships retrieved from the globally 

distributed SOC data using the microbial model and CLM5. After applying the Shuffled 

Complex Evolution method to assimilate SOC data into the microbial model at each of those 

sampled soil profiles, we retrieved the optimized parameter values and corresponding 

simulated SOC storage. Results are presented in Response Letter Fig. 4a-c. First, there is a 

positive relationship between CUE and SOC across different climate zones, at different soil 

depths, regardless model structures. The positive CUE-SOC relationship emerged not only 

from CLM5, but also from the microbial model after data assimilation (and is consistent with 

the empirical results from the meta-analysis).  
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Response Letter Fig. 4 | CUE-SOC relationships at different soil depths after assimilating 

the 1,000 representative SOC profiles into the microbial model (a - c) and all the 52,819 

profiles into CLM5 (d - f). Black lines and statistics shown in the figure are results from 

linear mixed-effects model regressions (details of the mixed-effects model structures and 

sample sizes were reported in Response Letter Table 3). Declining explanatory power of 

CUE to the variation in SOC with soil depths indicates a shift from biotic-dominated to 

abiotic-dominated SOC accumulation. 

 

Sixth, we examined parameter values in the Michaelis-Menten equation of the 

microbial model (Response Letter Fig. 5). For most of the soil profiles, Michaelis constant 

for decomposition (i.e., 𝑘!,,-./!) is 100 times larger than its substrate concentration (i.e., 

SOC concentration). Thus, the nonlinear kinetics for SOC decomposition where assumptions 

of enzyme kinetics are involved can be approximated by a first-order kinetics with respect to 

SOC after the microbial model is constrained by globally distributed SOC vertical profiles. 

Such approximation has been supported by theoretical upscaling8 and observed macroscopic 

patterns from widely reported litter and SOC decomposition experiments9-12.  
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In summary, the first finding from data assimilation with the microbial model (as 

represented by Response Letter Fig. 4) highlighted the robustness of our conclusion that CUE 

promotes SOC storage at the global scale. The second finding (as represented by Response 

Letter Fig. 5) supported the approximation by a first-order kinetics with respect to SOC (i.e., 

CLM5 in this study) to effectively simulate SOC storage at regional and global scales and the 

use of the PRODA approach to evaluate the relative importance of different mechanisms for 

SOC storage.  

We revised the main text and extended data to include the new analyses and results. 

Specifically, we introduced the microbial model, its parameter sensitivity analysis, and its 

data assimilation in L557 - L633. Results of the microbial model were discussed in L111 - 

L122. Fig. 2b of the revised manuscript showed the results from the microbial model. 

Response Letter Figs. 1 - 5 were included in the Extended Data Figs. 3 - 6 and 8. Response 

Letter Table 1 was included as Extended Data Table 8. Finally, the spatial distributions of the 

subset of 1,000 representative profiles was shown in Extended Data Fig. 2e.  

 

Response Letter Table 1 | Parameters in the vertically-resolved microbial model that were 

optimized in the profile-level data assimilation. The column “Origin” indicates whether the 

parameters are from the microbial model or the original soil carbon module of CLM5. 

Redacted
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2. Correlation vs. causation. The authors do spend most of their time - in the Results - on the 

correlation side of the line, which is appreciated and appropriate given the observational 

No. Name Matrix 
term 

Corresponding 
mechanism Description Origin Conventional 

values Unit Prior range 

1 mic_cue A 

Microbial 
carbon use 
efficiency 

(CUE) 

Microbial carbon use 
efficiency for soil organic 

carbon 
MIC 0.6 unitless [0.01 0.7] 

2 pdeath2soc A Fraction of mic_cue that 
leads to death MIC 0.5 unitless [0.1 0.9] 

3 fs2l3 A Transfer fraction, lignin litter 
to slow SOC CLM5 0.5 unitless [0.2 0.8] 

4 fs1l2 A Transfer fraction, cellulose 
litter to fast SOC CLM5 0.5 unitless [0.2 0.8] 

5 fs1l1 A Transfer fraction, metabolic 
litter to fast SOC CLM5 0.45 unitless [0.1 0.8] 

6 fs1s2 A Transfer fraction, slow SOC 
to fast SOC CLM5 0.42 unitless [0.1 0.74] 

7 tau4s1 K 

Substrate 
decomposability 

Inverse of 𝑣!"#,"%%&! in 
assimilation process MIC 0.011, 0.22 year [10-3 1] 

8 tau4s2_death K Turnover time for microbial 
biomass MIC 0.07, 0.27 year [0.01 1] 

9 tau4s2_enz K Turnover time for enzyme 
production MIC 9.8, 20 year [1 30] 

10 tau4s3 K Turnover time for enzyme 
decay MIC 0.14 year [0 1.5] 

11 tau4s4 K Inverse of 𝑣!"#,'()*! in 
assimilation process MIC 1.1×10-4, 

4.6×10-5, 2×10-7 year [10-7 10-2] 

12 allo_slope  
K 

Allometric slope in enzyme 
production MIC 1 unitless [0 1.5] 

13 km_assim K 
Concentration of DOC for 

half max assimilation 
reaction from DOC to MIC 

MIC 4×102 gCm-3 [1 104] 

14 km_decom K 
Concentration of SOC for 

half max assimilation 
reaction from SOC to DOC 

MIC 5×104, 6×105 gCm-3 [104 109] 

15 tau4l1 K Turnover time of metabolic 
litter CLM5 0.0541 year [0 0.11] 

16 tau4cwd K Turnover time of coarse 
woody debris CLM5 3.33 year [1 6] 

17 tau4l2 K Turnover time of cellulose 
and lignin litter CLM5 0.2041 year [0.1 0.3] 

18 w-scaling ξ 

Environmental 
modifiers 

Scaling factor to soil water 
scalar CLM5 1 unitless [0 5] 

19 q10 ξ Temperature sensitivity CLM5 1.5 unitless [1.2 3] 

20 efolding ξ E-folding parameter to 
calculate depth scalar CLM5 10 metre [0 1] 

21 cryo V Vertical 
transport 

Cryoturbation rate CLM5 0.0005 m2yr-1 [3´10-5 16´10-4] 

22 diffus V Bioturbation rate CLM5 0.0001 m2yr-1 [3´10-5 5´10-4] 

23 beta I Carbon input 
allocatoin 

Beta parameter controlling 
vertical distribution of carbon 

input to litter pools 
CLM5 PFT dependent unitless [0.5 1] (CLM5) 
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nature of the work. However, the statistical analysis of the meta-analysis data are woefully 

shallow and inadequate given your recognition that CUE and SOC are outcomes of multiple 

causative predictors. Put simply, you recognize correlation and mention it, but do not perform 

the necessary data analytical steps to build confidence in your analysis of the relationships 

presented. The univariate correlations in Figs. 2a and 2b should be replaced with plots of the 

partial (or conditional) coefficients from the mixed effects models, so that the relationships 

shown are corrected for the influence of other predictors (e.g., both depth and MAT for a). 

Further, you need to present results from analyses showing that your predictors are not 

correlated, and at least evaluate two-way interactions among the predictors. Currently, you 

have a single model shown in Extended Data Table 2 of unstandardized coefficients (without 

a SE), a cumulative R2 (fixed + random), and no recognition that the predictors could be 

correlated and hence the possibility that the coefficients you present are spurious. Further, nor 

do you justify the use of both random slopes and random intercepts. Please revise this 

analysis to build credibility in your findings. When I analyzed your data given in Extended 

Data Table 1, I will note that your general findings are supported and your predictors appear 

uncorrelated in the various models I ran. For example, for SOC, using random intercepts and 

common slopes, the beta coefficients reveal a strong negative MAT effect on SOC, a weaker 

but still positive CUE effect on SOC, and then a strong negative MAT by CUE interaction. 

The variance inflation factors for the main effects model were all low and for the model 

with the pairwise interactions, fixed effect variance explained was 17.6% with a further 

~60% of the variance explained by the “study id” random effect. As such, use a regular linear 

model (without random effects), the results were very different, revealing strong within-study 

associations in these data that should be mentioned. My take home is that the results from 

your meta-analysis will be bolstered by doing your due diligence in terms of the mixed-

effects modeling. However, as currently presented, this part of your analysis falls far below 

publication standard. 

 

R1.2 We appreciate referee #1’s constructive comments and suggestions on the mixed-effects 

modeling. Following your suggestion, we used mixed-effects models to explore CUE-SOC 

relationship in both the meta-analysis and data assimilation results by the microbial model 

and CLM5.  

 In the meta-analysis, we took CUE, mean annual air temperature (MAT) and depth of 

the measurement as the fixed effects to SOC content, as we expected these factors to have an 

effect. We then added the study sources (“Source” in Extended Data Table 1, n = 16) as the 
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random effect to acknowledge that different studies have used different methodologies to 

estimate CUE. We explored different structures of the mixed-effects model (i.e., random 

intercepts with common slopes or random intercepts with random slopes) to test the CUE-

SOC relationship. Among all the fixed effect variables (i.e., CUE, MAT, and soil depth), only 

the correlation between CUE and MAT is significant at the significance level of 0.05 

(Pearson correlation coefficient = -0.24, P = 0.005, df = 130). Therefore, the interaction 

between CUE and MAT was also considered in the mixed-effects model. Only results of 

model structures that converged in regressions were presented in Response Letter Table 2. 

We found that mixed-effects models with different structures all showed a positive 

relationship between CUE and SOC in the meta-analysis (Response Letter Fig. 6a and 

Response Letter Table 2). Furthermore, we found that the variance inflation factors for the 

main-effects predictors were all low. Thus, including the interaction term between CUE and 

MAT did not significantly improve the prediction power of the mixed-effects model. 

Accordingly, we did not include in the main text the interaction term between CUE and MAT 

in the mixed-effects model, but considered random intercepts with common slopes in 

regression. 

 In addition, we explored how CUE correlates with microbial biomass and non-

microbial biomass carbon. We found that CUE is not only positively correlated with 

microbial biomass carbon, but also non-microbial biomass carbon (Response Letter Table 4). 

Such a pattern supports the argument that microbial partitioning of carbon toward microbial 

growth will enhance SOC accumulation via microbial by-products and necromass. 

We applied a similar mixed-effects model to explore CUE-SOC relationship using the 

data assimilation results from both CLM5 and the microbial model. We set CUE as the fixed 

effects on SOC storage and treated the climate types that each soil profile belongs to as the 

random effects. The mixed-effects model considered random intercepts with common slopes 

in regression. We found similar positive CUE-SOC relationships by both the microbial model 

(Response Letter Fig. 6b) and CLM5 (Response Letter Fig. 6c-d). Results from the microbial 

model confirmed again the concurrence of high CUE and accumulation of both microbial and 

non-microbial organic carbon (Response Letter Table 5). 

Moreover, as the referee suggested, it is critical to consider within-study or -ecoregion 

association of the data when explaining CUE-SOC relationship. The explained variance in 

SOC was only 37% by the fixed-effects but increased to 55% after considering the random 

effects in the meta-analysis (Response Letter Table 2). And the similar patterns existed in the 

regression results by CLM5 and the microbial model (Response Letter Table 3).  
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 In the revised manuscript, we added the results of the mixed-effects modeling analysis 

in L97 - L104 and L423 - L439. Fig. 2 in the main text of the original manuscript has been 

changed to be the same with Response Letter Fig. 6 shown here. Response Letter Tables 2 - 5 

are presented in Extended Data Tables 2 - 5 in the revised manuscript. All the statistics 

shown in Fig. 2 are from the results of the mixed-effects modeling. 

 

 
Response Letter Fig. 6 | CUE-SOC relationship emerged from the meta-analysis (a), 

microbial model data assimilation with the subset of 1,000 vertical profiles (b), CLM5 data 

assimilation with the subset of 1,000 vertical profiles (c), and CLM5 data assimilation with 

all the 52,819 profiles (d). The subset of vertical profiles was used because the 

computational cost for the microbial model is too expensive (i.e., ~2,600 times more 

expensive than that for CLM5) to do data assimilation with all the 52,819 profiles. Panels c 

and d are presented for comparison of results between the subset and whole set of the 

vertical profiles. Black lines and statistics shown in the figure are the partial coefficients 

from linear mixed-effects model regression (see Response Letter 2 – 3 for details).  
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Response Letter Table 2 | Unstandardized coefficients of CUE-SOC relationship in the 

mixed-effects model with meta-analysis data. CUE, depth and mean annual temperature 

(MAT) were set as fixed effects to both logarithmic and original SOC content. The study 

source was set as the random effects. We explored different structures of the mixed-effects 

models (i.e., random intercepts with common slopes or random intercepts with random 

slopes) to test CUE-SOC relationship. Interaction between CUE and MAT was also 

considered. Only results of model structures that converged are presented. The total 

observation size 𝑛/<% = 132; the random effects size 𝑛%9=,; = 16. The variance inflation 

factors for the main effects model were all low.  

  Intercept CUE Depth MAT MAT*CUE 

𝑙𝑜𝑔10(𝑆𝑂𝐶)~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 55%, by fixed effect: 37% 

Fixed Effects 

Estimates 1.16 0.76 -0.020 0.013 NA 

Std. Error 0.11 0.18 0.0034 0.0053 NA 

t value 10.58 4.14 -5.93 2.49 NA 

P <0.0001 <0.0001 <0.0001 0.014 NA 

Random Effects Standard 
Deviation 0.16 NA NA NA NA 

𝑙𝑜𝑔10(𝑆𝑂𝐶)~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + 𝑀𝐴𝑇 ∗ 𝐶𝑈𝐸 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 55%, by fixed effect: 38% 

Fixed Effects 

Estimates 1.17 0.72 -0.020 0.012 0.0042 

Std. Error 0.17 0.43 0.0034 0.014 0.039 

t value 6.78 1.65 -5.90 0.90 0.11 

P <0.0001 0.10 <0.0001 0.37 0.91 

Random Effects Standard Deviation 0.17 NA NA NA NA 

𝑙𝑜𝑔10(𝑆𝑂𝐶)~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + 𝑀𝐴𝑇 ∗ 𝐶𝑈𝐸 + (𝐶𝑈𝐸|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 49%, by fixed effect: 20% 

Fixed Effects 

Estimates 1.20 0.35 -0.020 0.0086 0.040 

Std. Error 0.15 0.49 0.0031 0.011 0.037 

t value 7.79 0.72 -6.46 0.75 1.10 

P <0.0001 0.48 <0.0001 0.46 0.28 

Random Effects Standard Deviation 0.032 0.77 NA NA NA 

𝑆𝑂𝐶~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 49%, by fixed effect: 20% 

Fixed Effects 

Estimates 17.30 55.49 -0.65 0.13 NA 

Std. Error 7.62 12.60 0.23 0.37 NA 

t value 2.27 4.41 -2.84 0.36 NA 

P 0.026 <0.0001 0.0052 0.72 NA 

Random Effects Standard Deviation 12.74 NA NA NA NA 

𝑆𝑂𝐶~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + (𝐶𝑈𝐸|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 49%, by fixed effect: 20% 
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Fixed Effects 

Estimates 9.40 57.50 -0.65 0.77 NA 

Std. Error 6.70 19.80 0.20 0.35 NA 

t value 1.40 2.91 -3.16 2.19 NA 

P 0.16 0.012 0.0020 0.030 NA 

Random Effects Standard Deviation 5.00 55.92 NA NA NA 

𝑆𝑂𝐶~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + 𝑀𝐴𝑇 ∗ 𝐶𝑈𝐸 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 49%, by fixed effect: 20% 

Fixed Effects 

Estimates 12.67 69.39 -0.65 0.57 -1.38 

Std. Error 11.80 29.56 0.23 0.92 2.65 

t value 1.07 2.35 -2.85 0.62 -0.52 

P 0.29 0.020 0.0051 0.54 0.60 

Random Effects Standard Deviation 12.55 NA NA NA NA 

 

Response Letter Table 3 | Unstandardized coefficients of CUE-SOC relationship in the 

mixed-effects model with data assimilation results. CUE was set as the fixed effects to 

logarithmic SOC content. Climate types that soil profiles belong to were set as the random 

effect. We applied a mixed-effects model that considered random intercepts with common 

slopes to test CUE-SOC relationship (i.e., 𝑙𝑜𝑔10(𝑆𝑂𝐶)~𝐶𝑈𝐸 + (1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠)). The 

random effects size 𝑛.>&!"9- = 12. The total observation size for each regression was 

reported in the table. 

  Intercept CUE 
Microbial model with representative profiles, 𝑛*+% = 983 

Variance explained by mixed model: 51%, by fixed effect: 3% 

Fixed Effects 

Estimates 1.02 0.79 

Std. Error 0.076 0.071 

t value 13.33 11.01 

P <0.0001 <0.0001 

Random Effects Standard Deviation 0.25 NA 

CLM5 with representative profiles, 𝑛*+% = 983 
Variance explained by mixed model: 61%, by fixed effect: 17% 

Fixed Effects 

Estimates -0.10 3.48 

Std. Error 0.11 0.21 

t value -0.96 16.36 

P 0.34 <0.0001 

Random Effects Standard Deviation 0.24 NA 
CLM5 with all profiles, 𝑛*+% = 52280 

Variance explained by mixed model: 51%, by fixed effect: 27% 

Fixed Effects 

Estimates 0.56 4.62 

Std. Error 0.068 0.029 

t value -8.21 161.72 

P <0.0001 <0.0001 

Random Effects Standard Deviation 0.23 NA 
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Response Letter Table 4 | Unstandardized coefficients of relationships of CUE with 

microbial and non-microbial biomass in the mixed-effects model with meta-analysis data. 

CUE, depth and mean annual temperature (MAT) were set as the fixed effects to microbial 

and non-microbial biomass (i.e., total SOC minus microbial biomass carbon) carbon content. 

The study source was set as the random effect. We set random intercepts with common slopes 

in regression (i.e., (𝑛𝑜𝑛)𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠~𝐶𝑈𝐸 +𝑀𝐴𝑇 + 𝐷𝑒𝑝𝑡ℎ +

(1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠)). The total observation size 𝑛%"!6>- = 62; the random effects size 𝑛%9=,; 

= 9.  

  Intercept CUE Depth MAT 

𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑚𝑔𝐶	𝑘𝑔,-)~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 63% 

Fixed Effects 

Estimates 0.79 2.01 -0.011 -0.038 

Std. Error 0.32 0.58 0.0080 0.014 

t value 2.48 3.47 -1.37 -2.66 

P 0.018 0.0011 0.18 0.010 

Random Effects Standard Deviation 0.34 NA NA NA 

𝑁𝑜𝑛𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑔𝐶	𝑘𝑔,-)~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 67% 

Fixed Effects 

Estimates 31.68 60.56 -0.45 -1.42 

Std. Error 10.16 18.21 0.25 0.45 

t value 3.12 3.33 -1.80 -3.14 

P 0.0034 0.0016 0.077 0.0027 

Random Effects Standard Deviation 11.39 NA NA NA 

 

Response Letter Table 5 | Unstandardized coefficients of relationships of CUE with 

microbial and non-microbial biomass in the mixed-effects model with data assimilation 

results. CUE was set as the fixed effects to microbial and non-microbial biomass (i.e., total 

SOC minus microbial biomass carbon) carbon content. Climate types that soil profiles 

belong to were set as the random effect. We applied a mixed-effects model that considered 

random intercepts with common slopes in regression (i.e., 

(𝑛𝑜𝑛)𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠~𝐶𝑈𝐸 + (1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠)). The total observation size 𝑛%"!6>- 

= 983, the random effects size 𝑛.>&!"9- = 12. The total observation size for each regression 

was reported in the table. 

  Intercept CUE 

𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑚𝑔𝐶	𝑘𝑔,-)~𝐶𝑈𝐸 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 11% 

Fixed Effects Estimates 0.011 0.75 
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Std. Error 0.056 0.14 

t value 0.21 5.55 

P 0.84 <0.0001 

Random Effects Standard Deviation 0.13 NA 

𝑁𝑜𝑛𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑔𝐶	𝑘𝑔,-)~𝐶𝑈𝐸 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 22% 

Fixed Effects 

Estimates 11.51 54.86 

Std. Error 5.20 8.96 

t value 2.21 6.13 

P 0.041 <0.0001 

Random Effects Standard Deviation 15.41 NA 

 

3. The remainder of my concerns are less consequential but I think important to address 

nonetheless. They are as follows, (a) Space-for-time. Your work uses spatial, observational 

data to build knowledge but in numerous instances you translate the significance for 

understanding change in time. Acknowledgement that you are making inferential jumps here 

by using space-for-time substitutions in terms of inferring process would be appreciated. 

 

R1.3a We thank the referee for pointing it out. We revised the related sentences (e.g., L100 - 

L104, L217 - L220) to avoid confusion on space-for-time substitution. 

 

(b) The main paper comes across as selectively choosing results that “agree” with the 

findings you present. For example, lines 202-205 talk about data that are consistent with a 

positive CUE-SOC relationship and you also cite evidence where CUE and MAT are 

negatively correlated. Please acknowledge and include some discussion to resolve other 

observational syntheses combined with modeling work that find the opposite (e.g., Ye et al. 

2020 in Global Biogeochemical Cycles, 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GB006507). It 

would be important for the reader to understand how your work therefore fits into the wider 

picture painted by the literature on regional to global observational data-model syntheses 

related to this topic. 

 

R1.3b We thank the referee for making this great point. The negative relationship between 

CUE and MAT may not be general when the resource availability (e.g., nitrogen and 



 20 

phosphorus) or exoenzymatic activities were considered13,14. To avoid the potential 

confusion, we no longer present the MAT-CUE relationship in the revised manuscript. 

 

(c) You refer repeatedly (e.g., lines 176-177) to the five mechanisms in CLM5 that influence 

SOC turnover and the fact that CUE emerges as the one to which spatial patterns are most 

sensitive and best predicted by. However, looking into those mechanisms, they are less 

directly coupled to SOC stocks than CUE because they control how much is going into litter 

pools or how fast SOC decomposes (which itself is dependent on the size of the SOC pool), 

but they are not the process/ parameter that actually dictates allocation of inputs to SOC. As 

such, please address in the main paper the extent to which this close coupling of CUE to SOC 

formation rates essentially predetermines your finding that it is the mechanism most closely 

matched to storage in CLM5. 

 

R1.3c We greatly appreciate the referee for the very insightful point. From a perspective of 

modelling, there is no such a priori expectation that CUE should be a stronger predictor than 

others. Equation 2 of the manuscript showed that all the six mechanisms control the SOC 

storage at steady state. Conceptually, the role of CUE where it dictates the allocation of input 

carbon to SOC derives from its definition with no pre-assumption about its importance to 

SOC as a priori either. In this study, we used the PRODA approach with a process model 

(i.e., CLM5) and SOC data to reveal that CUE is the most important mechanism to global 

SOC storage. Nevertheless, we modified our text to reflect this point (e.g., L215 - L217).  

 

(d) Coming back to right where I started, with regards to broader questions around how we 

do science and what we can learn (e.g., correlation vs. causation), I think it would be very 

helpful to explain in the main paper (i.e., in the paragraph starting line 110) the philosophy 

that underpins the PRODA tool. Although many new data science tools are exciting, they can 

also easily be misused, leading to spurious findings that are only revealed once the 

philosophy underpinning the approach is dug into. Given that most of the readership will be 

unfamiliar with the tools applied, and hence what they can do in terms of identifying 

mechanism (as opposed to, say, being optimized for outcome prediction; think of such things 

as IC-based model selection), I think it would be important to spend a handful of sentences 

explaining the philosophy of the approach. 
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R1.3d We thank the referee for the suggestions. PRODA has two components: data 

assimilation to constrain parameters at each of the sites and deep learning to find optimized 

parameterization over the globe. The underlying argument for this approach is that 

biogeochemical processes, such as decomposition and carbon partitioning between 

respiratory carbon release and microbial growth, vary from one site to another over space. 

The current generation of ESMs assumes most of the rates are constant over the globe. This is 

potentially one of the major sources of uncertainties in the predictions by ESMs as argued by 

Luo and Schurr (2020)15. Meanwhile, traditional machine learning techniques are specialised 

in identifying patterns from big databases. It is, however, impossible for the traditional 

machine learning techniques to identify mechanisms behind the data. In comparison, 

Bayesian data assimilation techniques (e.g., MCMC method) are capable of inferring causal 

understanding by integrating data with mechanistic models, yet they are in short of mining 

big data to get global patterns. PRODA is such a tool that combines data assimilation with 

machine learning, trying to obtain both global patterns from big data and the mechanistic 

understanding underlying such patterns.  

 We highlighted the philosophy underlying the PRODA in L156 - L165 of the revised 

manuscript. We hope the added sentences helped make it clearer about our method and its 

potential applications.  
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Referee #2 (Remarks to the Author): 

 

See my comments in the attached. 

This study proposes to use global and publicly available datasets complemented by a meta-

analysis to draw conclusions on the potential drivers of global soil organic carbon (SOC) 

storage. The statistical modelling of SOC storage was made by a “PROcess-guided deep 

learning and DAta-driven modelling”, which, to summarize, aim to use a deep learning 

model to estimate the parameters of a process-based biochemical model.  

 

Response: We deeply appreciate this referee for the great assessment of this study.  

 

Overall I found this study of potential interest, but I also raise substantial concerns on 

specific aspects of the mapping, validation, and interpretation process. I am however positive 

that the authors could address these concerns by a revision and additional analyses, and that 

the revised manuscript could be a useful contribution.  

 

Response: We thank this referee for the constructive suggestions. We have addressed all the 

concerns as described below. 

 

Cross-validation  

The cross-validation should be used to estimate the validation statistics (as is done), but for 

prediction and uncertainty quantification a model fitted with all the data should be used. In 

this paper, the authors used 10 models, resulting from fitting 10 models on the 10 cross-

validation folds, and use the mean value from the 10 model predictions as their final 

prediction. They also use the standard deviation of the 10 predictions as an estimate of 

prediction uncertainty.  

• - Prediction The final model for mapping should be calibrated with all the available 

observations. This is the “best guess model”, calibrated with all data available. Map 

accuracy is estimated previously, using the 10-fold random cross-validation.  

 

R2.1a We are thankful to this referee for the great suggestion. We now use the best-guess 

model to show the results in Fig. 3 of the revised manuscript (also presented here Response 

Letter Fig. 7). Spatial patterns of SOC and its underlying mechanisms did not change much 

compared to the results presented in the original manuscript. The best guess model explains 
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57% of the spatial variation in SOC data, and estimates a global total SOC stock of 2147 Pg 

C.  

 We revised the manuscript (e.g., L166 - L167) to include the new results as shown in 

Fig. 3 (also presented here as Response Letter Fig. 7). We also clarified the use of the best-

guess model to present our results in L699. 

 

 

 

 

 

•  - Prediction uncertainty Prediction uncertainty taken as the standard deviation of 10 

model predictions is not correct. There are several options to estimate the prediction 

uncertainty. The authors could use bootstrapping and obtain confidence intervals. 

Note that bootstrapping requires fitting at least 100 models to get a realistic estimate. 

Another option is to use quantile regression. Currently, the prediction uncertainty 

maps are a standard deviation value obtained from 10 predicted values. This is too 

little to obtain a reliable estimate of the standard deviation and, again, not a correct 

way to obtain a valid estimate of prediction uncertainty. Why do the authors not 

propagate the uncertainty of the parameters as obtained by the posterior parameter 

distribution in the Bayesian analysis? There is a great opportunity here with the 

Redacted 
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Bayesian analysis of the parameters and the distribution obtained by the posterior 

distribution. For the uncertainty, ideally, prediction intervals are reported. When 

obtaining prediction intervals is not possible, the authors could always obtain a 

confidence interval by bootstrapping.  

 

R2.1b We thank the referee for the suggestion. Using a neural network to propagate the 

uncertainty of the parameters in the Bayesian data assimilation is a great idea that is worth 

being explored in the future. In the revised manuscript, we applied a bootstrapping of the 

neural network for 200 times to retrieve the confidence intervals of predictions and estimates. 

Results in Fig. 4 (Response Letter Fig. 8) and Extended Data Fig. 12 (Response Letter Fig. 9) 

are now all from the results of 200-time bootstrapping. The results from bootstrapping 

indicate our neural network is robust in predictions. The neural network model in 

bootstrapping explains a median of 56.3% of the variation of SOC data (one-sigma 

confidence interval: 53.6 - 57.3%) and estimates a median global total SOC stock of 2192 Pg 

(one-sigma confidence interval: 2100 - 2314 Pg). 

 In the revised manuscript, we introduced the bootstrapping method in L688 - L696 

and L701 - L706. Fig. 4 of the main text and Extended Data Fig. 12 were substituted by the 

figures below (i.e., Response Letter Figs. 8 and 9, respectively).  

 

 
Response Letter Fig. 8 | CUE as the main regulator of global SOC storage. Results were 

obtained from 200-time bootstrapping. Points/Lines show the median results. Error 

bars/shaded areas are the 1-sigma uncertainty (i.e., 68% confidence interval). 
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Permutation importance  

The permutation analysis suffers from the same problem of using 10 models. The 

authors report grouped permutation variable importance values from 10 models, with 

error bar representing the standard deviation obtained by cross-validation. This is not 

common, and I would say not correct. Authors should compute the permutation 

importance of a single model, the one calibrated using all data. This way they are sure 

that the permutation values indeed correspond to the model they are using for 

mapping. Since the permutation values are not additive, I am afraid that Extended 

Data Fig. 7 is not realistic. Also, error bar usually represents the permutation error. 

Since permutation involves randomness, it is important to repeating the permutation 

many times and also show the 5% and 95% quantile of importance values from the 

repetitions. The permutation error obtained this way is likely to appear much larger 

than that currently reported.  

 

Redacted
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R2.2a We thank referee #2 for the suggestions. Following the suggestions, we applied 1000 

times of permutation to the best guess model to assess the importance of environmental 

variables to different mechanisms. Now the results are shown in Response Letter Fig. 10. The 

uncertainty range, as suggested by the referee, is much larger than the previous version, but 

the conclusion on the importance of environmental variables to CUE did not change. Soil 

physical properties are still the most important ones in predicting the spatial variability of 

CUE. 

 In the revised manuscript, Extended Data Fig. 11 was updated as in Response Letter 

Fig. 10. 

 

 
Response Letter Fig. 10 | Importance of environmental variables to different mechanisms. 

Results showed the median values from 1000-time permutations to the best-guess model. 

Error bars showed the 1-sigma uncertainty (68% confidence interval). 

 

The MSE values obtained by permutation importance are not additive. This means 

that the permutation importance values for each individual covariate cannot be simply 

added to another one to calculate the permutation importance of the group. To 

compute the group permutation importance, the authors should make a permutation 

directly on the group of covariates. The results are likely to be different, because 

permutation importance is a method that is sensitive to dependence among covariates. 

Authors should make sure that they permuted the group of covariates simultaneously, 

not the individual covariates and then summed the individual permutation importance 

values. This is very unclear from the text at L. 663-668.  
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R2.2b Thanks to the referee for pointing this out. We did as Referee #2 suggested but failed 

to express the method sufficiently in our original manuscript. Briefly, we used the best-guess 

neural network that was calibrated with all available data to do the permutation test. For each 

category of environmental variables, we permutated their original information with uniformly 

distributed random values for 1,000 times. After each permutation, we used the best-guess 

neural network to predict parameter values respectively from original environmental 

information (i.e., without permutation) and from permutated values. We used the mean 

squared error (i.e., 𝑀𝑆𝐸 =
∑ @∑ A6"7"%,**
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+ C

.
+∈0 D*

%12

2
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soil profiles, 𝑝𝑎𝑟𝑎22 to neural network predicted parameter value, and 𝑝𝑎𝑟𝑎'E to parameter 

values estimated from data assimilation) to account for the prediction deviation from profile-

level (𝑖) optimized parameter values. Parameters belonging to the same mechanisms (𝑗 ∈ 𝑀) 

were grouped together in the calculation. The permutation importance (PI) of environmental 

variables in category k (catek) to mechanism M was expressed as: 
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The PI values represent the increase of inaccuracy in the neural network prediction caused by 

the absent information of environmental variables in category k. Thus, a larger value of 

permutation importance indicated a greater importance of an environmental variable to the 

prediction of parameters. 

After applying the 1000-time permutation, the main conclusion about variables’ 

importance to CUE did not change. The physical features of the soil are still the most 

important to CUE. We revised the description in the L770 – L794 in the manuscript. 

 

Statistical validation of maps  

L. 579-590: There is a current hype about the idea that spatial autocorrelation should be 

accounted for when estimating validation statistics in a spatial context. This is a 

misconception and I urge the authors not to propagate this wrong idea in a scientific paper. It 

is good that they only tested this but did not include the results of spatial cross-validation in 

their analysis. In short, spatial autocorrelation does influence the estimation of map accuracy 

statistics, but spatial cross-validation is clearly not an answer to this problem. The only 

solution to obtain an unbiased estimate of map accuracy is to collect an additional probability 

sample from the population (that is, the world) and to use a design-based estimation of the 
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statistics. I acknowledge this is no feasible for this kind of global study, or very difficult to 

implement. But spatial cross-validation is not the solution. It provides overpessimistic 

validation statistics and has no underlying theory. Why did the authors not use instead a 

model-based estimation of map accuracy? Why didn’t they use a heuristic method based on 

spatial weighting? There are many methods available for dealing with estimation of map 

accuracy in case of clustered data, but clearly spatial cross-validation is the worst. It is 

important that this paper does not propagate these recent misconceptions of statistical 

validation of maps. I recommend to simply remove this paragraph.  

 

R2.3 Thanks to the referee for the suggestion. We removed the autocorrelation part from the 

manuscript as suggested. 

 

Additional minor comments:  

There are a few sentences that are difficult to read, such that at L. 76-77, for example. The 

manuscript would benefit from shorter sentences. 

 

R2.4a Thanks for the suggestion. We revised the referred sentence and other sentences that 

may be difficult to read (e.g., L75- L84). Hopefully the new version of the manuscript is 

easier to read.  

 

L. 87-90: This sentence suggests that deep learning IS a hypothesis. Perhaps adding “with” or 

“using” would clarify this point.  

 

R2.4b Thanks for the suggestion. We revised the sentence in L87 - 90 as “Here, we examined 

the relationship between CUE and the preservation of carbon as SOC using a combination of 

global-scale datasets, Earth system models (ESMs), deep learning (i.e., multilayer neural 

network), and meta-analysis, in light of interactions with climate, vegetation and edaphic 

properties”. Hope the new version of the manuscript is clearer. 

 

L. 91-93: Consider rephrasing, this sentence is quite unclear: “We collated 132 pairs of data 

sets from 16 experimental studies *...+ where SOC content were measured at 46 locations”: 

what is collected? The 132 pairs of data sets or the 46 measurement at locations? AHA this is 

now clear at L. 405-406.  
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R2.4c Thanks for the suggestion. We revised the sentence (L97 - L99) as “we first collated 

132 pairs of community-level CUE and SOC content data measured at 46 locations across 

continents from 16 experimental studies previously published in the peer-reviewed literature” 

to make it clearer.  

 

L. 415: How are the coarse fragments obtained? I think WoSIS has only few samples 

containing coarse fragment data. 

 

R2.4d We thank the referee for the question and comment. We did not apply fragment 

information directly to the original data before data assimilation. Instead, we calculated total 

SOC stock by using the coarse fragment map from SoilGrids. We clarified this point in the 

new version (L445 - L448). 

 

L. 418-419: How many observations were used to fit the pedotransfer function and to obtain 

the regression parameters for bulk density? 

 

R2.4e In our study, 78,913 soil layers from 16,248 profiles that simultaneously recorded bulk 

density and SOC content were used in the pedo-transfer function to obtain the regressed 

parameters. The pedo-transfer function eventually explained 54.9% of variation of the bulk 

density. We also added this information in the revised manuscript (L451 - L454).  

 

L. 447-460: This description is quite unclear. The authors used what is commonly referred to 

as a Nash-Sutcliffe modelling efficiency, that some would call the coefficient of 

determination (of the 1:1 line). I agree with their use of the term “coefficient of efficiency”. 

Several authors (e.g. Janssen & Heuberger, 1995) call it a modelling efficiency. But the 

description that the authors make of this statistic is a bit surprising. A modelling efficiency of 

0.75 is very high. It means that 75% of the SOC depth distribution variance is explained by 

CLM5. The authors should also consider rephrasing this paragraph and make shorter 

sentences.  

 

R2.4f Thanks to the referee for pointing this out. The modeling efficiency we used here is a 

site-level modeling efficiency. It could be very high because we were using 21 parameters in 

the CLM5 model to fit the vertical SOC profiles. We further clarified this point in L490 – 

L492 and cited the reference that the referee mentioned in the revised manuscript.  
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L. 557-560: Calling deep learning a neural network with four hidden layers and 256, 512, 

512, and 256 neuros, respectively, is a bit misleading. I agree that it is not clear when a neural 

network becomes “deep”, but we usually agree that this is a complex model with many 

layers/neurons.  

 

R2.4g Thanks for the suggestion. We changed the “deep learning model” to “multilayer 

neural network model” in the revised manuscript (e.g., L89 and L163).  

 

L. 563-564: The average in the MSE equation is missing. 

 

R2.4h Thanks for pointing out this typo. We corrected this typo in the revised manuscript in 

L784.  

 

L. 649: How many permutations were made. The number of permutations should be 

sufficiently high to obtain reliable results.  

 

R2.4i Thanks to the referee for the question and comment. Originally this number was 100. 

In the revised version we conducted 1,000 permutations to the best guess model. We reported 

this number in L781 of the revised manuscript.  

 

Reference:  

Janssen, P. H. M., & Heuberger, P. S. C. (1995). Calibration of process-oriented models. 

Ecological Modelling, 83(1-2), 55-66.  
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Referee #3 (Remarks to the Author): 

 

This is an interesting study that aims to show the importance of carbon use efficiency for soil 

carbon storage. The authors leverage a literature synthesis of CUE measurements, 50K+ 

WoSIS soil profiles with SOC measurements, the CLM5 biogeochemical model, and their 

PRODA approach to estimate CUE for the soil profiles and globally. What stands out most is 

the computational framework, which will be an important tool for ongoing and future data-

model integration. I also agree that better constraining CUE in models – especially given the 

interpretability of CUE across different types of measurements and model formulations – is 

crucial. However, there are several conceptual and practical considerations that compromise 

the present study and the novelty of its purported findings. I outline these main concerns 

below. 

 

Response: We greatly appreciate referee #3 for the generally positive assessment of this 

study. We carefully addressed all the issues raised by referee #3 as described below.  

 

1. I am not convinced that the main conclusions are particularly novel. 

– The finding that CUE and SOC have a positive relationship has been previously 

demonstrated (Kallenbach et al., 2015; Malik et al., 2018; Buckeridge et al., 2020) and is 

largely expected. CUE by definition dictates how much carbon stays in the system versus 

how much leaves the system, especially here where the model-derived CUE is an emergent 

property of the whole system (rather than the fraction of C acquired that is specifically used 

for microbial growth and biosynthesis in the empirical measurements). 

 

R3.1a We agree with the referee that “CUE by definition dictates how much carbon stays in 

the system versus how much leaves the system”, but the ‘system’ is—strictly speaking 

following the definition of CUE—microbial biomass. What we showed in this study, which 

fully supports previous studies as cited by the referee, is that CUE also promotes SOC 

accumulation, so the carbon storage in the whole soil system (please see detailed analyses in 

R1.2). In this sense, our results support the referee’s statement that CUE is “an emergent 

property of the whole system (rather than the fraction of C acquired that is specifically used 

for microbial growth and biosynthesis in the empirical measurements)”. 

 Moreover, there is an opposing hypothesis in the literature1 based on CUE as a 

physiological trait of microorganisms, such that a high CUE could be translated toward a 



 33 

high enzyme production so to enhance SOC decomposition and loss (Fig. 1b in the 

manuscript). Thus, it is not clear in the literature whether CUE is positively or negatively 

correlated with SOC influence SOC storage in the research community. Our use of both the 

microbial and CLM5 models in this revision allows the confrontation of the models with field 

data. Therefore, we think the framing of the question around CUE is not only defensible but 

also necessary.  

We agree with the referee that our results strongly support CUE as being positively 

related to SOC accumulation, a finding that is consistent with empirical evidence by either 

regional data (e.g., Malik et al., 2018; Buckeridge et al., 2020) or microcosm experiments 

(e.g., Kallenbach et al., 2015). In this study, we resolved the controversy on the CUE-SOC 

relationship at global scale by analysing 132 experimental data sets from the literature and 

52,819 vertical SOC profiles over the globe with two contrasting models (please see detailed 

analyses in R1.1).  

More importantly, we identified CUE as the most important mechanism for 

determining global SOC storage among the six different mechanisms using the global SOC 

database. This finding potentially helps shift SOC research from a classic paradigm that 

focuses on the roles of plant carbon inputs and decomposition to a new paradigm that 

emphasizes microbial physiology in determining SOC accumulation. In the past, researchers 

have invested tremendous efforts to incorporate different mechanistic processes of soil 

carbon cycle in Earth system models (ESMs), with a hope of improving the representation of 

SOC storage. Yet huge gaps still exist between ESM simulated and observed SOC stocks. 

Our study suggests that microbial CUE is the most critical mechanism in determining global 

SOC storage. This finding could stimulate more research on microbial physiology and 

ecology in general and microbial CUE in particular so as to improve our predictive 

understanding of soil carbon cycle. 

In the revised manuscript, we clarified the novel aspects of our study in L75 – L90 

and L230 - L245.  

 

– While the positive relationship between CUE and SOC may be expected, the slope and how 

it is affected by climate and vegetation type, etc., would be interesting to explore further. 

CUE is a dynamic property that is affected by many factors, including some of those treated 

as separate mechanisms herein. Understanding the processes shaping CUE is an important 

step in improving its representation in process-based models, but, other than Ext. Data Fig. 7, 
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this study does not yet provide clear insights on the processes leading to differences (and 

spread) in observed CUE. 

 

R3.1b This referee highlights a very important issue here. In our analyses, the positive CUE-

SOC relationship was supported at the global scale and in all different eco-regions with 

CLM5 (Response Letter Fig. 11). The absolute values of the regression slopes of the CUE-

SOC relationship differ across gradients of soil textures, pH, climate types, and land use 

changes (Response Letter Fig. 11). We found that sandy soils present stronger effect size of 

CUE in relation to SOC than clay soils (Response Letter Fig. 11a). The slope of CUE-SOC 

relationship declines when the soil environment changes from acid to alkaline (Response 

Letter Fig. 11b). Meanwhile, SOC storage is more responsive to CUE in tropical than in 

boreal regions (Response Letter Fig. 11c). In terms of the influence of land use changes, 

agricultural and urban ecosystems generally show less sensitivity of SOC to CUE than other 

natural ecosystems (Response Letter Fig. 11d). These patterns emerged from our study imply 

varying impacts of different physical environments and human activities in shaping the 

relationship between CUE and SOC storage. Because of a lack of sufficient experimental 

data, currently we cannot build a rigorous benchmark from the field measurements to be 

compared with our results from data assimilation with CLM5. In the future, detailed 

understanding of the drivers of CUE-SOC relationship requires more empirical data and 

experiments.  

 We discussed the varying slopes of CUE-SOC relationship across different 

ecoregions in L131 – L135 of the revised manuscript. Response Letter Fig. 11 was presented 

as Extended Data Fig. 7 in the revised manuscript.  
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Response Letter Fig. 11 | Regression slopes of the CUE-SOC relationship across different 

ecoregions with CLM5. Results are the slopes of the linear regression of the CUE-SOC 

relationship in different ecoregions. Error bars are the standard errors from the linear 

regressions. Numbers above the bars are the dimensions of freedom (df) in linear 

regressions. Line types of the bar and error bar plot indicate the P values of the regression 

slopes.  

 

– Furthermore, the CUE that is estimated from CLM5 is an emergent system value (including 

litter pools, it seems) which is quite different to those measured in soils (that also vary 

between different methods; Geyer et al. 2018). The slope of the CUE and SOC relationship 

looks significantly lower in the literature synthesis compared to the global estimates... why? 

What does this mean and what drives this slope?  

 

R3.1c The referee asked a great question. This question indeed is very important and 

interesting. We acknowledge that the absolute values of the slopes of CUE-SOC relationship 

differed in meta-analysis and data assimilation results. As the referee pointed out, CUE 

measured by different methods also differed in different field experiments. The differences in 

the absolute values of the slope of CUE-SOC relationship likely derived from the 

methodological differences among different methods (i.e., model structures and measuring 

techniques) and other environmental factors (e.g., climate, edaphic, vegetation, and land use 
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history). Further studies are surely warranted on this issue. In the revised manuscript, we 

discussed this issue in L133 - L135. 

 

If the authors used their same framework with SOC values from the CUE literature synthesis 

to estimate the corresponding CLM5-derived bulk CUEs, how would these compare to the 

measured ones?  

 

R3.1d This referee made a great suggestion. In the revised manuscript, we used a similar 

mixed-effects model to explore CUE-SOC relationship (please see also our response to 

referee #1). We found consistent positive correlation between CUE and SOC. The detailed 

descriptions and statistics of the mixed-effects modelling can be found in R1.2 

 

Fig. 2b/d with MAT is interesting (though also well-documented; Hagerty et al. 2014, Allison 

et al. 2010) and the slopes seem to somewhat agree between the literature synthesis and 

global estimates. How do these slopes compare to the temperature sensitivities reported in 

other studies? 

 

R3.1e Again, this is a great question. As we explained in R1.3b, the relationship between 

MAT and CUE might not be a general pattern under different context13,14. We no longer 

present this relationship in the manuscript. 

 

 

2. The findings of CUE importance rely on the selected model (i.e., CLM5) and may not 

be robust.  

The study is also framed around two alternative hypotheses that are not mutually exclusive 

and, ultimately, the current study does not appear equipped to truly address them.  

 

— It would be helpful to include several global soil models, including process-based (i.e., 

microbial-explicit) models. The authors discuss microbial feedbacks extensively, but the 

approach they take is not appropriate to support their claims (more on this below). 

 

R3.2a We thank Referee #3 for providing the great suggestion. We have included a microbial 

model in the revised manuscript. Please refer to our responses to referee #1 (R1.1) for the 

details of the microbial model and related results. 
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– The authors support their choice of CLM5 as a “process-oriented biogeochemical model... 

because it is depth resolved and expressed in matrix form” (L113). First, this is a little 

deceiving because CLM5 is not process-based, or at least does not include the processes 

outlined in the hypotheses. It does not include microbes, and hence the CUE is simply a 

fraction that stays in the system versus leaving the system when transferred between first-

order pools. Second, the two reasons given for the selection of CLM5 alone as the backbone 

of their study are not convincing nor appropriate. There are several models that are depth-

resolved and virtually any existing model can be written in matrix notation. Indeed, all first-

order global models can be easily written in matrix notation and even process-based models 

can be linearized, as needed, near the steady-state (given that they invoke a steady-state 

assumption anyway).  

 

R3.2b Thanks to the referee for pointing this out. We deleted the two justifications (i.e., 

depth-resolved and matrix representation) for using CLM5 and developed a microbial-

explicit model for this study as suggested (please see R1.1 for more explanations). We hope 

these revisions are sufficient to address the referee’s concern.  

 

– Regarding the framing of negative vs. positive CUE-SOC relationships, the authors propose 

two alternative hypotheses, but these two hypotheses are by no means mutually exclusive. 

Both schemes can, and do, occur in real life. The positive feedback of microbial biomass and 

enzyme production (as in Fig. 1b) could, in addition to catalyzing decomposition, promote 

mineral-organic associations through the increase in sorption of microbial necromass and 

byproducts. This should be discussed, and makes me wary of the current framing of these two 

simple pathways as conflicting hypotheses. 

 

R3.2c We thank the referee for making another very interesting point. Theoretically, both the 

positive and negative CUE-SOC relationships could exist. But it is not clear which more 

likely dominates SOC dynamics in the real world. This is one of the motivations why we 

conducted this study to examine the two alternative relationships with data. We clarified this 

point in L91 - L96 and L105 - L125 of the revised manuscript.  

 

– Furthermore, I am not sure that the alternative hypothesis of high CUE leading to loss of 

SOC truly makes sense. High CUE could drive more microbial biomass, and more 
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subsequent decomposition that passes through microbial biomass, but that could just result in 

a faster cycling system. It does not imply a decrease in storage. (It also doesn’t imply young 

radiocarbon ages, as microbial recycling contributes to older carbon.) Yet, the authors state 

that microbial models that “simulate direct dependence of SOC loss on microbial biomass via 

enzyme activities... always generate a negative relationship between CUE and SOC” (L193). 

I do not believe that this is always the case and I would challenge the authors to demonstrate 

this. It would be interesting to try a microbial-explicit model in the same framework. The 

cited studies (e.g., Allison et al. 2010 and others) with simple microbial-explicit models show 

that microbial feedbacks can indeed lead to losses, but not that higher CUE (and all else 

equal) increases losses. I feel that they may be conflating trends in microbial biomass with a 

dependence on the value of CUE. 

 

R3.2d We greatly appreciate the reasoning this referee made here. When using default 

parameter values in the microbial model by Alison et al. (2010), the CUE-SOC relationship is 

negative as illustrated in Response Letter Fig. 2. However, the CUE-SOC relationship can 

change from negative to positive when parameter values change (Response Letter Fig. 2). 

 When we assimilated the soil carbon data to constrain the microbial model, a positive 

CUE-SOC relationship emerged (please see R1.1 for more explanation). Although it is 

numerically possible to generate a negative CUE-SOC relationship, the soil data at the global 

scale offer observation-based evidence to support that CUE is positively correlated with SOC 

storage (Response Letter Fig. 4). We discussed this point in L111 - L122 of the revised 

manuscript. 

  

3. Proportional changes in the selected ‘mechanisms’ are difficult to interpret in a 

meaningful way.  

 

– When considering proportional changes in the selected mechanisms, what if the 

mechanisms or relative changes were normalized and based on the distribution of potential 

values? That is, an 8% change in one mechanism might constitute a small change within the 

potential range of values for that mechanism, whereas it might span the range of potential 

values for another mechanism. Instead, maybe values could be varied from their respective 

means to plus/minus one (or two) standard deviations. A supplemental figure depicting the 

distributions of all mechanisms (as with CUE in Ext. Data Fig. 5) would be helpful in that 
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regard; from the box plots in Fig. 3, it seems that some of the distributions are indeed wider 

than others. 

 

R3.3a The referee raised a very important issue about parameter spaces. The distributions of 

potential values of these mechanisms define parameter spaces for the model. We need to 

explore the parameter spaces fully when we project future changes in SOC. However, this 

study evaluated relative importance of different mechanisms in determining SOC via 

parameter sensitivity analysis. The latter is different from the projection analysis using the 

full ranges of parameter spaces, which should be done in the future. 

We also greatly appreciate the suggestion by the referee to generate a supplementary 

figure depicting the distributions of all mechanisms. We have seriously considered this 

suggestion. Currently we do not know the parameter space at each grid point. Spatial 

variation of parameter does not equal to the parameter space for one specific site. It is 

possible to generate such a figure in the future after we conduct some rigorous study. 

We added one sentence in L217 - L220 (“While the two sensitivity analyses evaluated 

the relative importance of the six mechanisms, projecting changes in SOC needs to use full 

distributions of potential values of these mechanisms in future research.”) to clarify the point. 

 

– The results also state that a 10% increase in SOC needs a 3% increase in CUE and a 7% 

decrease in the environmental modifier. The latter is a model construct and not very 

meaningful. How much does the overall ‘environmental modifier’ vary spatially in the best 

fit model? How much can it change under future conditions? It is not apparent what a 7% 

decrease in the environmental modifier really means with regards to temperature, moisture, 

etc. sensitivity, so it is unintuitive to interpret this. 

 

R3.3b We agree with the referee that it is not intuitive to understand the meaning of a 7% 

decrease in the environmental modifier. As in most of the Earth system models, CLM5 

defines the environmental modifier as response functions of SOC decomposition to changes 

in temperature and moisture. Parameters in these response functions usually have fixed 

values over the globe. The 7% decrease in the environmental modifier results from changes 

in these parameter values to the extent that environmental scalar decreases by 7%. We hope 

that this explanation helps. We also revised the method description in L762 – L767 to clarify 

this point. 
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Other comments: 

 

- The “6 mechanisms” in this study are not really mechanisms per se. For example, 

“environmental modifier” is not a mechanism... I’d argue that neither is baseline 

decomposition, but rather it is a model construct of a suite of mechanisms. 

 

R3.4a The referee is correct that all the “six mechanisms” we referred in the manuscript are 

ensembles of processes. For example, environmental modifier is an ensemble of all 

parameters related to regulations of soil organic carbon cycle by its physical environment. 

Similarly, the baseline decomposition is calculated from processes that are related to the 

intrinsic decomposition rate of different carbon pools. We calculated the integrated values of 

processes from the same category. These ensembles of processes are a useful way to describe 

the holistic system dynamics of SOC over the globe. We clarified this point in the revised 

manuscript L714 - L720. 

 

- The following sentence in the abstract “Our findings support a hypothesis that high 

microbial CUE favors preservation of carbon as SOC instead of stimulation of soil 

respiration” seems trivial, by definition of CUE. 

 

R3.4b We agree with the referee that high microbial CUE should favour preservation of 

carbon as SOC, in some cases by definition. However, previous studies, e.g., the microbial 

model by Allison et al. (2010), suggested a negative CUE-SOC relationship. This triggered 

discussions in the community on whether high CUE promotes SOC storage or loss (please 

see Response Letter Figure 2). One of the major contributions of this study is that we 

resolved the controversy on the CUE-SOC relationship. We found that high CUE promotes 

SOC storage at the global scale.  

 

- The authors should consider mentioning more explicitly in the abstract that the ‘synthetic 

analysis’ of all of these profiles relies on a data-model integration (and specifically CLM5) to 

quantify the various “mechanisms”, as the majority of these mechanisms (e.g., carbon inputs, 

vertical transport, CUE) are not directly measured within the globally-distributed soil 

profiles. Simply saying “the retrieved CUE from the global SOC database” could be 

deceiving. The finding that CUE is “twice as important” may largely depend on the choice of 

model (i.e., CLM5), so this context is important. 
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R3.4c Thanks for the suggestion. We revised the sentence to be “The retrieved CUE from the 

global SOC database using Community Land Model and deep learning is at least twice as 

important as …” in the abstract (L48 - L50).  

 

- The depth findings are interesting, but I would like to see them supported empirically, not 

just using model-derived values. The mixed-effects model results suggest that depth is 

important for SOC, of course, but what about exploring depth effects on CUE. You give 

results from a mixed-effects model of SOC, but could also explore variation in CUE. 

 

R3.4d Thanks to the referee for providing this valuable suggestion. We found that the depth 

has no significant correlation with measured CUE in our meta-analysis. This may be because 

most of the CUE in the meta-analysis was measured in the surface soil (0 – 30cm). Our 

results in Response Letter Fig. 4 demonstrated the difference in regulation of CUE in both 

surface and subsurface (deeper than 30cm) soils. In the future, more studies of microbial 

processes are needed in the subsurface soil to fully address this issue. 

 

- Furthermore, with regards to depth in Ext. Data Fig. 4, how can we interpret these findings 

in the context of studies that have shown that similar amounts (or at times more) of SOC is 

microbially-derived at depth compared to the surface? Microbial recycling plays an important 

role at depth. This could be discussed further. 

 

R3.4e The referee made a great point that microbial recycling plays an important role at 

depth. Our results as shown in Response letter Fig. 4 indicate that the explanatory power of 

microbial CUE decreases with depth for SOC. It is possible that microbial recycling is a 

different concept from (maybe a much broader one than) CUE. Also, the overall explanatory 

power by CLM5 decreases in deep layers. Nevertheless, it is a very interesting issue to 

explore in the future research. We included this point in the revised manuscript in L128 - 

L131. 

 

- Can carbon input be included in Ext. Data Fig. 7? I understand it is not estimated in the 

same way, because it is CLM5 derived. But, the environmental variables listed do also affect 

carbon inputs. 
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R3.4f We thank the referee for pointing this out. Carbon input was not predicted by the 

neural network. Extended Data Fig. 7 in the original manuscript (Extended Data Fig. 11 in 

the revised manuscript) was generated from the results of the neural network. We are afraid 

that we may not be able to include carbon input in this figure.  

 

- Why is there no/little uncertainty in input carbon (Ext. Data Fig. 10)? I suppose this again 

has to do with the fact that input carbon is derived from CLM5. How much of a difference 

does it make if MODIS NPP or similar is used? Of course NPP is only a proxy for what 

actually enters the soil, and inputs are very difficult to measure accurately (e.g., roots, 

exudation), especially at scale. 

 

R3.4g The referee is correct that the input carbon derives directly from the simulation by 

CLM5. Originally, we did not show the uncertainty of input carbon while uncertainties for all 

the other variables were generated from neural network prediction. In the revised figure, we 

added the uncertainty of input carbon that derived from CLM5 simulation (Response Letter 

Fig. 9). Similarly, we tested the influence of such uncertainty on the final simulation of SOC 

storage (Response Letter Fig. 8a). Specifically, we perturbed the spatial variation of NPP by 

randomly adding or subtracting its two standard deviation value to or from its mean value in 

CLM5 simulations. The results indicated that variations in NPP influence the accuracy in 

representing SOC variation. But CUE is still the most important mechanism in representing 

SOC by CLM5. 

 We have revised the main text of the manuscript (L757 – L760) to clarify how we 

evaluate the influence of NPP. We added the new results to the Fig. 4a of the main text. The 

uncertainty of NPP from CLM5 simulations was also presented in the Extended Data Fig. 12. 

 

- It is not apparent why CUE is weighted in the way it is. I understand that the goal is to 

weight CUE by the flux going through each pathway. In contrast, all of the other 

“mechanisms” are weighted simply by the pool carbon densities. Why isn’t the 

decomposition rate weighted by the fluxes as with the CUE? In the present way, the 

weighting of CUE incorporates the decomposition rates, environmental modifiers, and soil 

thickness... so it is an amalgamation of various “mechanisms” presented herein. It would be 

helpful if the authors elaborated on their choice of weighting and the ranges of each value. 

Even the weighting for carbon input allocation, inspired by the ‘beta’ exponential functions 

of Jackson et al. 1996, could be explained more clearly. What about the proportion of input 
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carbon allocated as surface litter? (Furthermore, I assume that soil depth Dz and thickness 

delta-z are in units of meters, but this should be specified as with the other variables. Though 

eventually B should come out as unit-less.) 

 

R3.4f Thanks to referee for asking this good question. CUE is defined by how much carbon 

stays in the system versus how much carbon leaves the system via microbial metabolism. The 

system-scale CUE needs to consider all the carbon fluxes in the soil system. Because SOC 

decomposition, vertical transport and environmental modifiers are all dependent on carbon 

pool sizes, we weighted the baseline decomposition rate, vertical movement rate and 

environmental modifiers of individual carbon pools by their carbon pool sizes. We discussed 

the reasons of weighting for different mechanisms in L721 - L745 in the revised manuscript.   

 

- How large are the uncertainties from the profile-level data assimilation? (L602: 

“uncertainties of parameters and SOC simulation did not propagate from the profile-level 

data assimilation but only reflected uncertainties generated by the deep learning model”) 

 

R3.4g Thanks to referee for asking this good question. Uncertainty of simulated SOC at 

individual soil profiles is reflected by the coefficient of efficiency in Extended Data Fig. 2d, 

which indicates the explained variation of SOC. For the uncertainty of parameters after data 

assimilation, Response Letter Fig. 12 shows the standard deviation of the posterior 

distributions of different parameters after standardizing their values to the interval of [-0.5, 

0.5] by their prior ranges. In site-level data assimilation, the uncertainty of parameters is 

important. For the global scale simulation with the PRODA approach, we may need to find a 

representative point estimate of the posterior distributions to be predicted in the neural 

network. As introduced in the manuscript, the mean value of the parameters’ posterior 

distribution was selected to be predicted by the neural network. Thus, in the prediction of 

neural network, the uncertainty from site-level data assimilation was not included. 
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Response Letter Fig. 12 | Variations of posterior distributions of parameters in CLM5 

after data assimilation at each soil profile. Bars present the median values of standard 

deviation of different parameters’ posterior distributions. Error bars are the 68% confidence 

intervals. The grey dashed line indicates the median value of the standard deviation of 

different parameters. The right panel shows the prior distribution under the uniform 

distribution assumption (black line) and the posterior distribution (blue line) when the 

distribution follows a normal distribution with mean of 0 and standard deviation as the grey 

dashed line represents.  

 

- How would the results change if CLM5 were assimilated to global SOC (e.g., SoilGrids) 

instead of the profile values? This would introduce some uncertainty from the scale-up of 

SOC and it’s underlying covariates, but you are also introducing uncertainty with the 

parameter estimation from similar covariates. 

 

R3.4h We thank the referee for the question and comments. SoilGrids was derived from the 

WoSIS database and so did the PRODA-optimised SOC maps. It may introduce more 

uncertainty if we would use SoilGrids as the ‘observation’ in our data assimilation and 

PRODA prediction. 

 

- As the authors say themselves, the findings are based on (and interpreted with) CLM5, 

which does not explicitly represent microbial processes. However, they say that “CLM5 

explicitly represents CUE via partitioning... to respiration versus accrual to SOC” (L188). 

This is by definition of CUE. This sentence tries to support their choice of model, but really 
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CUE is a necessary construct in any soil model that dictates the allocation of carbon staying 

in the system versus leaving the system. 

 

R3.4i We thank the referee for pointing this out and we agree that our previous description 

was not accurate. In the revised manuscript, we included a microbially explicit model and 

reached similar conclusions. We revised the sentence in L108 – L112 of the revised 

manuscript as “The Community Land Model version 5 (CLM5) expresses CUE via 

partitioning metabolic substrate to microbial respiration versus accrual to soil organic 

carbon even though the model implicitly represents many microbial processes. In 

comparison, a microbial model explicitly simulates the direct dependence of SOC 

decomposition on microbial biomass via enzymatic activities…”. We hope the revision is 

clearer in describing CLM5 and the microbial model.  

 

- What fraction of the WoSIS and NCSCD profiles were from natural/undisturbed 

ecosystems? Is the steady-state assumption (L501-505) reasonable? 

 

R3.4g Thanks to the referee for asking this interesting question. We agree with the referee 

that SOC is rarely at absolute steady state in real world as climate changes and human 

activities disturb land carbon cycle16. However, the disequilibrium term is very small in 

comparison to the magnitude of SOC storage17. Therefore, the possible disequilibrium may 

not change much on the results shown in the manuscript. In the database we used in this 

study, 62% (71,041 out of 113,926) of the soil profiles are from natural ecosystems (i.e., with 

land cover type that is neither cropland nor urban area). We clarified the reasons why we 

used the steady state assumption in L538 - L544 of the revised manuscript.  

 

- L165: ‘Deep learning’ here is jargon-y and doesn’t give much information. Specify neural 

network in the text.  

 

R3.4k Thank the referee for this suggestion. We specified the “deep learning” as “multilayer 

neural network” in the revised manuscript (e.g., L89 and L163).  

 

- L152: The authors state that boreal regions have high quality (low C:N ratio) SOC 

substrates. They cite Reich et al. 2004, which focuses on N:P ratios, and states that “N is the 

major limiting nutrient in younger temperate and high-latitude soils,” implying that boreal 



 46 

regions are N-limited. Indeed, boreal regions can have high C:N ratio litter and soil stocks, 

which is seemingly the opposite of what the authors state.  

 

R3.4l We agree with the referee. We deleted this point in the revised manuscript. The 

decomposability of soil organic matter could be influenced by many factors. High availability 

of soil organic matter in the boreal regions may be the main reason to its high baseline 

decomposition values. The sentence has been changed to “In boreal regions, SOC is more 

vulnerable to future loss as indicated by high baseline decomposition rates (Fig. 3f), likely 

resulting from high accessibility and/or mineralizability (e.g., lack of interactions with soil 

minerals) of SOC substrates in this region.” (L182 - L185) 

 

I won’t go into minor details and typos (e.g., L153 lability not liability, L486 are not is, L649 

specifically not specially), given the above major comments that need re-thinking.  

 

R3.4m We apologize for these typos. We have corrected them in the revised manuscript and 

carefully checked the grammars and writing again before the re-submission. We hope the 

revised manuscript sufficiently addresses the referee’s comments. 
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Reviewer Reports on the First Revision: 

Referee #2 (Remarks to the Author): 

Authors have made a great job in revising the manuscript. I am really satisfied with the way they 

addressed my comments on the previous version of this manuscript. More information and analyses 

on the cross-validation, mapping, permutation importance and uncertainty quantification parts have 

been adequately included in this revision. 

Referee #3 (Remarks to the Author): 

The study by Tao et al. leverages a synthesis of CUE measurements, global soil profiles, and two 

biogeochemical models, to demonstrate through their PRODA (data assimilation & deep learning) 

approach the global importance of carbon use efficiency for soil carbon storage. I appreciate the 

considerable amount of work that the authors carried out for their revisions, and do believe that this 

is an interesting and impressive study that stimulates discussion. However, I still have several 

concerns regarding the conceptual framework and motivation, as well as the methods used and the 

interpretability of the results. 

1. Framing of conceptual arguments and motivation. 

I understand the desire to frame this study around the two conceptual hypotheses in Fig. 1. 

However, the processes behind these two hypotheses are not mutually exclusive. In reality, both 

occur and the amount allocated to enzymes that catalyze decomposition, in Fig. 1b, can vary 

depending on many factors, including nutrient availability and seasonal differences in moisture, 

temperature, and inputs that alter the microbial community. The positive feedback of microbial 

biomass and enzyme production (as in Fig. 1b) could, in addition to catalyzing decomposition, 

promote mineral-organic associations through an increase in sorption of microbial necromass and 

byproducts (Fig. 1a). These latter processes (mineral interactions, Fig. 1a) are not included in the 

microbial model, and yet, a positive CUE-SOC relationship still emerges (for Fig. 1b). What does this 

tell us about the two proposed arguments? 

The positive CUE-SOC relationship is supported by both microbial and first-order models following 

data assimilation, so the discussion of the negative relationship seems to be largely conceptual and 

not supported by the data. Could the authors clarify if this is the case? Besides the Allison et al. 2010 

modeling paper (which did not specifically dive into this topic, but rather the role of CUE on 

responses of soil to warming), can the authors provide additional citations (especially empirical) for 

the “CUE-SOC relationship controversy” as further motivation for their framing? 

Indeed, the paper still comes across as selectively choosing and testing parts that “agree” with the 

findings presented, as also mentioned by another reviewer. The corresponding response (R1.3b) 

seemed to have missed this point, and more discussion of the literature that has suggested a 

negative SOC-CUE relationship is warranted. In other words, more introduction should be given to 

better motivate the gaps in the literature and the hypotheses and set-up of this paper. 



Following on this, there was an important point made regarding how the ‘mechanisms’ feed into the 

model, and the corresponding response (R1.3c) again seemed to miss the point and just reiterated 

what the authors had already done. I would challenge the statement “from a perspective of 

modelling, there is no such a priori expectation that CUE should be a stronger predictor than 

others”, and encourage the authors to think about this more deeply. 

2. Definition and calculation of system-scale CUE. 

I appreciate the second R3.4f response (note that there were two R3.4f and R3.4g responses), and 

understand the rationale behind the calculations here, but it seems that the present way of 

calculating CUE – weighting it by the baseline decomposition and environmental modifiers – makes 

it an amalgamation of various “mechanisms” presented herein. I feel that this is worth discussing in 

the context of it being more important than the other individual ‘mechanisms’ that are used in its 

calculation. Is it really fair to compare these ‘mechanisms’ on the same playing field, when one 

‘mechanism’ is calculated using several of the ‘mechanisms’ it is being compared against? 

The authors provide interesting results on SOC-CUE slopes across different soils and biomes for 

CLM5 in Response Letter Fig. 11, but these results could be discussed further in the main text (L135). 

The findings were mainly stated in the response letter, which is not helpful for readers. Even there, 

the authors simply state that, for example, “SOC storage is more responsive to CUE in tropical than 

in boreal regions” – but why? This is interesting in combination with the typically higher CUE in 

boreal than in the tropics (Fig. 3c). Though I’d also caution the authors in saying more ‘responsive’, 

since this is derived from a space-for-time substitution. The results in Response Letter Fig. 11 (Ext. 

Data. Fig. 7) were for CLM5, but what about the microbial model? 

Regarding differences in CUE-SOC slopes across the models and measurements (e.g., in Fig. 2), the 

added text and R3.1c feel too brief and superficial. The authors give a sense of the covariates 

involved for CLM5 results, but not for the meta-analysis data or microbial model. As noted above, 

could similar results from the other data sources also be provided? It is also interesting that the 

slope from the microbial model is much better aligned with the meta-analysis data. Why? And how 

does this fit together with the authors’ conclusions that the microbial model is well-approximated by 

the first-order model? 

More discussion could also be provided on the microbial model CUE and parameter sensitivity 

analysis in the main text. How relevant is it? What does this mean physiologically for microbes and 

their enzyme production? How can this vary temporally? The response letter contains some 

discussion where Response Letter Fig. 2 is presented, but I could not find this in the main text 

(apologies if I missed it). How much did the value of beta vary in the assimilated global model? I 

assume that beta is ‘allo_slope’ in Extended Data Table 8; if so, please check for consistency in 

parameter names. 

3. Robustness and predictability. 

Given the sparse global distribution (Fig. S1), could the authors comment further on the robustness 



of their results in data-poor regions and the predictability across studies? Would adding another 

study elsewhere change the results? What about (the lack of) data in the tropics and in deeper soils 

(e.g., below 30cm), where model results are then presented? Indeed, there was no/little data for 

these regions, but the results and patterns in declining explanatory power were used to imply 

process – for example, in Response Letter Fig. 4: “Declining explanatory power of CUE to the 

variation in SOC with soil depths indicates a shift from biotic-dominated to abiotic-dominated SOC 

accumulation.” I understand that data paucity is often a problem for such questions, but this is 

important when making global conclusions. 

With regards to the robustness of regression slopes and intercepts, the question (to me at least) is 

less about subsampling the 1,000 soil profiles for a mixed effects model, and more about the 

(stratified) sampling from the 52,000 WoSIS profiles to the 1000 profiles in the data assimilation. If 

different 500-1000 soil profiles were subsampled (covering the same climate-weighted domains) 

from the WoSIS profiles, would the data assimilation results of CUE differ? This would be a better 

test of robustness, as opposed to subsampling the data assimilation output. More information on 

this subsampling would also be helpful, following on L628-631. How many points were selected from 

each climate zone and how much heterogeneity is there between points in a given climate zone? On 

this note, it would also be helpful to show that the (1) synthesis data, (2) 1000 subsampled points, 

and (3) 52,000 WoSIS profiles cover similar regions of a multi-dimensional covariate space. 

What if other covariates were included in the mixed-effect models of SOC-CUE relationships? For 

example, soil moisture, clay content, NPP, etc. At least for the data assimilation results, where these 

covariates are reported. 

What if the SCE method was used to assimilate SOC data into the CLM5 model as well? As a check on 

using a different assimilation method for the microbial model. 

4. Proportional changes in ‘mechanisms’ are still difficult to interpret. 

I think the authors may have misunderstood the R3.3a and R3.3b comments. I appreciate their 

responses and the fact that they do not know the parameter space at each grid cell. However, I feel 

that having some sense of what the relative change in a given parameter means is critical. I 

completely understand what the environmental modifier is from a modeling perspective, but again, 

it is a model construct and a 7% decrease is not very meaningful without context. I feel the results 

would be much more impactful if the authors could give this context. For example, in the case of the 

environmental modifier, how much does it vary spatially in the best fit model? What does this mean 

with regards to differences in temperature and moisture? 

Again, I am not sure ‘mechanism’ is the correct word for environmental modifier, baseline 

decomposition, or most of the ‘mechanisms’ herein, even carbon use efficiency. Some of these are 

model constructs and others are, as the authors acknowledge in their response, emergent properties 

resulting from various underlying processes. I appreciate the added text on L714, but I still think 

‘mechanisms’ might not be the correct terminology. 

Other comments: 



The authors state (L222) that the permutation analysis indicates that soil physical properties explain 

CUE’s spatial variability more than climate or soil chemical properties, but the latter two appear 

quite close. Disregarding them seems misleading. 

The Fig. 2 caption should mention how many profiles were in the meta-analysis. Currently only the 

WoSIS and profile subsets are listed. 

The description of the empirical constraints as one pool being X-fold the size of another could be 

changed to percentages, which are more common (as in the studies cited). For example, if I 

understood correctly following on L615, SOC had to exceed MIC by at least 50-fold over the entire 

profile means that MIC can be at most 2% of SOC over the profile. Similarly, DOC could be at most 

10% of SOC in the entire profile and 1% of SOC in the topsoil. The constraint on DOC in the entire 

profile seems quite high… maybe this was a typo by the authors? The cited Guo et al. paper 

estimates DOC at around 1% of SOC across depths. In any case, writing these constraints as 

percentages of SOC would be more intuitive to most readers. 

L595 – should this read enzyme turnover rate? Also worth editing the Extended Data Fig. 4 caption 

to state enzyme production and turnover, as done in Response Letter Fig. 2. Tau is not well-defined 

or discussed in the manuscript and only really appears in Extended Data Fig. 4, unless I missed 

something. I would suggest putting a subscript ‘enz,decay’ on tau to prevent confusion with 

microbial turnover rates. I also wonder why only beta was selected for the sensitivity analysis and 

not the enzyme production rate k? 

In Extended Data Fig. 4 (i.e., Response Letter Fig. 2 – please use only one labeling scheme in future 

iterations if the figure is the replicated exactly) shouldn’t the case where beta = 1 (with tau = 1) 

depicted in dark red be the same as the case for tau = 1 (with beta = 1) in light blue? Why are these 

different? Apologies if I missed something, but either way, clarification in the caption would be 

helpful. Also, why are values for beta = 0.3 to 0.5 excluded with CUE = 0.2? 

Why is it not possible to analytically solve for soil carbon pool sizes in the microbial models (L598), 

especially in the simple one used here? It may be more complicated due to nonlinearities, but can be 

explicitly solved, as done in past microbial modeling papers. 

Using the word ‘preservation’ for soil carbon may imply longevity and could be misleading. I suggest 

using the word storage or stocks instead. Also, the words accumulation and loss suggest a dynamic 

change, whereas here you are using a space-for-time substitution, which often does not inform 

change under new conditions. Another reviewer brought up this issue of space-for-time, and I think 

the text could use more caveats on this point. The revised sentences (as in response R1.3a) do not 

mention potential problems with space-for-time (e.g., Abramoff et al. 2019) and currently state that 

“projecting changes in SOC needs to use full distributions of potential values of these mechanisms in 

future research” (L217). However, it’s not only about the full distribution of potential values, but also 

how current patterns in these values can or cannot inform projections. 



I have been asked by the journal editor to review the authors’ response to referee #1 comments, 

since she/he was not available to handle this revision. Hence, I have focused my revision only on 

such author response. 

1. Assigning process to pattern: 

I consider this the most important concern from referee#1, and I concur with her/his assessment 

that using only a first-order soil C model (CLM5) to address the outcome of the CUE vs SOC 

relationship was biased towards the positive trend, because of the absence of a feedback from 

microbial biomass towards SOC. The authors followed the suggested indications and used a four-

pool microbial-explicit model as in Allison et al (2010) to check whether a positive CUE vs SOC 

relationship was also found with a microbial model. Importantly, authors run this model using the 

data assimilation framework for increased generality and assessed parameter sensitivity. The results 

of the microbial model also support the positive CUE vs SOC relationship, and I appreciate the 

comprehensive response letter on this regard. I do think the ms has greatly improved with this 

addition. 

However, I do have a small concern about the previous analyses. If the outcome (+ or -) of the CUE-

SOC relationship depends on the parameter values of enzyme production used, I wonder how this 

has affected the interpretation made by authors (i.e. non-linear scaling of enzyme production and 

microbial biomass hinders higher SOM decomposition at high CUE). I have not found any discussion 

about this, but I guess this is needed to guide the reader and avoid confusion, either in the caption 

of Ext Data Fig. 4 and/or in the main text. 

2. Correlation vs. causation: 

I think the authors have done a good job incorporating the study ID as a random factor in the meta-

analysis as suggested by referee#1. Actually, different structures were tried and all results point to a 

similar CUE-SOC relationship. 

As it was expected with such a hierarchical dataset in the meta-analysis (132 observations from only 

16 experimental sites/papers), the variance explained in SOC by the mixed model is way larger 

(twice or even more in some model structures) than the fixed model. Although the number of sites 

(46) is actually not that bad, the meta-analytical database is quite poor in spatial spread and in 

number of studies. This clearly reflects the scarcity of field studies measuring CUE, but it is also a 

weakness of the meta-analysis and should be reflected in the text (or at least put into context with 

the need to be complemented with the other analytical approaches exploring the CUE-SOC 

relationship. 

I found intriguing why results in Extended Data Table 2 show a positive MAT effect on SOC but a 

negative MAT effect on microbial biomass in Extended Data Table 2. What is driving this? 

Editorial note: 
Referee #1 was unable to review the revised version of the paper. Therefore, another referee (referee #4) was 
asked to assess the authors responses to referee # 1. 
 

Referee #4 (Remarks to the Author): 



It seems many of your studies from the meta-analysis also include some management treatments 

that may confound these effects (eg. Fertilization, drought). Are you including these plots too in the 

meta-analysis or only the control ones? I did not find any info about this in the methods. 

Overall, I think the concern of the previous reviewer regarding correlation vs causation has been 

satisfactorily dealt with in this revision. 

3a. Space for time substitution: 

This has been nicely incorporated into the main text. 

3b. Discussions of literature findings that disagree with your results: 

I don´t think that removing the text on other plausible outcomes of the CUE vs MAT relationship 

(actually the negative one) is the solution to avoid confusion. Actually, I concur with referee #1 

assessment that your findings must be discussed and confronted with previous results from the 

literature, specifically to those that also use model-data integration to represent the implications of 

microbial physiology across large spatial scales. Actually, the negative CUE vs MAT relationship found 

in Ye et al 2019 GCB was somehow robust to variation in C substrate availability, although it´s true 

that other resources such as N and P were not assessed. With all this being said, I think this context 

should be brought back to the main text, and this should be useful to readers to better frame your 

results within the wider literature, even if this means bringing up apparently contradictory results. In 

my opinion, the different results here are profoundly influenced by the lack of CUE field assessments 

across diverse ecosystems, which is affecting our scientific understanding, but still we have to move 

forward, and your paper clearly helps to do so in a very compelling manner. 

3c. 

This has been nicely incorporated into the main text. 

3d. PRODA approach: 

The new paragraph makes a good introduction for the non-specialized readers about the goals of 

this approach, and benefits, from previous models. This helps to identify the novelty and to 

differentiate this study from previous ones. 

Minor issue: 

Revise the reference numeration in Extended Data Table 1, as this is not matching the reference list.
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Summary of responses to comments by referees 

 

All the three referees are highly positive about our first-round revision. Referee #2 was 

satisfied with our responses to her/his comments on the previous version of this manuscript. 

Referee #3 was highly positive about our substantial revisions and suggested that our study is 

interesting, impressive, and going to stimulate discussion. Referee #4 was also positive about 

our comprehensive responses to comments raised by Referee #1, did think the manuscript 

was greatly improved with the last revisions, and suggested that our paper clearly helps move 

forward with future CUE field assessments across diverse ecosystems in a very compelling 

manner. 

 

Referees #3 and #4 offered more comments on the revised manuscript. All these comments 

are constructive for us to improve our manuscript further. We have addressed all their 

concerns in the response letter and revised the manuscript accordingly. Here is a summary of 

the revision of our manuscript. 

 

1. Motivation of this study: Following suggestions by referee #3, we further frame the 

motivations of this study around the two key questions (R3.1c): how important is CUE 

relative to other mechanisms in determining SOC storage over the globe? Would CUE be 

positively or negatively correlated to SOC, especially if CUE is important in determining 

SOC storage? In particular, we further detailed the controversy of the CUE-SOC relationship 

in both the empirical and modelling communities (R3.1b). Moreover, we clarified the role of 

data assimilation in disentangling the CUE-SOC relationship controversy (R3.1a). By fusing 

observations with models (i.e., prior knowledge where both positive and negative CUE-SOC 

relationships are possible), data assimilation updates our understanding to generate a 

posterior knowledge that a positive CUE-SOC relationship is more probable than a negative 

one. Consequently, the argument about the positive CUE-SOC relationship (Fig. 1a) is 

favoured in controlling the soil carbon cycle, although these two relationships (as shown in 

Fig. 1a and 1b) both have some likelihood to co-occur in reality.  

 

2. System-level CUE and CUE-SOC regression slopes: Referee #3 raised concerns about 

the way we calculated system-level CUE. In the response letter (R3.2a) and revised 

manuscript, we further explained that the weighting scheme used in calculating system-level 

Author Rebuttals to First Revision:
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CUE is necessary to combine the various carbon transfer efficiencies (i.e., 𝑎!" in Equation 3) 

into a single metric that can be compared with measured CUE at the microbial community 

level. Moreover, we discussed the reasons for different CUE-SOC slopes from different 

sources and methods (R3.2c). Different isotope-labelling methods in field experiments and 

optimization algorithms in data assimilation (see also R3.3d) could lead to varying slopes. 

Although both the models used in this study follow a definition of CUE that is consistent 

with the one measured by isotope labeling methods, neither of the models explicitly simulates 

isotope (i.e., 13C/14C or 18O) dynamics in microbial metabolisms. Therefore, it is not 

unexpected that the CUE-SOC slopes differ between the data assimilation and meta-analysis 

despite the fact that the microbial model may yield a CUE-SOC slope close to that of the 

meta-analysis. 

 

3. Robustness of conclusions: Thanks to the suggestions by referees #3 and #4, we discussed 

the data coverage in the revised manuscript (R3.3a and R4.2b). We continued data 

assimilation with the microbial model in the past two months after we submitted the revised 

manuscript last time. Therefore, this round of revision added another 1,500 data assimilation 

results using the microbial model to the analyses (R3.3b). The newly added data assimilation 

results did not change any main conclusions discussed in this manuscript, confirming the 

robustness of our sampling method and conclusions drawn from the results. Following 

suggestions by referee #3, we also tested the CUE-SOC relationship using all the data 

assimilation results with CLM5 considering fixed effects from other covariates (e.g., clay 

content, NPP, etc.) in the mixed-effects modelling (R3.3c). Mixed-effects models with 

different structures all supported the positive relationship between CUE and SOC. Moreover, 

we applied the same SCE algorithm used in the microbial model data assimilation to CLM5 

at the 2,500 representative sites (R3.3d). The results showed a high agreement on the 

retrievals of different mechanisms between the SCE and MCMC methods. Therefore, results 

from both data assimilation methods (i.e., MCMC and SCE) support the positive CUE-SOC 

relationship.  

 

4. Relationship between temperature and CUE: Both referee #3 and referee #4 suggested 

more discussion about the relationships between mean annual temperature (MAT) and 

microbial CUE. In the response letter (R3.1c and R4.3b for details), we discussed that 

different definitions of CUE (i.e., physiologically defined CUE that can be measured by 
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isotope data versus stoichiometrically defined CUE that is measured by exoenzyme data) 

may cause differences in estimated MAT-CUE relationships. The physiologically defined 

CUE as measured by many previous studies, estimated by our meta-analysis, and simulated 

by the two models all decreases in warmer regions. The exoenzyme-derived CUE, which is 

confounded by microbial shifts in resource use in response to substrate stoichiometry in 

addition to the ratio of microbial growth over metabolized carbon, however, increases with 

temperature.  

 

We hope that our responses and revision of the manuscript are satisfactory to the referees. 

And we look forward to further feedbacks and comments. 

Below are our point-by-point responses (in blue) to referees’ comments (in black).  
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Point-by-point responses to referees' comments: 

 

Referee #2 (Remarks to the Author): 

Authors have made a great job in revising the manuscript. I am really satisfied with the way 

they addressed my comments on the previous version of this manuscript. More information 

and analyses on the cross-validation, mapping, permutation importance and uncertainty 

quantification parts have been adequately included in this revision. 

 

Response: We greatly appreciate the positive evaluation by this referee on our first-round 

revision. 
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Referee #3 (Remarks to the Author): 

The study by Tao et al. leverages a synthesis of CUE measurements, global soil profiles, and 

two biogeochemical models, to demonstrate through their PRODA (data assimilation & deep 

learning) approach the global importance of carbon use efficiency for soil carbon storage. I 

appreciate the considerable amount of work that the authors carried out for their revisions, 

and do believe that this is an interesting and impressive study that stimulates discussion. 

However, I still have several concerns regarding the conceptual framework and motivation, 

as well as the methods used and the interpretability of the results. 

 

Response: We greatly appreciate the generally positive evaluation on our manuscript by 

referee #3. We have addressed all the concerns as described below. 

 

1. Framing of conceptual arguments and motivation. 

I understand the desire to frame this study around the two conceptual hypotheses in Fig. 1. 

However, the processes behind these two hypotheses are not mutually exclusive. In reality, 

both occur and the amount allocated to enzymes that catalyze decomposition, in Fig. 1b, can 

vary depending on many factors, including nutrient availability and seasonal differences in 

moisture, temperature, and inputs that alter the microbial community. The positive feedback 

of microbial biomass and enzyme production (as in Fig. 1b) could, in addition to catalyzing 

decomposition, promote mineral-organic associations through an increase in sorption of 

microbial necromass and byproducts (Fig. 1a). These latter processes (mineral interactions, 

Fig. 1a) are not included in the microbial model, and yet, a positive CUE-SOC relationship 

still emerges (for Fig. 1b). What does this tell us about the two proposed arguments? 

 

R3.1a: We thank referee #3 for asking this great question. A positive CUE-SOC relationship 

emerges from the two structurally different biogeochemical models after the two models are 

informed by data. It is because data contains information that can help constrain model 

parameters and predictions with a data assimilation framework (e.g., via MCMC and SCE 

methods in this study). The prior knowledge from the microbial model suggests that either a 

positive or a negative relationship between CUE and SOC could occur under different 

parameter combinations (Extended Data Fig. 3 of the revised manuscript). The new 

information from data of the 1,000 (we increased the number of profiles to 2,500 in this 

revision) vertical SOC profiles worldwide updates our understanding to generate a posterior 

knowledge that a positive CUE-SOC relationship is more probable than a negative one, 
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although both arguments (as shown in Fig. 1) underlying these two relationships have some 

likelihood to co-occur in reality.  

 The referee is correct that the microbial model includes processes of carbon allocation 

to enzymes that catalyze decomposition but does not explicitly include many related factors, 

such as nutrient availability, seasonal differences in moisture and temperature, and carbon 

inputs that alter the microbial community. The microbial model used in this study includes 

feedback processes between microbial biomass and enzyme production but does not include 

explicitly the processes related to mineral-organic associations through an increase in 

sorption of microbial necromass and byproducts. “A model, no matter how complex it is, 

could not represent all the processes of one system at resolved scales. Interactions of 

processes at unresolved scales with those at resolved scales should be reflected in model 

parameters” stated in Luo and Schuur (2020)1. Although the microbial model does not 

include many processes, such as mineral-microbe interactions (i.e., the processes at 

unresolved scales), these processes at unresolved scales are represented in the estimated 

parameters of these processes at resolved scales after data assimilation. That is the reason 

why a positive CUE-SOC relationship emerges after data assimilation, even if some of the 

processes that may lead to a positive CUE-SOC relationship are not explicitly included in the 

microbial model. 

 The two structurally different biogeochemical models, after being constrained by 

data, both generate positive CUE-SOC relationships. It is because globally minimizing the 

mismatches between observed and modelled values trains models of different structures to 

predict similar dynamics of one system. This has been documented in the literature. For 

example, Wang et al. (2022)2 used observations from one field warming experiment to train 

two models (a carbon-only model and a carbon-nitrogen coupled model) with data 

assimilation techniques. While estimated parameters differ between the two models, the 

predicted carbon pool sizes and their changes under warming are similar between the two 

models. MacBean et al. (2022)3 also showed that two different versions of a terrestrial 

biosphere model (i.e., ORCHIDEE) yielded similar predictions after being constrained by 

data assimilation. After data assimilation in this study, the Michaelis constant for SOC 

decomposition (i.e., 𝑘#,%&'(#) in the Michaelis-Menten equation of the microbial model is 

about 100 times that of its substrate concentration (i.e., SOC concentration) for most of the 

soil profiles (Extended Data Fig. 8 of the revised manuscript). Thus, the nonlinear kinetics for 

enzyme-based SOC decomposition in the microbial model can be approximated by the first-
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order kinetics as in CLM5 with respect to SOC, leading to converging predictions by the two 

structurally different models.  

We hope the above explanation helps understand the reasons why the two structurally 

different biogeochemical models yield similar positive CUE-SOC relationships after data 

assimilation. In the revised manuscript, we highlighted the possibility of co-existence of the 

two arguments about the CUE-SOC relationship (e.g., L92, L126 - L129, L230 - L232 and 

the legend of Fig. 1) and the power of data in identifying the most probable relationships by 

data-model fusion (i.e., data assimilation) (L112 – L116 and L630 – L640).  

 

The positive CUE-SOC relationship is supported by both microbial and first-order models 

following data assimilation, so the discussion of the negative relationship seems to be largely 

conceptual and not supported by the data. Could the authors clarify if this is the case? Besides 

the Allison et al. 2010 modeling paper (which did not specifically dive into this topic, but 

rather the role of CUE on responses of soil to warming), can the authors provide additional 

citations (especially empirical) for the “CUE-SOC relationship controversy” as further 

motivation for their framing? 

 

R3.1b: The referee is correct that our results in this manuscript suggest that both the 

microbial and first-order models after data assimilation support a positive CUE-SOC 

relationship. In the manuscript L230 - L232, we stated that “Our results from the two 

structurally different models and meta-analysis of field experiments support the argument 

that a high microbial CUE favors storage of SOC more than respiratory loss”  

 Although this study shows that the first argument (Fig.1a) has a high probability to 

play the dominant role in controlling SOC storage and generate the positive CUE-SOC 

relationship after the microbial model is constrained by the global SOC dataset, it has been 

debated whether the CUE-SOC relationship is positive or negative in both the empirical and 

modelling research communities. While data from field surveys4,5 and microcosm studies6 

supported a positive CUE-SOC relationship, it has been discussed in theories via modelling 

studies7-9 and observed in empirical studies10 that a high CUE leads to increasing microbial 

biomass and stimulates extracellular enzyme activity (EEA). Separate data syntheses studies 

have suggested that increased EEA is related to enhanced soil respiration and SOC loss11. For 

example, increased activity of glucosidase leads to microbial biomass loss12,13 and activity 

level of oxidase is negatively correlated with mineral SOC storage14,15. Similarly, a high CUE 

associated with glucose addition is correlated with SOC priming along a gradient of soils 
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with varying C:N ratio and SOC content16. These separate empirical studies implied a 

possibility that CUE and SOC could be negatively correlated. 

Similarly, many modelling studies have shown a negative relationship between CUE 

and SOC. Schimel and Weintraub (2003)17 proposed one of the first microbial models to 

highlight the role of exoenzyme activities in soil carbon cycle. The study by Allison et al.18 

further anchored the importance of microbial physiology in regulating soil carbon cycle and 

triggered discussions about the role of CUE in determining SOC storage. In the past decades, 

dozens of microbial models with different structures have been built upon the basic structure 

proposed by Allison et al. (2010) (e.g., refs19,20). Allison et al. (2010) stated that “As enzyme 

production is linked to biomass, the decline in CUE ultimately limited the enzyme catalyst 

for SOC decomposition”, suggesting a lower CUE may actually lowering the respiratory 

losses of SOC in the long term. This conclusion has also been drawn from other modelling 

studies with similar model structures19,21. However, mathematical analysis on those microbial 

models further revealed that the role of CUE in regulating SOC dynamics relies on the value 

of key parameters21, highlighting the importance of fusing data with process models to gain 

emerging understanding of SOC storage. 

Overall, many empirical and modelling studies have suggested either positive or 

negative CUE-SOC relationships. These debates further motivate our study to examine the 

relationship between CUE and SOC storage at the global scale. 

In the revised manuscript, we further clarified our motivation of solving the CUE-

SOC relationship controversy in L126 – L129 and included the above cited references in the 

main text (e.g., refs 30-31 35-37 of the main text). 

 

Indeed, the paper still comes across as selectively choosing and testing parts that “agree” with 

the findings presented, as also mentioned by another reviewer. The corresponding response 

(R1.3b) seemed to have missed this point, and more discussion of the literature that has 

suggested a negative SOC-CUE relationship is warranted. In other words, more introduction 

should be given to better motivate the gaps in the literature and the hypotheses and set-up of 

this paper.  

 

R3.1c: We thank this referee for the suggestion. We have framed our study based on two key 

questions: how important is CUE relative to other mechanisms in determining SOC storage 

over the globe? Is CUE positively or negatively correlated with SOC, especially if CUE is 

important in determining SOC storage? In the manuscript, we framed our study to address the 
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first question by reviewing a currently prevailing paradigm that emphasizes the importance of 

carbon input and decomposition in SOC accrual (L61 – L70), current knowledge gaps (L70 – 

L74), and the increasing evidence on the role of microbial physiology (as represented by 

CUE) in the soil carbon cycle (L75 – L77). Thanks to the suggestions by this referee, we 

have added additional citations to better frame this study for addressing the second question 

with a balance view on both the negative and positive relationships between CUE and SOC in 

the revision as we discussed in R3.1b. 

While the relationship between temperature and microbial CUE (as discussed in 

R1.3b of the first-round response letter) is important to be explored, it is not a main question 

we focused on in this study. Thanks to the suggestions by referees #3 and #4, we included the 

MAT-CUE relationship in this revision, and we explained why it is negative in our study yet 

positive in Ye et al.’s study22. The detailed explanations can be found in R4.3b. Briefly, the 

CUE data used in our meta-analysis was defined as the ratio of carbon used in microbial 

growth relative to the total carbon used in metabolism. It was measured by isotopically 

(13C/14C or 18O) labelled substrates in empirical studies. The CUE defined in our models is 

conceptually consistent with the isotope-derived CUE. Ye et al. (2019) used CUE estimates 

from enzyme and substrate stoichiometry (i.e., C:N or C:P) relationships. In addition to the 

ratio of microbial growth over metabolized carbon as in the isotope-derived CUE, the 

stoichiometry-derived CUE is confounded by microbial shifts in resource use in response to 

substrate stoichiometry23.  

In the revised manuscript (L159 - L163) and Supplementary Discussion, we discussed 

the MAT-CUE relationship and the reasons why such relationship is different when CUE is 

defined by different methods.  

 

Following on this, there was an important point made regarding how the ‘mechanisms’ feed 

into the model, and the corresponding response (R1.3c) again seemed to miss the point and 

just reiterated what the authors had already done. I would challenge the statement “from a 

perspective of modelling, there is no such a priori expectation that CUE should be a stronger 

predictor than others”, and encourage the authors to think about this more deeply. 

 

R3.1d: We thank the referee for the comment. We stated “there is no such a priori 

expectation that CUE should be a stronger predictor than others” for two reasons. First, the 

sensitivity analysis with the microbial model in our study indicated that CUE could have 

negative, null, and positive impacts on SOC storage (Extended Data Fig. 3 of the revised 
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manuscript). The model does not have an a priori expectation on either the sign (i.e., 

positive, null, or negative) of the CUE-SOC relationship or the importance (i.e., effects with a 

sign) of CUE to SOC storage. Second, researchers of the soil carbon cycle have not 

historically placed (at least not on purpose) higher weights to CUE than any other processes 

(e.g., carbon input or decomposition) in influencing SOC storage. As we discussed in the 

manuscript (L61 – L70), the conventional paradigm has emphasized the importance of plant 

carbon input and substrate decomposition in regulating SOC storage instead of microbial 

CUE. The importance of microbial CUE emerged from this study only after we fused global 

soil data into the models. Nevertheless, we acknowledged a possibility that the way of 

incorporating CUE into process models may make CUE more important than other 

mechanisms in influencing SOC in L209 – L211 of the revised manuscript. 

 

2. Definition and calculation of system-scale CUE. 

I appreciate the second R3.4f response (note that there were two R3.4f and R3.4g responses), 

and understand the rationale behind the calculations here, but it seems that the present way of 

calculating CUE – weighting it by the baseline decomposition and environmental modifiers – 

makes it an amalgamation of various “mechanisms” presented herein. I feel that this is worth 

discussing in the context of it being more important than the other individual ‘mechanisms’ 

that are used in its calculation. Is it really fair to compare these ‘mechanisms’ on the same 

playing field, when one ‘mechanism’ is calculated using several of the ‘mechanisms’ it is 

being compared against? 

 

R3.2a: We thank this referee for raising this good comment, and we are sorry for the typo in 

numbering our previous response letter. As described in the manuscript, the system-level 

CUE is the sum of CUE along each of the carbon transformation pathways (i.e., 𝑎!" in 

Equation 3) weighted by the carbon fluxes over all the pathways in the soil system. It is not 

an amalgamation of various mechanisms although the calculation of carbon fluxes as the 

weighting factor requires information of decomposition, environmental scalar and depth. 

Without the weighing scheme we introduced, it would not be possible to calculate system-

level CUE values, which can be compared to observations. Specifically, 𝑎!" (i.e., CUE along 

the carbon transfer pathway to recipient pool 𝑖 from donor pool 𝑗) in equation 3 of the 

manuscript is weighted by the flux size from donor pool j (i.e., ∑ 𝑥",)𝑘"𝜉)Δ𝑧) ), which 

measures the amount of carbon incorporated into pool i from pool j, over the total carbon flux 
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in the soil system (i.e., ∑ ∑ 𝑥",)𝑘"𝜉)Δ𝑧)" ). Because carbon fluxes are generated from SOC 

decomposition, the carbon pool size of donor carbon pool 𝑥",), its baseline decomposition rate 

(𝑘") and environmental modifier (𝜉)) at each soil layer (𝑧) were used in this calculation (as 

correctly noted by the referee).  

We revised the manuscript L745 – L764 and L797 – L806 to describe how we 

calculated the system-level CUE with more details and how we conducted the second 

sensitivity analysis using the system-level CUE. We summarized our interpretation of bulk 

CUE in L760 – L764 as follows: “Equation 3 combines all the microbial carbon use 

efficiencies, 𝑎!", along individual pathways from pool j to pool i into one single metric, 

𝐶𝑈𝐸*+,-, that can be compared with measured CUE at the microbial community level that 

combines the carbon conversion efficiencies of multiple substrates into multiple microbial 

taxa” 

 

The authors provide interesting results on SOC-CUE slopes across different soils and biomes 

for CLM5 in Response Letter Fig. 11, but these results could be discussed further in the main 

text (L135). The findings were mainly stated in the response letter, which is not helpful for 

readers. Even there, the authors simply state that, for example, “SOC storage is more 

responsive to CUE in tropical than in boreal regions” – but why? This is interesting in 

combination with the typically higher CUE in boreal than in the tropics (Fig. 3c). Though I’d 

also caution the authors in saying more ‘responsive’, since this is derived from a space-for-

time substitution. The results in Response Letter Fig. 11 (Ext. Data. Fig. 7) were for CLM5, 

but what about the microbial model? 

 

R3.2b: We thank the referee for the comment. This is an extremely interesting issue that 

warrants full exploration. However, this manuscript has already covered many topics. Our 

manuscript is already longer than allowed to fully explain differences in SOC-CUE slopes 

and their causes except in Supplementary Information. Meanwhile, as we explained in the 

previous response letter, we did not include too much discussion about the slopes of CUE-

SOC relationship across ecoregions because of the lack of sufficient experimental data (i.e., 

field-measured CUE). While we found consistent results from both experimental studies4 and 

our analysis (Supplementary Fig. 2b) that the CUE-SOC slope is higher in acid soils than 

neutral or alkaline soils, presently we cannot find a rigorous benchmark from the field 

measurements to evaluate the results from data assimilation. In the future, detailed 
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understanding of the differences and their drivers in the slopes of CUE-SOC relationship 

across ecoregions requires more empirical data and experiments. We hope to fully explore 

this issue in the future, especially if we can find a way to collaborate with the referee. 

 We added the results from the microbial model in Response Letter Fig. 1 in this 

revision. In most cases, the slopes of CUE-SOC relationships vary similarly across 

ecoregions between these two models. Yet results across climatic zones differed between the 

two models. Fully understanding the variation in slopes across ecoregions and between 

different models needs more experiments and data in the future. 

 In the revised manuscript, the Response Letter Fig. 1 and relevant discussion were 

presented as Supplementary Fig. 3 and in the Supplementary Discussion, respectively. 

 

 
Response Letter Fig. 1 | Regression slopes of the CUE-SOC relationship across different 

ecoregions and soil types with the microbial model. Results are the slopes of the linear 

regression of the CUE-SOC relationship in different ecoregions and soil types. Error bars 

are the standard errors from the linear regressions. Numbers above the bars are the 

dimensions of freedom (df) in linear regressions. Line types of the bar and error bar plot 

indicate the P values of the regression slopes.  
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Regarding differences in CUE-SOC slopes across the models and measurements (e.g., in Fig. 

2), the added text and R3.1c feel too brief and superficial. The authors give a sense of the 

covariates involved for CLM5 results, but not for the meta-analysis data or microbial model. 

As noted above, could similar results from the other data sources also be provided? It is also 

interesting that the slope from the microbial model is much better aligned with the meta-

analysis data. Why? And how does this fit together with the authors’ conclusions that the 

microbial model is well-approximated by the first-order model? 

 

R3.2c: We thank the referee for the comment. Our study confirms the positive CUE-SOC 

relationship by all the methods and from different sources of data despite differences in the 

slopes among different methods. In Response Letter Fig. 1, we further showed that the 

positive CUE-SOC slopes retrieved from the microbial model vary similarly across 

ecoregions as those from CLM5. 

The slopes of the positive CUE-SOC relationship vary in our meta-analysis and 

between the two models. Different methods used to measure or estimate CUE strongly 

influence the slopes of CUE-SOC relationship. For the results from the two models, we 

discussed in R3.3d below that the different CUE-SOC slopes mainly resulted from different 

methods applied to data assimilation (i.e., SCE versus MCMC). The SCE method enlarged 

the variance of retrieved CUE than that from the MCMC method and thus reduced the 

regression slope in the CUE-SOC relationship. We also observed different CUE-SOC slopes 

by different methods in field experiments. Our meta-analysis data included two kinds of 

isotopes (i.e., 13C/14C and 18O) used to label substrate in measuring CUE. While the positive 

sign of the CUE-SOC relationship still held, results from the mixed-effects modelling 

suggested different CUE-SOC slopes with different isotope-derived CUE data (Response 

Letter Table 1). Labelling different compounds (i.e., organic carbon substrate for 13C/14C and 

water for 18O) may eventually affect the absolute value of CUE-SOC slopes in empirical 

studies (see similar discussion in ref24).  

While the CUE-SOC slopes retrieved from the two models are similar to those 

measured by isotope labeling experiments in terms of the conceptual definition all based on 

carbon allocated to microbial growth over the total carbon used in metabolism, neither of the 

models explicitly simulates 13C/14C or 18O dynamics in microbial metabolisms. Thus, it is not 

unexpected that the CUE-SOC slopes differ between the data assimilation and meta-analysis 

although the microbial model may yield a CUE-SOC slope close to that from the meta-

analysis. In the future, process models need new model structures that explicitly represent 
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CUE as measured in field experiments so that we can directly fuse field-measured CUE into 

model simulation to better understand the underlying mechanisms of CUE and its consequent 

impacts on SOC storage. 

In the revised manuscript, we included this point as a caveat of this study in L133 - 

L139 and Supplementary Discussion. Response Letter Table 1 is presented as Supplementary 

Table 5 of the revised manuscript.  

 

Response Letter Table 1 | Unstandardized coefficients of CUE-SOC relationship in the 

mixed-effects model with different isotopic-derived CUE data in the meta-analysis. CUE, 

depth and mean annual temperature (MAT) were set as the fixed effects to SOC content. The 

study source was set as the random effect.  

  Intercept CUE Depth MAT 
13C/14C derived relationship, 𝑛!"# = 21, 𝑛#$%&' = 6 

𝑆𝑂𝐶~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ +𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒), explained variation = 79% 

Fixed Effects 

Estimates -22.67 16.28 6.61 0.04 

Std. Error 36.91 47.14 2.50 1.61 

t value -0.64 0.35 2.61 0.026 

P 0.55 0.73 0.020 0.98 

Random Effects Standard Deviation 36.33 NA NA NA 
18O derived relationship, 𝑛!"# = 111, 𝑛#$%&' = 10 

 𝑆𝑂𝐶~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ +𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒), explained variation = 46% 

Fixed Effects 

Estimates 14.99 61.06 -0.72 0.17 

Std. Error 7.33 12.56 0.21 0.35 

t value 2.04 4.86 -3.46 0.48 

P 0.046 <0.0001 0.0007 0.63 

Random Effects Standard Deviation 10.51 NA NA NA 

 

More discussion could also be provided on the microbial model CUE and parameter 

sensitivity analysis in the main text. How relevant is it? What does this mean physiologically 

for microbes and their enzyme production? How can this vary temporally? The response 

letter contains some discussion where Response Letter Fig. 2 is presented, but I could not 

find this in the main text (apologies if I missed it). How much did the value of beta vary in 

the assimilated global model? I assume that beta is ‘allo_slope’ in Extended Data Table 8; if 

so, please check for consistency in parameter names.  
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R3.2d: We thank the referee for pointing out the typo. We also thank this referee for these 

important questions that are worthwhile to explore. We have added more discussion about the 

physiological meaning of the results from the parameter sensitivity analysis using the 

microbial model in the caption of Extended Data Fig. 3 (L1001 – L1005 of the revised 

manuscript) as follows: “Lower values of the exponent 𝛽 tend to cause positive relationships 

between CUE and SOC. This means that less-than-linear scaling of enzyme production and 

biomass does not allow decomposition to speed up at high CUE (i.e., the argument illustrated 

in Fig. 1b), whereas necromass contributions to SOC become more important and drive the 

positive CUE-SOC relationship (i.e., the argument illustrated in Fig. 1a)”.  

In the present study, we only focused on the results of the CUE-SOC relationship at 

steady state. The temporal changes of the 𝛽 value can be estimated only if we have data 

collected over time, which may be explored in the future. Moreover, Response Letter Fig. 2 

showed the distribution of 𝛽 in the microbial model after data assimilation with the 2,500 

representative SOC profiles across the world. The 𝛽 value varies across orders of magnitudes 

but mostly remains around 1. When the 𝛽 value is less than 1, a positive CUE-SOC 

relationship more likely emerges as shown in the Extended Data Fig. 3. However, the 𝛽 value 

is not the only parameter that determines a positive or negative CUE-SOC relationship. Many 

other processes (e.g., microbial mortality rate and SOC decomposition rate) in the microbial 

model could influence the final CUE-SOC relationship. The sensitivity analysis with the 

microbial model was to show that either a positive or a negative CUE-SOC relationship could 

emerge with different combinations of parameter values. 

 We corrected the ‘allo_slope’ in Extended Data Table 8 (now the Supplementary 

Table 8 in the revised manuscript) to ‘beta’ to keep consistent with discussion. 

We understand the referee’s desire for us to present all these interesting results in the 

main text. Unfortunately, we have limited space that allows us to present only key findings 

instead of all these interesting topics. We apologize for not being able to include more details 

on these questions in the main text.  
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Response Letter Fig. 2 | Distribution of the allometric slope in the microbial model after 

data assimilation with 2,500 representative SOC profiles across the world. Black dashed 

line indicates the value of 1. Note that the x axis has logarithmic scale. 

 

3. Robustness and predictability. 

Given the sparse global distribution (Fig. S1), could the authors comment further on the 

robustness of their results in data-poor regions and the predictability across studies? Would 

adding another study elsewhere change the results? What about (the lack of) data in the 

tropics and in deeper soils (e.g., below 30cm), where model results are then presented? 

Indeed, there was no/little data for these regions, but the results and patterns in declining 

explanatory power were used to imply process – for example, in Response Letter Fig. 4: 

“Declining explanatory power of CUE to the variation in SOC with soil depths indicates a 

shift from biotic-dominated to abiotic-dominated SOC accumulation.” I understand that data 

paucity is often a problem for such questions, but this is important when making global 

conclusions. 

 

R3.3a: We thank the referee for the comment. It is true that the data we used in the meta-

analysis did not cover all the ecoregions across the world. In the manuscript, we also 

mentioned that “To explore whether the CUE-SOC relationship obtained from local 

experimental measurements is widespread across the globe, we retrieved CUE from globally 
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distributed vertical SOC profiles” (L105 - L107). In the revised manuscript (L415 - L416), 

we further highlight the data scarcity in specific ecoregions: “Our meta-analysis covered 

main ecoregions of the world yet there is still a lack of data in rainforest, desert, and 

tundra”. The data coverage in our data assimilation is much wider than the meta-analysis and 

covered all the main ecoregions of the world (Response Letter Fig. 3). And the results from 

data assimilation with the two models all agree with those from the meta-analysis, showing a 

positive CUE-SOC relationship globally. In the future, more CUE data from field 

experiments are desirable to further explore the role of CUE at different soil depths in 

regulating global SOC storage. Moreover, the declining explanatory power of CUE to the 

variation in SOC with soil depths (Extended Data Fig. 4 of the revised manuscript) was 

drawn from the data assimilation results with either the representative 2,500 or all 52,819 

vertical SOC profiles across the globe, where a minimum observation depth of 50 cm for all 

the soil profiles was guaranteed (L455 - L458 and Extended Data Fig. 1 of the revised 

manuscript).  

 In the revised manuscript, we discussed the scarcity of data in the meta-analysis 

(L415 - L416) and the coverage of representative SOC profiles (L626 - L627). Response 

Letter Fig. 3 is presented as Supplementary Fig. 7 of the revised manuscript. 

 

 
Response Letter Fig. 3 | Coverage of data used in the meta-analysis with 132 data sets 

(a), microbial model data assimilation with the subset of 2,500 vertical profiles (b), and 

CLM5 data assimilation with all the 52,819 profiles (c). 

 

With regards to the robustness of regression slopes and intercepts, the question (to me at 

least) is less about subsampling the 1,000 soil profiles for a mixed effects model, and more 

about the (stratified) sampling from the 52,000 WoSIS profiles to the 1000 profiles in the 

data assimilation. If different 500-1000 soil profiles were subsampled (covering the same 
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climate-weighted domains) from the WoSIS profiles, would the data assimilation results of 

CUE differ? This would be a better test of robustness, as opposed to subsampling the data 

assimilation output. More information on this subsampling would also be helpful, following 

on L628-631. How many points were selected from each climate zone and how much 

heterogeneity is there between points in a given climate zone? On this note, it would also be 

helpful to show that the (1) synthesis data, (2) 1000 subsampled points, and (3) 52,000 

WoSIS profiles cover similar regions of a multi-dimensional covariate space. 

 

R3.3b: We thank the referee for the comment. The coverage of the data used in different 

methods is shown in Response Letter Fig. 3. While it is true that the data used in the meta-

analysis did not cover all the ecoregions, the SOC data used in data assimilation (either with 

the representative sites or all data sets) present good coverage of all main ecoregions of the 

world.  

In Extended Data Fig. 5 (now Supplementary Fig. 1), we applied 1,000-time 

bootstrapping to address the robustness of the regression slope and intercept of CUE-SOC 

relationship. Specifically, subsamples with different sizes were further sampled from the 

1,000 (2,500 in this revision) representative data assimilation results with replacement. The 

subsamples could either cover all the main ecoregions (as with the 2,500 representative 

profiles shown in Response Letter Fig. 3) or only a subset of them. Theoretically, after 

sufficient iterations of bootstrapping (e.g., 1,000 times in this study), the distribution of the 

regression slopes and intercepts (as shown in Supplementary Fig. 1) should indicate the range 

of all possible values that could occur. Our results in Supplementary Fig. 1 showed the 

robustness of the positive CUE-SOC relationship from the results of data assimilation with 

the microbial model.  

To address the referee’s concerns, we added another 1,500 data assimilation results 

using the microbial model in this revision. We have continued data assimilation with the 

microbial model in the past two months after we submitted the revised manuscript in case 

that more results are needed during this round of revision. All the newly added 1,500 SOC 

profiles were sampled following the same procedure with what we did for the previous 1,000 

profiles. The newly added data assimilation results did not change any main conclusions 

discussed in this manuscript, confirming the robustness of our sampling method and 

conclusions drawn from the results. All the related figures (e.g., Fig. 1, Extended Data Figs. 4 

and 8, Supplementary Figs. 1, 4, 9) and tables (e.g., Extended Data Table 2, Supplementary 
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Tables 3) in the revised manuscript have been updated based on the 2,500 data assimilation 

results.  

 

What if other covariates were included in the mixed-effect models of SOC-CUE 

relationships? For example, soil moisture, clay content, NPP, etc. At least for the data 

assimilation results, where these covariates are reported. 

 

R3.3c: We thank the referee for this good suggestion. We tried different model structures 

using data assimilation results with CLM5 and the whole SOC profile dataset. The fixed 

effects in mixed-effects models were set as either bulk density, cation exchange capacity, 

clay content, or NPP in addition to CUE. We found that the positive relationship between 

CUE and SOC was supported by all these mixed-effects models with different structures 

(Response Letter Table 2).  

 In the revised manuscript, the Response Letter Table 2 is presented as Supplementary 

Table 4. 

 

Response Letter Table 2 | Unstandardized coefficients of CUE-SOC relationship 

(considering fixed effects from other covariates) in the mixed-effects model with CLM5 

data assimilation results. CUE and one other environmental variable (i.e., bulk density, 

citation exchange capacity, clay content, or NPP) were set as the fixed effects to logarithmic 

SOC content. Climate types that soil profiles belong to were set as the random effect. We 

applied a mixed-effects model that considered random intercepts with common slopes to test 

CUE-SOC relationship (i.e., 𝑙𝑜𝑔10(𝑆𝑂𝐶)~𝐶𝑈𝐸 + 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 +

(1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠)). The random effects size 𝑛',!#./& = 12. The total observation size 

𝑛(*0 = 52280. The observation size is different from the total soil profile size (i.e., 52,819) 

because the environmental variable or climate type information is not available for some 

profiles. 

 

  Intercept CUE Variable 

log	(𝑆𝑂𝐶)~𝐶𝑈𝐸 + log	(𝐵𝑢𝑙𝑘	𝐷𝑒𝑛𝑠𝑖𝑡𝑦) + (1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠), explained variation = 60% 

Fixed Effects 

Estimates 3.66 3.41 -0.53 

Std. Error 0.063 0.028 0.0049 

t value 58.32 120.67 -106.92 
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P <0.0001 <0.0001 <0.0001 

Random Effects Standard Deviation 0.17 NA NA 

log	(𝑆𝑂𝐶)~𝐶𝑈𝐸 + 𝐶𝐸𝐶 + (1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠), explained variation = 57% 

Fixed Effects 

Estimates -0.48 3.87 0.0095 

Std. Error 0.056 0.028 0.00011 

t value -8.52 137.76 86.72 

P <0.0001 <0.0001 <0.0001 

Random Effects Standard Deviation 0.19 NA NA 

log(𝑆𝑂𝐶)~𝐶𝑈𝐸 + 𝐶𝑙𝑎𝑦	𝐶𝑜𝑛𝑡𝑒𝑛𝑡 + (1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠), explained variation = 52% 

Fixed Effects 

Estimates -0.62 4.54 0.0041 

Std. Error 0.069 0.028 0.00011 

t value -9.00 160.60 37.65 

P <0.0001 <0.0001 <0.0001 

Random Effects Standard Deviation 0.24 NA NA 

log(𝑆𝑂𝐶)~𝐶𝑈𝐸 + log	(𝑁𝑃𝑃) + (1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠), explained variation = 58% 

Fixed Effects 

Estimates -2.42 5.97 0.22 

Std. Error 0.054 0.030 0.0023 

t value -45.17 198.70 95.17 

P <0.0001 <0.0001 <0.0001 

Random Effects Standard Deviation 0.17 NA NA 

 

What if the SCE method was used to assimilate SOC data into the CLM5 model as well? As 

a check on using a different assimilation method for the microbial model. 

 

R3.3d: We appreciate this referee for this good suggestion. We applied the same SCE 

algorithm used in the microbial model data assimilation to CLM5 at the 2,500 representative 

sites. The results (Response Letter Fig. 4) showed high agreement on the retrievals of 

different mechanisms between the SCE and MCMC methods. Therefore, results from both 

data assimilation methods (i.e., MCMC and SCE) support the positive CUE-SOC 

relationship.  

 Moreover, we found that while SCE-retrieved CUE presented high correlation with 

those by the MCMC method (Pearson correlation = 0.7, P < 0.0001, Response Letter Fig. 4a), 

the SCE method also enlarged the variance of retrieved CUE. The enlarged variance of CUE 

further caused a lower CUE-SOC slope in regression. Using the same mix-effects model 
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structure (i.e., log10(SOC)~CUE + (1|Climate	Types)), we obtained log10(SOC) = 0.77 +

1.07 ∗ CUE from the results with SCE method (𝑛0.#1,& = 2207, P(CUE) < 0.0001, 

P(Intercept) < 0.0001, explained variation = 51%). Based on the above results, we conclude 

that the different CUE-SOC slopes between the microbial model and CLM5 in Fig. 2 of the 

main text partly resulted from the different methods of data assimilation.  

The different variance of retrieved CUE by the SCE and MCMC methods resulted 

from the difference in optimization algorithms. The SCE method first searches regions in the 

parameter space to give similarly low-cost function values (i.e., the difference between 

observations and model simulations, lower values indicates better fit of model simulation to 

observations) and then uses the genetic algorithm to shuffle those regions to find a point that 

gives a global optimum (i.e., the lowest cost value). The MCMC method, on the other hand, 

is based on the Bayesian statistics and generates the probability distribution (i.e., posterior 

distributions) of estimated parameters which are defined by the prior parameter ranges. 

While the point estimate given by the SCE method is usually in the range of the posterior 

distributions of parameters with the MCMC method, the two estimates do not have a one-to-

one relationship partly due to different shapes of the posterior distributions from the MCMC 

method, such as normal or skewed distributions. Because we used the mean value of the 

posterior distribution as the point estimate from the MCMC method, parameters that have 

skewed posterior distributions (e.g., CUE; the skewed posterior distributions of CUE-related 

parameters have been discussed in ref25) will present increased variance among different sites 

by the SCE method. 

We clarified the reasons of different CUE-SOC slopes from different methods in 

L133 - L139 of the revised manuscript and offered the detailed reasons in the Supplementary 

Discussion. Notwithstanding the difference in the absolute values of slopes of CUE-SOC 

relationships from different methods, the key conclusion of this study is that high CUE 

promotes global SOC storage, and this conclusion has been fully supported by our current 

models and methods. 
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Response Letter Fig. 4 | Retrievals of mechanisms using different data assimilation 

methods (i.e., MCMC and SCE methods) with CLM5 and the 2,500 representative soil 

profiles. Black lines are 1:1 lines and blues lines are the results of linear regression. Shaded 

areas are the 95% confidence of linear regression results. 

 

4. Proportional changes in ‘mechanisms’ are still difficult to interpret.  

I think the authors may have misunderstood the R3.3a and R3.3b comments. I appreciate 

their responses and the fact that they do not know the parameter space at each grid cell. 

However, I feel that having some sense of what the relative change in a given parameter 

means is critical. I completely understand what the environmental modifier is from a 

modeling perspective, but again, it is a model construct and a 7% decrease is not very 

meaningful without context. I feel the results would be much more impactful if the authors 

could give this context. For example, in the case of the environmental modifier, how much 

does it vary spatially in the best fit model? What does this mean with regards to differences in 

temperature and moisture? 

 

R3.4a: We thank the referee for this good suggestion. The revised sentences (L199 – L209) 

now read as: “The result (Fig. 4b) shows that a 10% increase in global SOC storage 

(equivalent to an additional 219 Pg SOC accumulation worldwide) requires a 3% increase in 

CUE (i.e., an increase of global median CUE from 0.39 to 0.40), a 7% decrease in 

environmental modifiers (i.e., equivalent to a decrease of global median temperature from 
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12.2℃ to 10.7℃, or a decrease of global median precipitation from 527mm to 445mm), an 

8% decrease in baseline decomposition rate (i.e., decrease of the global median from 0.034 

yr-1 to 0.031 yr-1), a 10% increase in carbon input (i.e., increase of global net primary 

productivity from 63 Pg C yr-1 to 69 Pg C yr-1), a 19% increase in vertical transport (i.e., 

increase of the global median from 0.046 yr-1 to 0.055 yr-1), or a 123% increase in input 

allocation (out of reasonable boundary in model simulation).” The changes in environmental 

modifier is associated with changes in global temperature and precipitation according to the 

statistical models between environmental modifier (𝜉) and mean annual temperature (MAT) 

(i.e., log(𝜉) ~𝛼𝑀𝐴𝑇 + 𝛽, regression 𝛼 = 0.048, 𝛽 = −2.43, R2 = 0.52) and precipitation 

(MAP) (i.e., 𝜉~𝛼𝑀𝐴𝑃 + 𝛽, regression 𝛼 = 0.00014, 𝛽 = 0.088, R2 = 0.39) across the globe 

as described in L806 - L812.  

 

Again, I am not sure ‘mechanism’ is the correct word for environmental modifier, baseline 

decomposition, or most of the ‘mechanisms’ herein, even carbon use efficiency. Some of 

these are model constructs and others are, as the authors acknowledge in their response, 

emergent properties resulting from various underlying processes. I appreciate the added text 

on L714, but I still think ‘mechanisms’ might not be the correct terminology. 

 

R3.4b: We totally understand the referee’s concern. However, ‘mechanism’ probably is the 

best term that we came up after serious consideration to refer these ensembles of processes 

(as we stated in L743 - L744). According to Merriam-Webster dictionary, mechanism is 

defined as “the fundamental processes involved in or responsible for an action, reaction, 

or other natural phenomenon”. Baseline decomposition is a process of SOC 

decomposition at a reference environmental condition. Carbon use efficiency is a process 

of microbial use of carbon for growth relative to the amount of metabolized carbon. 

Environmental modifier represents a suite of microbial processes in response to 

environmental changes. For example, microbes may become less active in metabolism and 

more dormant when soil becomes very dry. Microbes metabolize faster and respire more 

when temperature increases up to an optimum. Models represent these processes at 

aggregate levels so that we can examine system dynamics of land carbon cycle at the 

global scale. That said, we are eager to hear suggestions from this referee. 

 

Other comments: 
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The authors state (L222) that the permutation analysis indicates that soil physical properties 

explain CUE’s spatial variability more than climate or soil chemical properties, but the latter 

two appear quite close. Disregarding them seems misleading. 

 

R3.5a: We thank the referee for pointing this out. We did not disregard them. The sentence 

also expresses soil physical properties are more explanatory than climate and soil chemical 

properties. To make it clearer we changed the sentence (L217 – L219) to “A permutational 

analysis (Methods) indicates that soil physical properties are more explanatory to CUE’s 

spatial variability than climatic, soil chemical, vegetation, and geographic variables.” 

 

The Fig. 2 caption should mention how many profiles were in the meta-analysis. Currently 

only the WoSIS and profile subsets are listed. 

 

R3.5b: Following the suggestion, we added the number of data sets used in the meta-analysis 

to Fig. 2 caption in the revised manuscript. There is no vertical profile of field measurement 

of microbial CUE reported in the literature. 

 

The description of the empirical constraints as one pool being X-fold the size of another 

could be changed to percentages, which are more common (as in the studies cited). For 

example, if I understood correctly following on L615, SOC had to exceed MIC by at least 50-

fold over the entire profile means that MIC can be at most 2% of SOC over the profile. 

Similarly, DOC could be at most 10% of SOC in the entire profile and 1% of SOC in the 

topsoil. The constraint on DOC in the entire profile seems quite high… maybe this was a 

typo by the authors? The cited Guo et al. paper estimates DOC at around 1% of SOC across 

depths. In any case, writing these constraints as percentages of SOC would be more intuitive 

to most readers. 

 

R3.5c: We thank the referee for the good suggestion. We revised the description in the 

manuscript (L609 – L616).  

We set two constraints at different soil depths on DOC. The data reported in Guo et 

al.’s paper aggregated in the surface soil (i.e.,0 – 30cm)26 and we set the constraint as “DOC 

for the top 30cm should be no more than 1% of the SOC”. Meanwhile, we found that for 

specific soil type (e.g., Spodosols) at the deeper horizons, the DOC could be as high as about 
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7% of SOC27. We therefore applied the second constraint as “DOC of the entire soil depth 

should be no more than 10% of SOC”. 

 

L595 – should this read enzyme turnover rate? Also worth editing the Extended Data Fig. 4 

caption to state enzyme production and turnover, as done in Response Letter Fig. 2. Tau is 

not well-defined or discussed in the manuscript and only really appears in Extended Data Fig. 

4, unless I missed something. I would suggest putting a subscript ‘enz,decay’ on tau to 

prevent confusion with microbial turnover rates. I also wonder why only beta was selected 

for the sensitivity analysis and not the enzyme production rate k? 

 

R3.5d: We apologize for the typo. The “enzyme production rate” in L595 of the original 

manuscript (L587 in the revised manuscript) should be “turnover time for enzyme production 

(𝜏&2),13(%)”. It is not the turnover time for enzyme decay. The two parameters used in the 

sensitivity analysis are both from the equation 𝑃𝑅𝑂𝐷456 = 𝑘&2),13(%𝑀𝐼𝐶7 (L565 of the 

revised manuscript). The 𝜏&2),13(% in the Extended Data Fig. 4 (now Extended Data Fig. 3 in 

this revision) equals to the inverse of 𝑘&2),13(%. We revised the description in L587 and 

added a subscript “enz, prod” on 𝜏 in Extended Data Fig. 3 as suggested. 

 

In Extended Data Fig. 4 (i.e., Response Letter Fig. 2 – please use only one labeling scheme in 

future iterations if the figure is the replicated exactly) shouldn’t the case where beta = 1 (with 

tau = 1) depicted in dark red be the same as the case for tau = 1 (with beta = 1) in light blue? 

Why are these different? Apologies if I missed something, but either way, clarification in the 

caption would be helpful. Also, why are values for beta = 0.3 to 0.5 excluded with CUE = 

0.2? 

 

R3.5e: We thank the referee for pointing this out. The referee is right that the case where beta 

= 1 (with tau = 1) is exact the same with the case tau = 1 (with beta = 1). We revised 

Extended Data Fig. 4 (now Extended Data Fig. 3 in this revision) as suggested.  

 Because the microbial model is a nonlinear system, some ill parameter combinations 

could lead the system to a condition where there is no steady state solution. In Extended Data 

Fig. 3, we only changed the two target parameters but kept all others as default values, which 

could cause those ill parameter value combinations. The missed points in Extended Data Fig. 

3 are the case where we cannot find the steady state solution under such parameter 
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combinations. In the revised manuscript, we added explanations about the missing points in 

the caption of Extended Data Fig. 3 (L999 - L1000).  

 

Why is it not possible to analytically solve for soil carbon pool sizes in the microbial models 

(L598), especially in the simple one used here? It may be more complicated due to 

nonlinearities, but can be explicitly solved, as done in past microbial modeling papers. 

 

R3.5f: We thank the referee for the good question. In most cases, solutions for nonlinear 

differential equations cannot be analytically solved but can only be numerically analyzed. 

The previous microbial modelling studies either did the numerical forward integration28 as 

we did in this study, or linearized the model before solving it29, or applied the Newton-

Raphson method (or its equivalents) to approximate the steady state solution30,31. Newton-

Raphson and linearization methods may be less accurate than the numerical forward 

integration. The microbial model we applied in this model is relatively complicated (four 

nonlinear differential equations for each soil layer and a total of 80 nonlinear differential 

equations for connections among 20 soil layers) for those approximation methods. Thus, we 

chose the forward integration method to reach the steady state solution.  

 

Using the word ‘preservation’ for soil carbon may imply longevity and could be misleading. I 

suggest using the word storage or stocks instead. Also, the words accumulation and loss 

suggest a dynamic change, whereas here you are using a space-for-time substitution, which 

often does not inform change under new conditions. Another reviewer brought up this issue 

of space-for-time, and I think the text could use more caveats on this point. The revised 

sentences (as in response R1.3a) do not mention potential problems with space-for-time (e.g., 

Abramoff et al. 2019) and currently state that “projecting changes in SOC needs to use full 

distributions of potential values of these mechanisms in future research” (L217). However, 

it’s not only about the full distribution of potential values, but also how current patterns in 

these values can or cannot inform projections. 

 

R3.5g: We thank the referee for the suggestion. We scrutinized related sentences to avoid 

interpreting the spatial patterns into temporal domains. For example, we changed the 

“preservation” to “storage” in L54 and L232 of the revised manuscript.  

In the sentence “projecting changes in SOC needs to use full distributions of potential 

values of these mechanisms in future research”, we understand that examining the full 
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distributions of potential values of mechanisms includes testifying current pattern for space-

for-time substitution. To make it clearer, we revised the sentence to “While the two sensitivity 

analyses evaluated the relative importance of the six mechanisms, projecting future changes 

in SOC given this new knowledge will need to examine the full spaces of parameters related 

to these mechanisms and changing environments, and consider microbial physiological 

acclimation and genetic adaptations.” (L211 – L215).  
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Referee #4 (Remarks to the Author): 

 

I have been asked by the journal editor to review the authors’ response to referee #1 

comments, since she/he was not available to handle this revision. Hence, I have focused my 

revision only on such author response. 

 

Response: We greatly appreciate referee #4 for agreeing to review the manuscript and 

providing constructive comments and suggestions. Below are our point-by-point responses to 

referee #4’s comments.  

 

1. Assigning process to pattern: 

I consider this the most important concern from referee#1, and I concur with her/his 

assessment that using only a first-order soil C model (CLM5) to address the outcome of the 

CUE vs SOC relationship was biased towards the positive trend, because of the absence of a 

feedback from microbial biomass towards SOC. The authors followed the suggested 

indications and used a four-pool microbial-explicit model as in Allison et al (2010) to check 

whether a positive CUE vs SOC relationship was also found with a microbial model. 

Importantly, authors run this model using the data assimilation framework for increased 

generality and assessed parameter sensitivity. The results of the microbial model also support 

the positive CUE vs SOC relationship, and I appreciate the comprehensive response letter on 

this regard. I do think the ms has greatly improved with this addition. 

 

R4.1a: We greatly appreciate the positive evaluation by the referee on our first-round 

revision of the manuscript.  

 

However, I do have a small concern about the previous analyses. If the outcome (+ or -) of 

the CUE-SOC relationship depends on the parameter values of enzyme production used, I 

wonder how this has affected the interpretation made by authors (i.e. non-linear scaling of 

enzyme production and microbial biomass hinders higher SOM decomposition at high CUE). 

I have not found any discussion about this, but I guess this is needed to guide the reader and 

avoid confusion, either in the caption of Ext Data Fig. 4 and/or in the main text. 

 

R4.1b: We thank the referee for this good comment. We added sentences in the caption of 

Extended Data Fig. 3 (L1001 - L1005) to discuss how the parameters involved in enzyme 
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production influence the final CUE-SOC relationship as “lower values of the exponent 𝛽 tend 

to cause positive relationships between CUE and SOC. This means that less-than-linear 

scaling of enzyme production and biomass does not allow decomposition to speed up at high 

CUE (i.e., the argument illustrated in Fig. 1b), whereas necromass contributions to SOC 

become more important and drive the positive CUE-SOC relationship (i.e., the argument 

illustrated in Fig. 1a)”. We hope the added sentences are helpful for readers to better 

understand the results of the sensitivity analysis using the microbial model. 

 

2. Correlation vs. causation: 

I think the authors have done a good job incorporating the study ID as a random factor in the 

meta-analysis as suggested by referee#1. Actually, different structures were tried and all 

results point to a similar CUE-SOC relationship. 

 

R4.2a: We thank the referee for the positive evaluation on our revised meta-analysis.  

 

As it was expected with such a hierarchical dataset in the meta-analysis (132 observations 

from only 16 experimental sites/papers), the variance explained in SOC by the mixed model 

is way larger (twice or even more in some model structures) than the fixed model. Although 

the number of sites (46) is actually not that bad, the meta-analytical database is quite poor in 

spatial spread and in number of studies. This clearly reflects the scarcity of field studies 

measuring CUE, but it is also a weakness of the meta-analysis and should be reflected in the 

text (or at least put into context with the need to be complemented with the other analytical 

approaches exploring the CUE-SOC relationship. 

 

R4.2b: We thank the referee for this good comment. It is true that the data we used in the 

meta-analysis did not cover all the ecoregions across the world. In the manuscript, we also 

mentioned that “To explore whether the CUE-SOC relationship obtained from local 

experimental measurements is widespread across the globe, we retrieved CUE from globally 

distributed vertical SOC profiles...” (L105 – L107). The data coverage from our data 

assimilation is much wider than the meta-analysis and covered all the main ecoregions of the 

world (Response Letter Fig. 3). And the results from data assimilation with the two models 

all agree with the meta-analysis, showing a positive CUE-SOC relationship globally. In the 

future, more CUE data from the field experiments are desired. 
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 In the revised manuscript, we further discussed the scarcity of data in the meta-

analysis (L415 – L416) and the coverage of representative SOC profiles (L626 - L627). 

Response Letter Fig. 3 is presented as Supplementary Fig. 7 of the revised manuscript. 

 

I found intriguing why results in Extended Data Table 2 show a positive MAT effect on SOC 

but a negative MAT effect on microbial biomass in Extended Data Table 2. What is driving 

this? 

 

R4.2c: We appreciate the referee for asking this good question. In Extended Data Table 2 

(now the Extended Data Table 1 of the revised manuscript) the mixed-effects model (i.e.,	

𝑆𝑂𝐶~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ +𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒)) presented a positive regression slope for 

MAT-SOC relationship (0.13, P = 0.72). Using the same structure with the microbial model 

data assimilation results, the mix-effects model (Supplementary Table 2) showed a negative 

MAT effect on SOC (-0.038, P = 0.010). The results may result from the fact that CUE and 

soil depth had strong effects on SOC and, at the same time, CUE showed significant 

correlation with MAT (Supplementary Fig 4). In the regression, the residual of SOC did not 

show significant relationship with MAT (P = 0.72) after controlling the effects of CUE and 

soil depth on SOC. The microbial biomass data was measured independently from the SOC 

data. The results from mix-effects model using the microbial biomass data indicates that after 

considering effects of CUE and soil depth, the residual microbial biomass can still be 

explained by MAT (P = 0.010). Overall, the regression slope of MAT in the mixed-effects 

model using the SOC data may be influenced by its correlation with CUE and the positive 

value of the slope was not significant (P > 0.05). In the future, more SOC data is required to 

further confirm the value of MAT effect in the mixed-effects model. 

 

It seems many of your studies from the meta-analysis also include some management 

treatments that may confound these effects (eg. Fertilization, drought). Are you including 

these plots too in the meta-analysis or only the control ones? I did not find any info about this 

in the methods. 

 

R4.2d: We thank the referee for pointing this out. In our study, when the data was from 

manipulation experiments, we only collected data at the control plots. We clarified this point 

in L412 - L413 of the revised manuscript.  
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Overall, I think the concern of the previous reviewer regarding correlation vs causation has 

been satisfactorily dealt with in this revision. 

 

R4.2e: We thank the referee for the positive evaluation on the revised manuscript.  

 

Other points: 

3a. Space for time substitution: This has been nicely incorporated into the main text. 

 

R4.3a: We thank the referee for the positive evaluation. 

 

3b. Discussions of literature findings that disagree with your results: I don´t think that 

removing the text on other plausible outcomes of the CUE vs MAT relationship (actually the 

negative one) is the solution to avoid confusion. Actually, I concur with referee #1 

assessment that your findings must be discussed and confronted with previous results from 

the literature, specifically to those that also use model-data integration to represent the 

implications of microbial physiology across large spatial scales. Actually, the negative CUE 

vs MAT relationship found in Ye et al 2019 GCB was somehow robust to variation in C 

substrate availability, although it´s true that other resources such as N and P were not 

assessed. With all this being said, I think this context should be brought back to the main text, 

and this should be useful to readers to better frame your results within the wider literature, 

even if this means bringing up apparently contradictory results. In my opinion, the different 

results here are profoundly influenced by the lack of CUE field assessments across diverse 

ecosystems, which is affecting our scientific understanding, but still we have to move 

forward, and your paper clearly helps to do so in a very compelling manner. 

 

R4.3b: We thank the referee for the valuable comment. The different MAT-CUE 

relationships between our study and Ye et al.’s study mainly resulted from different methods 

of estimation and/or measurement of CUE. All the CUE values in our meta-analysis were 

based on measurement using isotopically (13C/14C or 18O, as reported in Supplementary Table 

1) labelled substrates to estimate the proportion of an organic substrate that is converted into 

new forms relative to the amount consumed in metabolism. And previous studies using the 

similar isotope-labelling method all supported a negative MAT-CUE relationship5,18,32.  

Ye et al. (2019) used CUE estimated from extracellular enzyme data33. Instead of 

defining CUE with the physiological partitioning of substrates, the enzyme-derived CUE was 
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defined from a perspective of elemental stoichiometry. The core assumption under this 

method states that “CUE of an organism is a function of the difference between its elemental 

requirements for growth and the composition of environmental substrate”33. While there is 

still lack of studies testing the consistency of measured CUE from these two methods, the 

enzyme-derived CUE conceptually has additional assumptions in comparison with the 

isotope-derived CUE to assess how microbes shift resource use in response to substrate 

stoichiometry23.  

In our study, the estimated CUE by the two biogeochemical models is conceptually 

consistent with the physiologically-defined CUE measured by isotopic data. Thus, the 

negative MAT-CUE relationship retrieved from both of the models agrees with the pattern 

emerged from the meta-analysis (Response Letter Fig. 5).  

In the revised manuscript, we discussed the MAT-CUE relationship in L157 – L163 

and included detailed discussion in Supplementary Discussion. Response Letter Fig. 5 is 

presented as Supplementary Fig. 4 in the revised manuscript.  

 

Redacted
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3c. This has been nicely incorporated into the main text. 

 

R4.3c: We thank the referee for the positive evaluation. 

 

3d. PRODA approach: The new paragraph makes a good introduction for the non-specialized 

readers about the goals of this approach, and benefits, from previous models. This helps to 

identify the novelty and to differentiate this study from previous ones. 

 

R4.3d: We thank the referee for the positive evaluation. 

 

Minor issue: Revise the reference numeration in Extended Data Table 1, as this is not 

matching the reference list. 

 

R4.3e: We apologize for the mistake. We have corrected the numeration in Extended Data 

Table 1 (now the Supplementary Table 1) in this revision. 
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Reviewer Reports on the Second Revision: 

Referee #3 (Remarks to the Author): 

The study by Tao et al. uses carbon use efficiency (CUE) measurements, global soil profiles, and two 

soil models to demonstrate the importance of CUE for soil carbon storage. I still have several 

concerns regarding the approach and the interpretability of the results. 

Definition and calculation of “mechanisms”: 

I stand by my concern on the word ‘mechanism’, especially for the model constructs (e.g., 

environmental modifier, baseline decomposition) presented. Even by the authors’ dictionary 

definition, these constructs cannot be called ‘fundamental processes’ in the ecological and climatic 

sense that they intend. They are largely dependent on the models used and do not have true 

empirical analogs. They also aggregate a number of components in their definition. For example, 

even the authors say that “Environmental modifier represents a suite of microbial processes in 

response to environmental changes.” This does not mean that ‘environmental modifier’ is a process 

or a mechanism in the true sense of those words. I would call these values ‘model constructs’ or 

‘model parameters/components’, as they depend directly on the models used. Even the calculation 

of bulk CUE is model-specific and predetermines the results to some degree. 

In R3.2a, the authors reiterate the way they calculate system-level CUE. I do not disagree with the 

way bulk CUE was calculated for CLM5, nor that it is compared to the empirical results per se. 

However, I do maintain that comparing this system-level CUE (and its relative importance) to the 

various individual ‘mechanisms’ used to calculate it is unfair and misleading. Especially with the way 

the results are interpreted and framed in the abstract and manuscript. 

What about the relative importance of these ‘mechanisms’ using a microbial model? For example, 

what would Figs. 3 and 4 look like using the model in Fig. 2b on a global scale, instead of CLM5? 

(More on this comment below.) 

Robustness and predictability: 

I still have reservations about the robustness of the results in data-poor regions. In their response, 

the authors state that the coverage in their data assimilation was much wider than the meta-

analysis, and that their results (e.g., with regards to depth) are drawn from the data assimilation. Of 

course the global profiles are more representative, but the ‘retrieved’ CUE are model-derived and 

there are no observational data to validate the retrieval in these regions (tundra, tropics, and in 

deeper soil layers). A number of the main results hinge entirely on model-derived CUE values using 

CLM5. 

Furthermore, where the meta-analysis and data assimilation results can be compared, they differ 

quantitatively, especially for the CLM5-derived results (e.g., CUE-SOC slopes vary by over a factor of 

5). I am still not sure what the consequences of these differences are on the main results, which are 

largely based on CLM5. If this slope for the CLM5 results was an order of magnitude (or 5-fold) 



lower, as in the meta-analysis, would the relative importance of the ‘mechanisms’ still hold? I 

appreciate the added discussion of slopes in the SI, but this doesn’t address how the main findings 

would differ if the CUE-SOC slope in CLM5 was more similar to the observational values. 

The assessment of how representative the meta-analysis sites and global profiles are could also 

include a multi-dimensional covariate space, in addition to the climate space. For example, how do 

SOC values or vegetation types compare across the meta-analysis sites and global profiles? 

CUE-SOC relationships: 

Expanding on comments above, the fact that the slopes (or retrieved CUE values) vary so much 

between the different data and model sources (or even data assimilation methods) is a little 

unsettling. The authors even state that “different methods to measure or estimate CUE strongly 

influence the slopes of the CUE-SOC relationship” – if these slopes vary so much, then how does this 

impact the downstream relative importance in the main findings of Fig. 3 and Fig. 4? That is, if the 

slope wasn’t as large for the CLM5 results (e.g., ~0.8 instead of ~4), would this weaken the relative 

importance of CUE or change the other downstream global predictions? 

What if the retrieved bulk CUE values for the global profiles were compared across the models? That 

is, what if bulk CUE retrieved using the microbial model (as in Fig. 2b) was compared to that 

retrieved using CLM5 (as in Fig. 2c) across all the representative global profiles. What does this tell 

us about the model-dependency of the bulk CUE definition? 

Minor comments: 

Fig. 2 caption – by “132 data sets” do you mean data points/measurements (i.e., a pair of CUE and 

SOC measurements)? I would change this to be more clear. And similarly in other figures (e.g., 

Supplementary Fig. 4). 

The caption of Fig. 2 should include some information about the ‘climate’ color bar. Is this mainly 

temperature? If so, why not explicitly show temperature? 

The caption of Fig. 3 should reflect that these results are based on CLM5. 

Referee #4 (Remarks to the Author): 

I am fully satisfied with the author responses to my concerns and those of referee #1. Overall, the 

rationale and the motivation of the study is much better outlined, and this is a great improvement 

from the previous version. I think the text is now much more consequent and less-biased, which is 

important for the robustness of the broad message from the study: microbial physiology is 

fundamental to predict the global spatial variation of SOC. 

Minor concern: 



I wonder if the width of arrows and/or boxes lines in Fig. 1 should be changed to guide the reader 

towards the outcome of each conceptual model. For instance in Fig. 1a, a positive CUE vs SOC will 

lead to higher SOC accumulation thant in Fig. 1b. Conversely, in Fig. 1b, a negative CUE vs SOC will 

lead to lower SOC accumulation via higher CO2 losses (at equal levels of plant C inputs as in Fig. 1a). 
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Summary of responses to comments by referees 

 

We greatly appreciate the two referees for offering us constructive comments on the second-

round revision of our manuscript. Referee #4 was satisfied with our responses to her/his 

comments on the previous version of this manuscript and gave us suggestions on minor 

revision of Fig. 1. Referees #3 offered more comments on the revised manuscript. All these 

comments stimulated us to further improve our manuscript. We have addressed all the 

concerns as described in this letter of responses and accordingly revised the manuscript. Here 

is a summary of the revision of our manuscript. 

 

1. Definition and calculation of model components: Following suggestions by referee #3, 

we changed the word “mechanism” mostly to “model components” in the revised manuscript 

to refer the system-level value of different categories of processes in soil carbon cycle 

(R3.1a). Despite we used parameters that may belong to other components to calculate the 

system-level CUE, the way we calculate CUE does not introduce strong correlations between 

CUE and other model components (R3.1b). Thus, we can compare the relative importance of 

CUE to global SOC storage in comparison with other components. Moreover, we provide an 

analog to explain why the information of other components was used when calculating 

system-level CUE (R3.1b).  

 

2. Robustness of the importance of CUE to global SOC storage: Referee #3 raised 

concerns about the robustness of the importance of CUE to global SOC storage when only 

CLM5 was used in analysis whereas the spatial CUE-SOC slopes differ so much between 

CLM5 and the microbial model. In this revision, we used the PRODA approach to generalise 

the microbial model data assimilation results from the 2,500 SOC profiles to the global scale 

and conducted the same sensitivity analyses as we did with CLM5 (R3.1c). The results 

showed that CUE is still the most important component to global SOC storage and its spatial 

variation. It largely results from the fact that information contained in big data constrains the 

microbial model to the extent that the Michaelis-Menten kinetics of decomposition in the 

microbial model can be approximated by the first-order kinetics as configured by CLM5. We 

also discussed robustness of the results retrieved from the data using the microbial model in 

the point-to-point responses (R3.1c) below.  

 

Author Rebuttals to Second Revision:
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3. Robustness of CUE definition: Referee #3 raised concerns about whether the model 

retrieved CUE after data assimilation can be validated by observational CUE measurements 

and comparable between different models. In the revised manuscript, we showed that 

predicted CUE values by the PRODA-optimised CLM5 are positively correlated with the 

field-measured CUE values in the meta-analysis (R3.2a). Meanwhile, CUE values retrieved 

from CLM5 and the microbial model are also significantly correlated (R3.3b).  

 

We hope that our responses and revision of the manuscript are satisfactory to the referees. 

And we look forward to further feedbacks and comments. 

Below are our point-by-point responses (in blue) to referees’ comments (in black).  
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Point-by-point responses to referees' comments 

 

Referee #3 (Remarks to the Author): 

 

The study by Tao et al. uses carbon use efficiency (CUE) measurements, global soil profiles, 

and two soil models to demonstrate the importance of CUE for soil carbon storage. I still 

have several concerns regarding the approach and the interpretability of the results.  

 

Response: We greatly appreciate referee #3 for the comments on our second revision. We 

have addressed all the concerns as described below. 

 

Definition and calculation of “mechanisms”: 

I stand by my concern on the word ‘mechanism’, especially for the model constructs (e.g., 

environmental modifier, baseline decomposition) presented. Even by the authors’ dictionary 

definition, these constructs cannot be called ‘fundamental processes’ in the ecological and 

climatic sense that they intend. They are largely dependent on the models used and do not 

have true empirical analogs. They also aggregate a number of components in their definition. 

For example, even the authors say that “Environmental modifier represents a suite of 

microbial processes in response to environmental changes.” This does not mean that 

‘environmental modifier’ is a process or a mechanism in the true sense of those words. I 

would call these values ‘model constructs’ or ‘model parameters/components’, as they 

depend directly on the models used. Even the calculation of bulk CUE is model-specific and 

predetermines the results to some degree. 

 

R3.1a: We thank the referee for the suggestions. We changed “mechanisms” mostly to 

“model components” in the revised manuscript to refer the system-level values of different 

categories of processes in soil carbon cycle.  

 

In R3.2a, the authors reiterate the way they calculate system-level CUE. I do not disagree 

with the way bulk CUE was calculated for CLM5, nor that it is compared to the empirical 

results per se. However, I do maintain that comparing this system-level CUE (and its relative 

importance) to the various individual ‘mechanisms’ used to calculate it is unfair and 

misleading. Especially with the way the results are interpreted and framed in the abstract and 
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manuscript.  

 

R3.1b: This referee’s comment makes us to think more about this issue. The formula for 

calculating the system-level CUE could hinder a circular argument due to the possible 

correlations between CUE and other model components used in the calculation. Indeed, it is 

possible that CUE appears to cause larger variation in SOC compared to other components if 

the model components interact positively in the calculation of CUE. We examined whether 

modelled CUE correlates with the model components. The system-level CUE is weakly 

correlated with baseline decomposition (Pearson correlation coefficient = 0.07, n = 45230, P 

< 0.0001). The environmental modifiers mathematically cancel out in the CUE definition 

(Equation 3 of the revised manuscript). 

An analog may be helpful for understanding whether or not it is fair to compare 

system-level CUE to various components used to calculate it. Let us consider a person who 

manages a factory. The factory processes crude oil and produces two oil products. The crude 

oil that comes to the factory is the reactant in the industrial process (equivalent to substrate 

input in soil carbon cycle) at cost c. The two oil products are produced at rates 𝑟! and 𝑟", and 

consume crude oil with substrate use efficiency (i.e., efficiency of conversion from reactant, 

that is crude oil, to products) 𝑎! and 𝑎". The two products have different prices 𝑝! and 𝑝". 

Let us assume a simple case that production rates of the two products are functions of prices, 

𝑟! = 𝑏!𝑝! and 𝑟" = 𝑏"𝑝". Also let us assume that all the products produced are sold. The total 

revenue Z of the factory equals sale Y minus cost X of the crude oil. That is  

𝑍 = 𝑌 − 𝑋 = ∑ 𝑟## 𝑝# − 𝑐 ,∑
$!
%!# - = ∑ 𝑏## 𝑝#" − 𝑐 ,∑

&!'!
%!# -   (1) 

To maximize revenue of the factory, the manager has two options: (1) to improve crude oil 

use efficiency (i.e., 𝑎#) and (2) to adjust selling prices of the two oil products (i.e., 𝑝#). The 

factory manager may evaluate which of the two options is more effective to maximize the 

factory revenue. In this case, the manager needs to calculate the factory-wide crude oil use 

efficiency (𝐴() and factory-wide price index (𝑃(). The factory-wide crude oil use efficiency 

(𝐴() is 

𝐴( = ∑ 𝑎#
"!#!
$!

∑ "!#!
$!

!
= ∑ &!'!

∑ "!#!
$!

!
##        (2) 

In the above equation, &!'!
%!

 is the consumption rate of crude oil for product 𝑖. ∑ &!'!
%!#  is the 

total consumption rate of crude oil for the whole factory. In equation 2, the calculation of the 



 5 

factory-wide crude oil use efficiency (𝐴() uses information of price 𝑝#. The factory-wide 

price index (𝑃() is  

𝑃( = ∑ 𝑝#
&!'!
∑ &!'!!

#         (3) 

The factory manager compares the sensitivity of factory revenue Z to 𝐴( vs. 𝑃(. This is 

equivalent to our study, where we used information of model components to calculate the 

system-level CUE (equivalent to 𝐴() before we did the sensitivity analysis of global carbon 

storage to CUE and other components.  

 

What about the relative importance of these ‘mechanisms’ using a microbial model? For 

example, what would Figs. 3 and 4 look like using the model in Fig. 2b on a global scale, 

instead of CLM5? (More on this comment below.) 

 

R3.1c: We appreciate the referee for the suggestion. Per the suggestion, we applied the 

PRODA approach to the microbial model using the 2,500 site-level data assimilation results 

and conducted the two sensitivity analyses to evaluate the relative importance of microbial 

CUE and other five components to global SOC storage as we did with CLM5. The PRODA-

optimized microbial model presents similar spatial patterns of the model components 

(Response Letter Fig. 1) with those from CLM5 (Fig. 3 of the main text). The Pearson 

correlation coefficient between CLM5 and the microbial model retrieved CUE is 0.47 (n = 

45230, P < 0.0001) across the globe (Response Letter Table 1). The agreement on the 

retrieved components from the global vertical SOC data with the two different models 

indicates that the spatial patterns of different components shown in Fig. 3 of the main text are 

robust.  
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Response Letter Fig. 1 | Maps of global SOC stock, residence time, and related model 

components retrieved with the microbial model. The maps were obtained from 2,500 

representative soil profiles using the PRODA approach with the microbial model. Values 

shown are predicted by the best-guess model calibrated using all available. The grey shaded 

area in panel a indicates the grids where the steady-state was not reached after 20,000 years 

simulation. Boxplots represent the SOC properties and model components in different 

predefined climate zones (Supplementary Fig. 8). The lower, middle, and upper hinges show 

the first, median, and third quartiles of the distribution, respectively. Whiskers in the boxplot 

represent the 1.5 interquartile range from the hinges. Units for maps and boxplots are the 

same. 

 

Response Letter Table 1 | Correlation between CLM5 and microbial model retrieved 

components. Results shown in the table are the global simulation results. 

 R P value 

Microbial carbon use efficiency 0.47 <0.0001 

Baseline decomposition (log10 transformed) 0.52 <0.0001 

Environmental modifiers 0.76 <0.0001 
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Vertical transport (log10 transformed) 0.14 <0.0001 

Carbon input allocation 0.36 <0.0001 

 

 The results of the two sensitivity analyses using the microbial model (Response Letter 

Fig. 2) are also consistent with those by CLM5 (Fig. 4 of the main text). Response Letter Fig. 

2 shows that the relative importance of CUE to global SOC storage is still the highest among 

the six model components in the microbial model as in CLM5. Although the two data 

assimilation methods, i.e., MCMC and SCE, result in different slope values of the spatial 

CUE-SOC relationship (see more discussion below in R3.3a), our result shows that the 

elasticities of global SOC storage to proportional changes of CUE (i.e., the slopes shown in 

Fig. 4b of the main text and Response Letter Fig. 2b) are similar between the microbial 

model and CLM5 after data assimilation. The data assimilation likely helps constrain both the 

models to behave similarly. As we discussed in the previous revision, for example, the 

Michaelis-Menten constant for SOC decomposition in the microbial model is constrained to 

be much higher than the SOC substrate concentration after data assimilation. The nonlinear 

SOC decomposition in the microbial model can be approximated by the first-order kinetics as 

configured in CLM5.  

 

 
Response Letter Fig. 2 | Relative importance of different model components using PRODA-

optimized microbial model. Grey dashed lines in panel a indicate the explained spatial 

variation in SOC storage and the estimation of global SOC storage by the best guess model 

after 20,000 years simulation. Note that because in the microbial model, grids in the boreal 

regions did not reach steady state after 20,000 years simulation, the estimation on the global 

SOC stock is lower than that estimate by CLM5 model.  
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While we kept the methodological procedure of the PRODA approach and sensitivity 

analyses (e.g., the structure of neural network and the way of calculating system-level values 

of different model components) identical with what we did with CLM5, the following four 

issues need to be discussed.   

First, the formula to calculate system-level CUE is identical for both the CLM5 and 

microbial model. But the parameters we included to calculate the system-level CUE in the 

sensitivity analyses are different in the microbial model from CLM5 as the former 

incorporates more processes, such as enzyme dynamics. Parameters that are used to describe 

the enzyme production (i.e., enzyme production rate 𝑘*+,,'$./, and allometric slope 𝛽) and 

the following catalytical reactions in SOC decomposition and assimilation (i.e., Michaelis 

constants for decomposition 𝑘0,/*1.0 and assimilation 𝑘0,%22#0) are directly linked with 

changes of microbial physiology and thus system-level CUE in this study. Thus, we used the 

system-level CUE of the microbial model to present the CUE-SOC slope in Fig. 2 of the 

main text to be consistent with CLM5. In addition to transfer coefficients among different 

carbon pools, we also merged the spatial variation of the above-mentioned parameters in the 

first sensitivity analysis and proportionally changed their values in the second sensitivity 

analysis to investigate the relative importance of system-level CUE to global SOC storage.  

Second, we used different methods to obtain the steady-state values of soil carbon 

storage for CLM5 and the microbial model in the sensitivity analyses. CLM5 in the matrix 

form can be semi-analytically solved to obtain the steady-state values when parameter values 

change. Therefore, we can computationally afford to do sensitivity analyses as we did in this 

study. Notably, the sensitivity analysis has rarely been done with global carbon cycle models 

without the matrix form so far due to the computational cost, even with linear models like 

CLM5. Since the microbial model is nonlinear, we cannot semi-analytically solve the model 

to obtain the steady state values of soil carbon storage when parameter values change for the 

sensitivity analyses. We used a simulation approach to approximate the steady state of SOC 

storage by running the model for a maximum simulation time of 20,000 years. For the 

majority of the total 45,230 grids over the globe, the steady-state SOC storage was reached 

after 20,000-year simulation. In about 6,000 grids (mostly in boreal regions, as indicated by 

the grey shaded area in Response Letter Fig. 1a) where the steady-state SOC storage was not 

reached, we kept the carbon storage in the last year of simulation as the proxy of the steady-

state SOC storage even with some degree of underestimation (as shown in Response Letter 
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Fig. 2). Even so, different model components were all relatively stable after 20,000 years’ 

simulation in the microbial model. Therefore, the two sensitivity analyses are still valid. 

Third, the microbial model that was optimized by the PRODA approach explains 28% 

spatial variation in the SOC storage, which is very low in comparison with 57% spatial 

variation of the SOC storage explained by the PRODA-optimized CLM5. Multiple reasons 

could lead to the low performance of the PRODA-optimized microbial model. For example, 

strong equifinality (See Luo et al. 20091 for description of equifinality) occurred in site-level 

data assimilation with the SCE method. It may not only influence the numerical value of the 

spatially positive CUE-SOC slope (see R3.3a for more details), but also make it difficult for 

the neural network to predict global patterns of parameters retrieved from site-level data 

assimilation. While the equifinality happens all the time in data assimilation, its degree varies 

with different methods. The MCMC method requires much more computation time to 

optimize a process-based model but appears to result in less equifinality than the SCE 

method. While PRODA-optimized CLM5 based on the SCE data assimilation only explains 

42% of the spatial variation in SOC storage, its counterpart based on the MCMC method 

explains 57%. Moreover, estimated parameters in the nonlinear microbial model may be too 

irregular to reflect global patterns of processes underlying SOC storage and thus dampen the 

relationships between parameters and environmental covariates that can be retrieved by the 

neural network.  

Fourth, microbial models themselves and methods to assimilate big data into 

microbial models are all at a stage of exploration. Like many other microbial models, the 

microbial model used in this study has more complex structure in describing soil carbon 

cycle but less power to explain the spatial variations in global SOC storage than CLM5 as 

described in the above paragraph. Despite dozens of microbial models have been proposed in 

the past decade or so, their performance at the global scale remains to be evaluated. 

Moreover, to the best of our knowledge, no global-wide data assimilation study has been 

conducted with microbial models due to the extremely high computation cost. The SCE 

method applied in this study is computationally much more efficient than the MCMC method 

so that it allows us to do global data assimilation at 2,500 representative SOC profiles with 

the microbial model. However, CLM5 parameter values estimated at individual sites using 

the SCE method tend to hit edge (i.e., the lower or upper limit of the prior range) more than 

the MCMC method (Response Letter Fig. 3). While the MCMC method has been widely 

used in data assimilation with land carbon cycle models, efficacy of the SCE method for that 

use has not been systematically evaluated. The combination of the complex, nonlinear 



 10 

microbial model with a to-be-evaluated SCE method for data assimilation may result in 

estimated parameters that do not reflect global patterns that a neural network can retrieve to 

generalize its site-level data assimilation results to the global scale. Even so, we greatly 

appreciate this referee for inspiring us to experiment.  

 In the revised manuscript, we present the results of the microbial model together with 

CLM5 (main text L150 – L156, L188 – 189, L194 – L196, L220 – 224). We described the 

details of the PRDOA approach (L680 – 681, L768 – 779) and two sensitivity analyses (L861 

– 872) using the microbial model. We highlight the limitation of the results using the 

microbial model (L156 – 160, L711 – 736). Response Figures 1-3 are presented as 

Supplementary 4, 6, and 12 in the revised manuscript, respectively. Response Letter Table 1 

is shown as Supplementary Table 6 of the revised manuscript. 

 

 

 
Response Letter Fig. 3 | Point estimates by the SCE method tend to hit edges of prior 

ranges of parameters. The data assimilation results at one SOC profile (ID: 160557, 

Longitude: 119.96°W, Latitude: 39.43°N) by both the MCMC and SCE methods. Violin plots 

indicate the posterior distributions of each parameter using the MCMC method. The lower, 

middle, and upper hinges of the boxplots show the first, median, and third quartiles of the 

posterior distribution, respectively. Whiskers in the boxplot represent the 1.5 interquartile 

range from the hinges. The red marks indicate the point estimates by the SCE method.  

 

Robustness and predictability: 

I still have reservations about the robustness of the results in data-poor regions. In their 
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response, the authors state that the coverage in their data assimilation was much wider than 

the meta-analysis, and that their results (e.g., with regards to depth) are drawn from the data 

assimilation. Of course the global profiles are more representative, but the ‘retrieved’ CUE 

are model-derived and there are no observational data to validate the retrieval in these regions 

(tundra, tropics, and in deeper soil layers). A number of the main results hinge entirely on 

model-derived CUE values using CLM5.  

 

R3.2a: We thank the referee for the question on whether our PRODA retrieved CUE can be 

validated by the observational data. In this revision, we chose the grids on the global CUE 

map (as shown in Fig. 3 of the main text) that are nearest to the sites where the meta-analysis 

data are from to compare the PRODA-retrieved CUE with observations. Response Letter Fig. 

4 indicates that the global CUE retrieved from vertical SOC profiles present significant 

positive correlation with observational data (Pearson correlation coefficient = 0.39, n = 132, 

P < 0.0001) although no information at these observation sites was used in the PRODA 

approach to inform the model. This significant positive correlation supports the robustness of 

the global CUE retrievals by the PRODA-optimized CLM5. Yet, there is no doubt that more 

data are needed to further validate the model-derived CUE in the future. 

 We mentioned the correlation between PRODA-predicted CUE and field 

measurements in L165 – L167 of the revised manuscript. 
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Response Letter Fig. 4 | Correlation between CUE values measured in field experiments 

and predicted by PRODA approach with CLM5. We located sites of data collection in the 

meta-analysis to the nearest grid in the CUE global map generated by PRODA-optimized 

CLM5.  

 

Furthermore, where the meta-analysis and data assimilation results can be compared, they 

differ quantitatively, especially for the CLM5-derived results (e.g., CUE-SOC slopes vary by 

over a factor of 5). I am still not sure what the consequences of these differences are on the 

main results, which are largely based on CLM5. If this slope for the CLM5 results was an 

order of magnitude (or 5-fold) lower, as in the meta-analysis, would the relative importance 

of the ‘mechanisms’ still hold? I appreciate the added discussion of slopes in the SI, but this 

doesn’t address how the main findings would differ if the CUE-SOC slope in CLM5 was 

more similar to the observational values. 

 

R3.2b: We thank the referee for the comments. In R3.1c, we have shown that the sensitivity 

analyses with the microbial model consistently support that the microbial CUE is the most 

important model component to global SOC storage and its spatial variation in comparison to 
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other five components in spite of differences in the spatial CUE-SOC slopes between the 

microbial model and CLM5.   

 

The assessment of how representative the meta-analysis sites and global profiles are could 

also include a multi-dimensional covariate space, in addition to the climate space. For 

example, how do SOC values or vegetation types compare across the meta-analysis sites and 

global profiles? 

 

R3.2c: We appreciate the referee for the suggestion. In the revised manuscript, we discussed 

the coverage of different sources of data in multi-dimensional covariate spaces. Response 

Letter Fig. 5 shows the distribution of SOC data in different climate, soil texture and land 

cover types. While the vertical SOC profiles cover all the covariate types, the representative 

subset of the SOC profile presents more even distribution of data in those regions. Data sites 

in the meta-analysis cover nearly all the land cover types, yet they only include part of the 

climate and soil texture types. In the future, more data about SOC storage and CUE should be 

collected in those data sparse regions. 

 In the revised manuscript, we substituted the original Supplementary Fig. 7 with 

Response Letter Fig. 5 and re-numbered it as Supplementary Fig. 9. 

 

 
Response Letter Fig. 5 | Coverage of different sources of data in multi-dimensional 

covariate spaces. Panels show the percentage of data sites located at different climate (a), 

soil texture (b) and land cover (c) types in the meta-analysis with 132 data sets, microbial 

model data assimilation with the subset of 2,500 vertical profiles, and CLM5 data 

assimilation with all the 52,819 profiles. For different climate types: Af, Am and Aw are 

tropical rainforest, monsoon and savannah climates, respectively. BW and BS are arid desert 

and steppe climates, respectively. Cs, Cw and Cf are temperate climates with dry summer, 

dry winter, and without dry season, respectively. Ds, Dw and Df are cold climates with dry 



 14 

summer, dry winter, and without dry season, respectively. E is polar climate. For different 

soil texture, Cl is clay, SiCl is silty clay, SaCl is sandy clay, ClLo is clay loam, SiClLo is silty 

clay loam, SaClLo is sandy clay loam, Lo is loam, SiLo is silty loam, SaLo is sandy loam, Si 

is silt, LoSa is loamy sand, Sa is sand. 

 

CUE-SOC relationships: 

Expanding on comments above, the fact that the slopes (or retrieved CUE values) vary so 

much between the different data and model sources (or even data assimilation methods) is a 

little unsettling. The authors even state that “different methods to measure or estimate CUE 

strongly influence the slopes of the CUE-SOC relationship” – if these slopes vary so much, 

then how does this impact the downstream relative importance in the main findings of Fig. 3 

and Fig. 4? That is, if the slope wasn’t as large for the CLM5 results (e.g., ~0.8 instead of 

~4), would this weaken the relative importance of CUE or change the other downstream 

global predictions?  

 

R3.3a: We thank the referee for the comments. As we discussed in the R3.1c and R3.2b, the 

spatial CUE-SOC slope does not influence the importance of CUE to global SOC storage. 

The different data assimilation methods affect the spatial slope of CUE-SOC but have no 

influence in the importance of CUE on global SOC storage as quantified in the sensitivity 

analyses (Response Letter Fig. 2).  

 This referee’s comment also stimulated us to further investigate the reasons why  

CUE-SOC slopes differ between the different data and model sources. First, we observed that 

the range of estimated CUE of the microbial model is much larger with the SCE method 

(from 0.2 to 0.9) than that of the CLM5 with the MCMC method (from 0.3 to 0.6) while 

estimated SOC storage was similar between the two methods (Fig. 2b vs. 2c in the main text). 

This enlarged range of CUE leads to a much smaller CUE-SOC slope with the microbial 

model than that with CLM5. To understand the reason why the range of estimated CUE of 

the microbial model is much larger with the SCE method than that of CLM5 with the MCMC 

method, we used the SCE method for data assimilation with CLM5. The estimated CUE of 

CLM5 with the SCE method has a similar range with that of the microbial model, leading to 

similar CUE-SOC slopes between the two models (Response Letter Fig. 6).  
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Response Letter Fig. 6 | CUE-SOC relationship retrieved from the micorbial model (MIC) 

and CLM5 with the two data assimilation methods (i.e., SCE and MCMC) at 2,500 

representative SOC profiles. Black lines are the partial coefficients from mixed-effects model 

regression. CUE was set as the fixed effects to logarithmic SOC content. Climate types that 

soil profiles belong to were set as the random effect. We applied a mixed-effects model that 

considered random intercepts with common slopes to test CUE-SOC relationship (i.e., 

𝑙𝑜𝑔10(𝑆𝑂𝐶)~𝐶𝑈𝐸 + (1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠)). The random effects size 𝑛13#0%4* = 12. 

 

Then, we explored why the SCE method can result in a much larger range of 

estimated CUE than the MCMC method even with the same CLM5 model. We picked two 

SOC profiles that have either a low or high CUE value after data assimilation using both the 

SCE and MCMC methods with CLM5. The MCMC method allows us to generated a 

posterior distribution of system-level CUE at each of these two profiles (i.e., the violin plots 

shown in Response Letter Fig. 7). The mean of the posterior distribution is a representative 

value of CUE that enters the calculation of the CUE-SOC slope. However, while the 

estimated system-level CUE from the SCE method goes to higher when the posterior mean 

CUE value is high and lower when the posterior mean CUE value is low (blue points in 

Response Letter Fig. 7). Thus, the range of estimated CUE with the SCE method is larger 

than that with the MCMC method, leading to a smaller CUE-SOC slope.  
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Response Letter Fig. 7 | CUE estimates with two data assimilation methods. Violin plots 

and boxplots show the posterior distributions of CUE after data assimilation with the MCMC 

method at two SOC profiles (ID: 57680 and 160557, Longitudes: 1.35°E and 119.96°W , 

Latitudes: 13.60°N and 39.43°N).. Points with different colours indicate the point estimates 

on CUE with the two data assimilation methods (i.e., MCMC and SCE). The lower, middle, 

and upper hinges of the boxplots show the first, median, and third quartiles of the 

distribution, respectively. Whiskers in the boxplot represent the 1.5 interquartile range from 

the hinges 

 

Second, we observed that CUE measurements in the meta-analysis present a similar 

range (from 0.04 to 0.8) with that retrieved from the microbial model (from 0.2 to 0.9) (Fig. 

2a and 2b of the main text) yet the slope of the CUE-SOC relationship in the meta-analysis is 

smaller than that in the microbial model. The different slope values in the meta-analysis and 

the microbial model may be attributed to the smaller range of SOC covered in the meta-

analysis (from 1.5 gC kg-1 to 140 gC kg-1) compared to the microbial model results (from 0.5 

gC kg-1 to 607 gC kg-1). Lack of CUE estimates from soils at the lower and upper ends of the 

SOC range may cause a smaller SOC-CUE slope in the meta-analysis.  
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 In the revised manuscript, we added the above discussion in the Supplementary 

Discussion. Response Letter Figures 6 and 7 are shown as Supplementary Figs. 13 and 14, 

respectively. 

 

What if the retrieved bulk CUE values for the global profiles were compared across the 

models? That is, what if bulk CUE retrieved using the microbial model (as in Fig. 2b) was 

compared to that retrieved using CLM5 (as in Fig. 2c) across all the representative global 

profiles. What does this tell us about the model-dependency of the bulk CUE definition?  

 

R3.3b: We thank the referee for the suggestions. The retrieved CUE values from CLM5 and 

microbial model data assimilation at the 2,500 representative profiles are significantly and 

positively correlated (Pearson correlation coefficient = 0.45, n = 2,500, P < 0.0001, Response 

Letter Fig. 8). Meanwhile, as we discussed in R3.1c, the PRODA-predicted global map of 

CUE based on the microbial model data assimilation also shows significant positive 

correlation with the results based on CLM5 (Response Letter Table 1). The agreement on the 

CUE retrievals from the two different models indicates the robustness of our results on CUE 

shown in this study. The spatial patterns as well as the importance of CUE to global SOC 

storage discussed in this study are consistent across the different model structures after data 

assimilation.  

 In the revised manuscript, Supplementary Table 6 shows the correlation between 

CLM5 and microbial model derived CUE across the globe. 
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Minor comments:  

 

Fig. 2 caption – by “132 data sets” do you mean data points/measurements (i.e., a pair of 

CUE and SOC measurements)? I would change this to be more clear. And similarly in other 

figures (e.g., Supplementary Fig. 4). 

 

R3.4a: We thank the referee for the suggestion. We changed “data sets” to “measurements” 

in the revised manuscript.  

 

The caption of Fig. 2 should include some information about the ‘climate’ color bar. Is this 

mainly temperature? If so, why not explicitly show temperature?  

 

Redacted
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R3.4b: The referee is correct that the “climate” colour bar is mainly about temperature. 

Following the suggestion. we changed the colour bars of Fig. 2b – 2c and Extended Data Fig. 

5a – 5c to represent mean annual temperature in the revised manuscript.  

 

 

The caption of Fig. 3 should reflect that these results are based on CLM5. 

 

R3.4c: We thank the referee for the suggestion. We added a note in caption of Fig. 3 to 

clarify that the results are based on CLM5.  

 

 

 

Reference: 

1 Luo, Y. et al. Parameter identifiability, constraint, and equifinality in data 

assimilation with ecosystem models. Ecological Applications 19, 571-574 (2009). 
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Referee #4 (Remarks to the Author): 

 

I am fully satisfied with the author responses to my concerns and those of referee #1. Overall, 

the rationale and the motivation of the study is much better outlined, and this is a great 

improvement from the previous version. I think the text is now much more consequent and 

less-biased, which is important for the robustness of the broad message from the study: 

microbial physiology is fundamental to predict the global spatial variation of SOC. 

 

Response: We greatly appreciate the positive evaluation of referee #4 on our revision and 

manuscript.  

 

Minor concern: 

 

I wonder if the width of arrows and/or boxes lines in Fig. 1 should be changed to guide the 

reader towards the outcome of each conceptual model. For instance in Fig. 1a, a positive 

CUE vs SOC will lead to higher SOC accumulation thant in Fig. 1b. Conversely, in Fig. 1b, a 

negative CUE vs SOC will lead to lower SOC accumulation via higher CO2 losses (at equal 

levels of plant C inputs as in Fig. 1a). 

 

R4.1a: We thank the referee for the suggestion. We revised Fig. 1 of the main text (as shown 

in Response Letter Fig. 9) to better illustrate how different regulation pathways of CUE will 

influence the final SOC storage. 
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Response Letter Fig. 9 | Revised figure for Fig. 1 of the main text. 

 



Reviewer Reports on the Third Revision: 

Referee #5 (Remarks to the Author): 

Review of manuscript: “Microbial carbon use efficiency promotes global soil carbon storage” 

Overall assessment: 

The manuscript’s central thesis is that microbial physiological carbon use efficiency is the dominant 

control on soil carbon accrual worldwide. The authors find support for this argument in the results of 

data assimilation and sensitivity analysis applied to a first order linear and a microbially explicit soil 

carbon model. 

This manuscript is technically impressive, generally easy to follow, and ambitious in its scope. 

However, in my view its central argument is based on a misapplication of the concept of “microbial 

carbon use efficiency”. The transfer coefficients in first-order soil carbon models are not equal to 

“microbial carbon use efficiency”, although these two things are clearly related. I am going to 

elaborate on this point because I do not think it should be readily dismissed. 

Transfer coefficients may indeed implicitly incorporate microbial carbon use efficiency — and yet 

they also implicitly incorporate other factors. For instance, as originally conceptualized in the 1980s, 

these parameters represented the efficiency with which organic matter was “humified” or converted 

to more “recalcitrant” compounds; or alternatively the efficiency with which minerals protect or 

stabilize SOC (Parton et al. 1987; Parton et al. 1994). For instance, the transfer coefficient in 

DAYCENT – a prototypical first order SOC model that forms the basis for the SOC representation in 

CLM5 – was originally conceptualized as soil-texture dependent, reflecting the efficiency of physical 

stabilization by the mineral matrix (Parton et al. 1987). Transfer into the passive SOC pool was 

described in a purely empirical way to approximate SOC residence times, with no reference to 

microbial physiology and no clear physiological interpretation (Parton et al. 1987). In this sense the 

coefficients describe an emergent process that combines microbial physiology and the other abiotic 

(non-physiological) processes. 

My point here is not that we should remain bound by old (and perhaps outmoded) theoretical 

interpretations (like the recalcitrance concept, which I am not defending); rather, it is to emphasize 

that the transfer coefficients in first order SOC models are nebulous, operationally defined 

parameters, and that our interpretation of them is somewhat subjective. In this case, there is no 

strong basis for interpreting these coefficients as “microbial CUE” alone to the exclusion of other 

factors. 

From a more technical standpoint, first order soil carbon models do not directly simulate microbial 

metabolism and growth; hence there is no clear way to invert a first order model to estimate 

microbial CUE as defined in the manuscript (Lines 47-49). The “bulk CUE” index discussed in this 

manuscript might be a rough proxy for microbial CUE and ought to be correlated with it at some 

level (as the authors clearly show), but demonstrating that a model component is correlated with a 

measurement is not convincing evidence that the model component and the measurement are 

Editorial Note: 
An adjudicating referee (referee #5) was asked to comment on the debate between referee #3 and the authors. 



synonymous. Consequently, the analysis focused on CLM5—which makes up the backbone of the 

paper—does not actually isolate the role of microbial physiology in carbon sequestration, and the 

manuscript overreaches by assigning too much importance to microbial physiology. 

Evaluation of responses to reviewer 3’s comments: 

I have been asked the specifically evaluate the author’s response the reviewer 3’s concerns. Here is 

my point by point assessment, using the authors’ codes designating each point of contention: 

R3.1a: I concur with reviewer 3 that “model component” is a more appropriate term than 

“mechanism”. This has been addressed adequately, except in Figure 4, where the term mechanism 

still needs to be replaced. 

R3.1b: Here I think that the authors may have missed the point. It does seem true that in a purely 

mathematical sense, bulk CUE depends to some extent on the factors that it is being compared to, 

and the authors have done a good job of addressing this issue. However, the fact remains that bulk 

CUE extracted from CLM5 does not isolate the role of microbial physiology in carbon cycling. 

Perhaps it is the interpretation rather than the method of calculation that is the real issue (see 

overall assessment above). 

R3.1c: The authors have addressed this concern adequately at some level by expanding the role of 

the microbial model. I would like to point out, however, that a correlation between bulk CUE 

extracted from CLM5 and CUE derived from the microbial model is not evidence that CLM5 can 

isolate microbial physiology; rather it is evidence that the transfer coefficients from CLM5 are a 

suitable proxy for physiological CUE. Broadly: correlations alone cannot be used to argue that two 

quantities are equivalent. 

In addition, this response to Reviewer 3’s comment is illuminating, in that it explains clearly that 

“system level” CUE was extracted from the microbial model, which was not entirely clear in the main 

text of the manuscript. I appreciate that retrieving “system level” CUE was important for 

intercomparability with CLM5, but on the other hand this decision undermines the utility of the 

microbial model. The microbial model contains an actual CUE parameter which governs partitioning 

between microbial growth and respiration in a clearly interpretable way. This parameter really might 

be directly relatable to the CUE measurements collecting in the meta-analysis (which cannot be said 

for CLM5 transfer coefficients). Are the optimized values of this parameter equal to “system level” 

CUE? If not, what does system level CUE represent? 

These questions relate to the broader debate about interpreting CUE measurements. From a more 

empirical standpoint, CUE can have multiple meanings and interpretations depending on the scale of 

analysis or the method used (Geyer et al. 2016; Geyer et al. 2019). Does system level CUE isolate the 

ratio of carbon used for growth versus metabolism? Or is it an index that is also sensitive to other 

factors like microbial turnover (see Hagerty et al. 2014; Hagerty et al. 2018)? The manuscript would 

benefit from more explicit consideration of these questions, and some direct discussion of how the 

“cue_mic” parameter relates to system level CUE. 



R3.2a: The authors have addressed this comment by comparing PRODA retrieved CUE estimates to 

the observations from the meta-analysis. This is good, but it also raises new issues. First, Response 

Letter Figure 4 clearly shows that CLM5-derived CUE and CUE from field experiments are correlated, 

but the relationship appears to be strongly biased (i.e., the slope is very far from 1:1). CLM5/PRODA 

retrieved CUE mostly varies between 0.35 and 0.42, whereas observed CUE values vary between 0.1 

and 0.7. This is related to the slope mismatch issue that Reviewer 3 raised earlier and which the 

authors address at length. I think at some level this mismatch is to be expected because “bulk” or 

“system level” CUE estimate from CLM5 is only roughly analogous to the CUE being measured in 

experiments—so we might expect a positive relationship, but not a 1:1 relationship. This supports 

the interpretation that CLM5-derived CUE is a proxy for true microbial CUE and not identical to it. 

I would also like to point out a concern with the meta-analysis dataset. My concern is that the 

analysis combines 13C-based and 18O-based CUE estimates. It has been shown clearly that these 

two methods are actually measuring fundamentally different quantities—one substrate specific CUE, 

the other non-specific (Geyer et al 2019). We really ought to stop treating these measurements as 

synonymous—no level of statistical analysis can get around the fact that they are based on different 

assumptions and typically yield very different values (e.g., ~0.6 for 13C glucose CUE, versus around 

0.3 for 18O CUE). A lot of the variation in compilations of CUE measurements might actually be due 

to the fact that different ways of measuring or calculating CUE will automatically yield different 

answers. 

R3.2b I concur with Reviewer 3 that the large difference in the CUE-SOC slope in the observations 

and the CLM5-derived CUE estimates is a major concern (this relates to my response to R3.2a 

above). It is encouraging that the microbial model produces a closer match, but this does nothing to 

increase my confidence that CLM5 can be used to represent the experimental data accurately, and 

the manuscript remains highly reliant on the CLM5 analysis. 

R3.2c Here I think the authors have done a good job of addressing Reviewer 3’s comment. However, 

I have a major concern that is related. I am concerned about the fact that during model 

optimization, 72,350 soil profiles were originally considered but ultimately only 52,819 were 

analyzed (27% excluded). In the Methods, it is mentioned that profiles were excluded if they did not 

show a clear monotonic decline in SOC with depth. It is implied that SOC depth profiles that show a 

bimodal SOC distribution are the result of measurement errors or some sort of aberrant “geologic 

process”: 

“While these atypical vertical SOC distributions could be caused by geological processes even if not 

by measurement errors, they may not offer information to help understand processes underlying 

SOC storage.” 

I do not think this is a defensible argument. In particular, and entire soil order – the Spodosol order 

in the USDA taxonomy – is partly defined by the presence of a sandy, relatively SOC-poor E horizon 

that overlies a finer textured B horizon rich in reactive Al and Fe oxyhydroxides and SOC. The process 

of soil development can naturally generate a bimodal SOC distribution in this case: this is most 

certainly a “process underlying SOC storage”. I am worried that the down-selection procedure has 

systematically biased this analysis to exclude soils with complex SOC-depth profiles that emerge due 



to pedogenesis. If this is true, the analysis might be downplaying the role of minerals in protecting 

microbial products and hence predetermining its findings at some level. 

R3.3a: This response shows that the data assimilation algorithm has a strong influence on the range 

of system level CUE values extracted from the model. When CLM5 is optimized via the SCE 

procedure, it yields a CUE SOC relationship several times less steep than if it is optimized by the 

MCMC procedure. This is an interesting methods comparison and I laud its thoroughness, but 

ultimately this result indicates that CUE extracted from the data-assimilation / PRODA approach is 

sensitive to the algorithm used. This makes it very hard to evaluate the degree of agreement 

between the models, or between the models and observations: to what extent are these results an 

artifact of the method applied? The fact that SCE and MCMC derived results are correlated is small 

comfort given the difference in output ranges when different algorithms are applied. 

R3.3b: Once again, this response is based on correlations, not a rigorous analysis of the absolute 

goodness of fit between different model outcomes or the observations. Correlation statistics are not 

strong evidence that the analysis is robust to the model type or data assimilation approach, 

particularly given that the absolute values of the CUE estimates occupy very different ranges. 

Summary of critiques: 

(1) Microbial CUE has been defined too broadly, and is not a good descriptor of the model 

components being optimized in the CLM5 case, which do not isolate microbial physiology or 

represent microbial growth and metabolism. 

(2) The actual CUE parameter in the microbial model is not compared to “system level” CUE, and the 

exact relationship between these two quantities is not explored. 

(3) CLM5 derived CUE estimates cover a much narrower range than the observations, which 

undermines the idea that CLM5 derived bulk CUE is equivalent to measured microbial CUE. 

(4) Observed CUE data in the meta analysis combine methods that quantify fundamentally different 

aspects of CUE. 

(5) Down-selection of soil profiles may be systematically biased to ignore important biogeochemical 

processes (e.g., podzolization). 

(6) CUE estimates are dependent on the data assimilation algorithm used; correlations are evidence 

of a relationship, but not equivalence. 

Detailed comments: 

Lines 113-116: I’m not sure this statement is true, or at least it seems like a rather slanted 

interpretation of CLM5. Also, as far as I can tell, the reference cited does not actually support this 

claim, or delve into the details of CLM5 soil biogeochemistry much at all. 

Line 523: Here the transfer coefficients in CLM5 are called “microbial CUE”. This is a 

misrepresentation in my view: these coefficients are analogous to microbial CUE and implicitly 

include it, but are not equivalent to it, because CLM5 does not represent microbes explicitly. 

Lines 229-237: Could the relationship with bulk density simply be because these soils have more 

organic C? 



Line 447: Why not random slopes? 

Lines 637-638: What does it mean to optimize so many parameters (23) on a profile-by-profile basis? 

Aren’t there many more unknowns than observations in this case? It seems like there would be a 

significant danger of overfitting the model. The total number of optimized parameters globally must 

number in the tens of thousands, unless I am misunderstanding something. 

Lines 667-669: Does CLM5 really explicitly simulate mineral regulation of microbial CUE? Or does it 

represent the efficiency of transfers between operationally defined SOC pools, which are sensitive to 

both microbial physiology and both the direct and indirect (physiologically mediated) effects of 

mineralogy? 

Lines 688-689: So this suite of environmental variables might predict CUE? In this case, aren’t there 

“environmental modifiers” at play here, in that the environment modifies CUE? 

Lines 702-710: This is a fairly weak cross validation approach: only 10% of the data, sampled with 

replacement (so presumably the same observations can be used in testing and training). In addition 

it would be much better to test on spatially coherent regions rather than by random sampling: 

spatial autocorrelation between training and testing data will yield artificially high performance on 

testing (Roberts et al. 2017: https://doi.org/10.1111/ecog.02881). This should be standard practice 

when performing cross validation on spatial data—I would go ahead with it, even if many papers are 

unfortunately still published with spatially random testing data. 

Figure 2: In panel a, the R squared value is actually equal to 0.55? This is surprising—unless 

“explained variation” refers to some other statistic? Also, the p values can’t be zero—please report 

them in terms of a maximum values, e.g. <0.001. 

Figure 4: Proportional change in mechanisms: are these mechanisms? Or model 

components/indices? I think the latter. 

SI lines 96-98: Based on SI figure 2, it seems that the CUE-SOC relationship is strongly modulated by 

soil texture and pH. In this case, is “microbial CUE” the control, or is this modeling exercise 

identifying some sort of emergent interplay between microbes and the soil physico-chemical 

environment? 

SI table 2: what is “nonmicrobial biomass”? 

SI table 8: It wasn’t clear until I reached this table, but it seems that the actual CUE term in the 

microbial model is being largely ignored here. Instead, a more aggregated “system level” CUE index 

is being calculated. How does the actual CUE parameter (mic_cue) behave? This seems critical. 

SI table 10: Water holding capacity is not a chemical property, and soil bulk density is separate from 

soil texture. 



SI figure 7: What do these environmental relationships mean, and why do they emerge? What 

controls CUE? This is not a minor question, and should get more attention. 

++++++++++++++++++ 

Additional comments by referee #5 

I think this manuscript would require more than a few caveats—its central argument would need to 

be fundamentally revised. For instance, I do not think the title of the paper is a defensible 

statement, since it largely depends on the assumption that CLM5-derived CUE is equivalent to 

“microbial CUE”. Like the title, many of the arguments made in the paper appear to be significant 

overstatements given that the modelling approaches used in the analysis do not isolate microbial 

CUE from other factors. 

It is difficult for me to imagine what the manuscript would look like if the arguments were scaled 

back appropriately. Consequently I am afraid I can’t recommend accepting this manuscript. I realize 

that a great deal of effort has been put into producing and reviewing this research, so this is a 

difficult verdict to communicate. My apologies that I cannot offer a more positive assessment! 

I think the approach that depends on CLM5 is fundamentally not appropriate for isolating microbial 

CUE—it can only provide a proxy. The “CUE_mic” parameter in the microbial model could arguably 

be used to isolate CUE via model inversion (this would be distinct from the approach used in the 

manuscript: see section R3.1c of my review for details). Refocusing the paper on the microbial model 

in this way would require a significant re-write, but this might be one path forward. I still have 

significant reservations however, including the two about data sources (points 4 and 5). I stand by 

my overall assessment of the manuscript. 
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Summary of point-by-point responses to comments by referee #5 

 

We very much thank referee #5 for offering us insightful and constructive comments on the 

manuscript, which are extremely helpful for us to revise the manuscript. Here is a summary 

of the revision of our manuscript. 

 

1. Model-retrieved microbial CUE: Following the suggestions by referee #5, we used a 

microbial model only and removed CLM5 from the revised manuscript. The microbial model 

explicitly represents the organic carbon partitioning processes in microbial metabolism along 

three litter and one mineral soil organic carbon pathways. In the revised manuscript, we 

adopted an analytical solution for the microbial model from a published paper (Georgiou, et 

al., 2017. Nature Communications 8, 1-10) to conduct all the analyses as we did previously 

with 57,267 vertical SOC profiles across the globe. We found that our original conclusions 

remain the same as before on the CUE-SOC relationship and the relative importance of CUE 

in comparison with six other components. Please see R5.1a for detailed explanation. 

 

2. System-level CUE: The model-retrieved system-level CUE was calculated according to 

the definition (i.e., 𝐶𝑈𝐸 = !"#$%&&	()#*+,-"#.
&+!&-)%-/	+(-%0/

) by integrating all the CUE values of the 

microbial assimilation pathways for both litter organic carbon and dissolved organic carbon 

(DOC) in the mineral soil. The CUE for the mineral soil part is conceptually closer to the 

values measured in those experiments compiled in our meta-analysis. We also found that the 

system-level CUE is strongly correlated with the CUE for the soil part (Pearson correlation 

coefficient = 0.98, df = 56,270, P < 0.001). Please see R5.2d for more details. 

 

3. Meta-analysis: We examined measured CUE values using carbon (13C or 14C) and oxygen 

(18O) isotopes in our meta-analysis. The mean (variance) values are 0.33 (0.049) using the 

carbon isotopes and 0.33(0.022) using the oxygen isotope. Our analysis using the mixed-

effects model shows that the positive CUE-SOC relationship holds across studies using 

different isotopic methods. Please see R5.2g for more details. 

 

4. Profile selection criteria: We have relaxed our profile selection criteria. With the relaxed 

criteria and the newly adopted analytical solution, we used 57,267 soil profiles of SOC in our 

analysis instead of 2,500 profiles in the previous analysis. We found no significant 

Author Rebuttals to Third Revision:
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discrimination against profiles belonging to any soil orders or ecosystems. The profiles used 

in this study cover all soil orders (including Spodosol) and are inclusive to those with 

irregular vertical SOC shapes. While the majority of the 57,267 profiles (66.2%) showed 

monotonically decreasing SOC stocks with soil depths, 4.4% of them recorded the highest 

SOC stock at the middle of the soil depths and 29.4% of them showed zigzagged SOC stock 

with increasing soil depths. Please see R5.2i for more details. 

 

We hope that our responses and revision of the manuscript are satisfactory to the referee. And 

we look forward to further feedback and comments. 

Below are our point-by-point responses (in blue) to referees’ comments (in black).  
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Referee #5 (Remarks to the Author): 

 

Review of manuscript: “Microbial carbon use efficiency promotes global soil carbon storage” 

 

Overall assessment: 

 

The manuscript’s central thesis is that microbial physiological carbon use efficiency is the 

dominant control on soil carbon accrual worldwide. The authors find support for this 

argument in the results of data assimilation and sensitivity analysis applied to a first order 

linear and a microbially explicit soil carbon model. 

 

This manuscript is technically impressive, generally easy to follow, and ambitious in its 

scope. However, in my view its central argument is based on a misapplication of the concept 

of “microbial carbon use efficiency”. The transfer coefficients in first-order soil carbon 

models are not equal to “microbial carbon use efficiency”, although these two things are 

clearly related. I am going to elaborate on this point because I do not think it should be 

readily dismissed. 

 

Response: We thank the referee for offering us constructive comments. In the revised 

manuscript, we no longer used CLM5 but only used the microbial model that explicitly 

expresses microbial carbon partitioning processes as the backbone to retrieve microbial CUE 

via data assimilation and deep learning. We adopted an analytical solution for the microbial 

model from a published paper (Georgiou, et al., 2017. Nature Communications 8, 1-10) so 

that we can integrate all available SOC profiles with the process-based model by the PRODA 

approach. The main conclusions on the positive CUE-SOC relationship as well as the relative 

importance of CUE in comparison with other model components remain the same as before. 

R5.1a below describes the details of what we have done using the microbial model.  

 

Transfer coefficients may indeed implicitly incorporate microbial carbon use efficiency — 

and yet they also implicitly incorporate other factors. For instance, as originally 

conceptualized in the 1980s, these parameters represented the efficiency with which organic 

matter was “humified” or converted to more “recalcitrant” compounds; or alternatively the 

efficiency with which minerals protect or stabilize SOC (Parton et al. 1987; Parton et al. 

1994). For instance, the transfer coefficient in DAYCENT – a prototypical first order SOC 
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model that forms the basis for the SOC representation in CLM5 – was originally 

conceptualized as soil-texture dependent, reflecting the efficiency of physical stabilization by 

the mineral matrix (Parton et al. 1987). Transfer into the passive SOC pool was described in a 

purely empirical way to approximate SOC residence times, with no reference to microbial 

physiology and no clear physiological interpretation (Parton et al. 1987). In this 

sense the coefficients describe an emergent process that combines microbial physiology and 

the other abiotic (non-physiological) processes. 

 

R5.1a We thank the referee for the insightful comments. We agree with the referee that 

transfer coefficients used in CLM5 do not explicitly represent the concept of microbial 

carbon use efficiency (i.e., the fraction of microbial metabolic substrate carbon for microbial 

biomass accumulation). To address the referee’s concerns, we removed all the text and results 

related to CLM5 from the revised manuscript and used a microbial model that explicitly 

represents the microbial CUE as the backbone of this study to discuss the relative importance 

of CUE to global SOC storage in comparison with other components. 

Specifically, we kept the basic structure of carbon cycling through the four mineral 

soil pools (i.e., enzymes, DOC, mineral-associated SOC, and microbial biomass) in the 

microbial model used in the previous version of the manuscript. The microbial CUE is 

estimated as the efficiency of microbial assimilation of dissolved organic carbon (DOC) in 

the mineral soil to microbial biomass (i.e., 𝜂123  in Response Letter Table 1). To isolate 

microbial from non-microbial processes in litter carbon cycling, we slightly modified the 

carbon transfers from litter organic carbon pools to mineral soil carbon pools (Response 

Letter Fig. 1). When carbon transfers from three litter pools (i.e., metabolic, cellulose, and 

lignin litter pools) to the soil microbial pool, CO2 is released and microbial CUE can be 

estimated for assimilating organic carbon from the three litter pools into microbial biomass 

(i.e., 𝜂45 and 𝜂35655 in Response Letter Table 1). The direct carbon transfers from the 

metabolic and cellulose litter pools to the DOC pool or from the lignin litter pool to the 

mineral-associated SOC (mSOC) pool do not involve microbial processes nor release CO2 

(Response Letter Fig. 1). By doing so, we were able to isolate microbial CUE from other 

processes in our analysis with the microbial model.  

Our results using the microbial model showed a positive correlation between CUE 

and SOC storage (Response Letter Fig. 2). The spatial patterns of CUE and other components 

are similar with those in the previous version of the manuscript (Response Letter Fig. 3). 

CUE is still the most important component in determining the global SOC storage and its 
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spatial distributions in comparison with the other six components investigated in this study 

(Response Letter Fig. 4). We also updated all other related figures and tables (please see 

figures and tables in the Extended Data and Supplementary Information). The detailed 

description of the microbial model is in Section 2 of the manuscript (page 24 - 29). 

 

Response Letter Table 1 | Parameters in the vertically-resolved microbial model that 

were optimized in the profile-level data assimilation.  

 
No. Name Related 

components Description Conventional 
values Unit Prior range 

1 𝜂!"# 

Microbial carbon use 
efficiency 

Microbial CUE for DOC assimilation 0.6 unitless [0.01 0.7] 

2 𝜂$% Microbial CUE for metabolic litter assimilation 0.5 unitless [0.4, 0.9] 

3 𝜂#%&%% Microbial CUE for cellulose/lignin litter assimilation 0.5 unitless [0, 0.4] 

4 𝐾',)**+' Concentration of DOC for half max DOC assimilation 
reaction  4×102 gCm-3 [300 3000] 

5 𝜏)**+' Inverse of 𝑣'),,)**+' in DOC assimilation 0.011 year [0.03 0.001] 

6 𝜏-./0' 

Decomposition 
 

Inverse of 𝑣'),,-./0' in SOC decomposition 1.1×10-4, 4.6×10-
5, 2×10-7 year [0 3´10-4] 

7 𝐾',-./0' Concentration of SOC for half max SOC 
decomposition reaction 6×105 gCm-3 [105 106] 

8 𝜏123,450- Turnover time for enzyme production 22 year [15 30] 

9 𝜏$% Turnover time of metabolic litter 0.0541 year [0 0.1] 

10 𝜏#6! Turnover time of coarse woody debris 3.33 year [1 6] 

11 𝜏#%&%% Turnover time of cellulose and lignin litter 0.2041 year [0.1 0.3] 

12 𝜏123,-./)7 Turnover time for enzyme decay 0.11 year [0.001 1] 

13 𝜏$8# Turnover time for microbial mortality 0.57 year [0 2] 

14 𝑎9"#,$8# 

Carbon transfer 
fraction 

Fraction of microbial necromass that is stabilized as 
SOC 0.5 year [0 1] 

15 𝑎#%,#6! Fraction of decomposed CWD that goes to cellulose 
litter 0.75 unitless [0.5, 1] 

16 𝑎!"#,$% 
Fraction of total decomposed metabolic litter that 

goes to DOC 0.05 unitless [0 0.1] 

17 𝑎!"#,#% 
Fraction of total decomposed cellulose litter that 

goes to DOC 0.15 unitless [0.05 0.3] 

18 𝑎9"#,%% 
Fraction of total decomposed cellulose litter that 

goes to SOC 0.8 unitless [0.6 0.95] 

19 w-scaling 
Environmental 
modification 

Scaling factor to soil water scalar 1 unitless [0 5] 

20 q10 Temperature sensitivity 1.5 unitless [1.2 3] 

21 cryo 
Vertical transport 

Cryoturbation rate 0.0005 m2yr-1 [3´10-5 16´10-4] 

22 diffus Bioturbation rate 0.0001 m2yr-1 [3´10-5 5´10-4] 

23 b Carbon input 
allocation 

Parameter controlling vertical distribution of carbon 
input to litter pools PFT dependent unitless [0.5 1] 
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Response Letter Fig. 1 | Structure of the microbial-process explicit model used in this 

study.  

 

 
Response Letter Fig. 2 | The CUE-SOC relationship that emerged from the meta-

analysis of 132 measurements (a) and data assimilation using the microbial model with 

57,267 globally distributed vertical SOC profiles (b). Black lines and statistics shown are 
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the partial coefficients from mixed-effects model regressions (see Extended Data Tables 1-2 

for details). This figure serves as Fig. 2 in the main text.  

 

 

Response Letter Fig. 3 | Maps of global SOC stock and the underlying components. This 

figure serves as Fig. 3 in the main text.  

 

 

Response Letter Fig. 4 | Microbial CUE as the primary regulator of global SOC storage. 

This figure serves as Fig. 4 in the main text.  

 



 8 

My point here is not that we should remain bound by old (and perhaps outmoded) theoretical 

interpretations (like the recalcitrance concept, which I am not defending); rather, it is to 

emphasize that the transfer coefficients in first order SOC models are nebulous, operationally 

defined parameters, and that our interpretation of them is somewhat subjective. In this case, 

there is no strong basis for interpreting these coefficients as “microbial CUE” alone to the 

exclusion of other factors. 

 

R5.1b We greatly appreciate referee #5 for pointing out this critical difference between the 

transfer coefficients and microbial CUE. Now, we used the microbial model to isolate 

microbial CUE from other factors (please see our responses in R5.1a).  

 

From a more technical standpoint, first order soil carbon models do not directly simulate 

microbial metabolism and growth; hence there is no clear way to invert a first order model to 

estimate microbial CUE as defined in the manuscript (Lines 47-49). The “bulk CUE” index 

discussed in this manuscript might be a rough proxy for microbial CUE and ought to be 

correlated with it at some level (as the authors clearly show), but demonstrating that a model 

component is correlated with a measurement is not convincing evidence that the model 

component and the measurement are synonymous. Consequently, the analysis focused on 

CLM5—which makes up the backbone of the paper—does not actually isolate the role of 

microbial physiology in carbon sequestration, and the manuscript overreaches by assigning 

too much importance to microbial physiology. 

 

R5.1c We thank the referee for the comments. In the revised manuscript, we isolated the 

microbial CUE from other factors by using the microbial model that explicitly represents the 

microbial carbon partitioning processes in soils. Please see R5.1a for more details.  

 

Evaluation of responses to reviewer 3’s comments: 

I have been asked the specifically evaluate the author’s response the reviewer 3’s concerns. 

Here is my point by point assessment, using the authors’ codes designating each point of 

contention: 

 

Response: We thank the referee for doing so. 

 

R3.1a: I concur with reviewer 3 that “model component” is a more appropriate term than 
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“mechanism”. This has been addressed adequately, except in Figure 4, where the term 

mechanism still needs to be replaced. 

 

R5.2a We thank the referee for pointing out this typo. We corrected the “mechanisms” to 

“components” in Fig. 4. 

 

R3.1b: Here I think that the authors may have missed the point. It does seem true that in a 

purely mathematical sense, bulk CUE depends to some extent on the factors that it is being 

compared to, and the authors have done a good job of addressing this issue. However, the fact 

remains that bulk CUE extracted from CLM5 does not isolate the role of microbial 

physiology in carbon cycling. Perhaps it is the interpretation rather than the method of 

calculation that is the real issue (see overall assessment above).  

 

R5.2b We thank the referee for the comments. The revised manuscript used Equation 1 (page 

20 of the revised manuscript) in the Method section to represent CUE as ratio of microbial 

biomass production over substrate uptake. We calculated system-level CUE (Equation 10 on 

page 34 of the revised manuscript) by lumping all the terms of microbial biomass production 

(Equation 9 on page 33 of the revised manuscript) and substrate uptake (Equation 8 on page 

33 of the revised manuscript) from the three litter pools and one DOC pool. We hope our 

expression in the revised manuscript can avoid any confusion. Meanwhile, we used the 

microbial model as the backbone in the revised manuscript to isolate microbial CUE from 

other factors.  

 

R3.1c: The authors have addressed this concern adequately at some level by expanding the 

role of the microbial model. I would like to point out, however, that a correlation between 

bulk CUE extracted from CLM5 and CUE derived from the microbial model is not evidence 

that CLM5 can isolate microbial physiology; rather it is evidence that the transfer coefficients 

from CLM5 are a suitable proxy for physiological CUE. Broadly: correlations alone cannot 

be used to argue that two quantities are equivalent.  

 

R5.2c We thank the referee for the comments. We have re-conducted all the analyses using 

the microbial model that explicitly represents microbial carbon partitioning processes to 

isolate microbial CUE from other factors. Please see R5.1a for more details. 
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In addition, this response to Reviewer 3’s comment is illuminating, in that it explains clearly 

that “system level” CUE was extracted from the microbial model, which was not entirely 

clear in the main text of the manuscript. I appreciate that retrieving “system level” CUE was 

important for intercomparability with CLM5, but on the other hand this decision undermines 

the utility of the microbial model. The microbial model contains an actual CUE parameter 

which governs partitioning between microbial growth and respiration in a clearly 

interpretable way. This parameter really might be directly relatable to the CUE measurements 

collecting in the meta-analysis (which cannot be said for CLM5 transfer coefficients). Are the 

optimized values of this parameter equal to “system level” CUE? If not, what does system 

level CUE represent?  

 

R5.2d We thank the referee for the comments. Now we completely revised the description in 

the manuscript on calculation of system-level CUE with the microbial model. Specifically, 

we calculated the system-level CUE strictly following the definition of microbial CUE (i.e., 

𝐶𝑈𝐸 = !"#$%&&	()#*+,-"#.
&+!&-)%-/	+(-%0/

) (see Equation 1 on page 20 of the manuscript).  

The system-level CUE (i.e., 𝐶𝑈𝐸&7&-/$) integrates four CUE values along the 

microbial assimilation pathways, three from the litter organic carbon pools and one from the 

DOC of the mineral soil part (see R5.1a for detailed description). The calculation is described 

in the main text (L713 – L741) as below: 

“We calculated the system-level CUE of the microbial model according to its 

definition using Equation 1. Specifically, assimilating both litter organic carbon and DOC of 

the mineral soils contributes to the production of microbial biomass (Extended Data Fig. 3). 

In these processes, the total substrate carbon utilised in microbial metabolism is: 

 

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑢𝑝𝑡𝑎𝑘𝑒

=112𝑥5&,9𝑘5&,9(1 − 𝑎.#.4:3,5&)𝜉9𝛥𝑧;
9"

+1=𝑣$%;,%&&"$𝜉9𝑥4:3,9
𝑥123,9

𝐾$,%&&"$𝜉9 + 𝑥123,9
𝛥𝑧@

9

								(8) 

 

where 𝛥𝑧 is the thickness of the zth soil layer and i is from 1 to 3, representing metabolic, 

cellulose and lignin litter pools. The 𝑎.#.4:3,5& from the A matrix (Equation 6) is 𝑎123,45 for 
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metabolic litter, 𝑎123,35 for cellulose litter, and 𝑎$<23,55 for lignin litter. Correspondingly, 

the total microbial biomass production is: 

 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠	𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

=112𝜂5&𝑥5&,9𝑘5&,9(1 − 𝑎.#.4:3,5&)𝜉9𝛥𝑧;
9"

+1=𝜂123𝑣$%;,%&&"$𝜉9𝑥123,9
𝑥123,9

𝐾$,%&&"$𝜉9 + 𝑥123,9
𝛥𝑧@

9

								(9) 

 

Substituting Equations 8-9 into Equation 1 gives the system-level CUE: 

 

𝐶𝑈𝐸&7&-/$

=
∑ ∑ 2𝑥5&,9𝑘5&,9(1 − 𝑎.#.4:3,5&)𝜉9𝛥𝑧;9 +∑ L𝑣$%;,%&&"$𝜉9𝑥4:3,9

𝑥123,9
𝐾$,%&&"$𝜉9 + 𝑥123,9

𝛥𝑧M9"

∑ ∑ 2𝜂5&𝑥5&,9𝑘5&,9(1 − 𝑎.#.4:3,5&)𝜉9𝛥𝑧;9 + ∑ L𝜂123𝑣$%;,%&&"$𝜉9𝑥123,9
𝑥123,9

𝐾$,%&&"$𝜉9 + 𝑥123,9
𝛥𝑧M9"

				(10) 

 

The 𝐶𝑈𝐸&7&-/$ combines all the microbial carbon use efficiencies for both litter organic 

carbon and DOC into one single metric. The variation of 𝐶𝑈𝐸&7&-/$ is mainly controlled by 

CUE of the mineral soils (i.e., 𝜂123  in Supplementary Table 6). We found a strong 

correlation between the system-level CUE and 𝜂123  retrieved from the 57,267 SOC profiles 

via data assimilation (Pearson correlation coefficient =0.98, df = 56,270, P < 0.001, 

Supplementary Fig. 1).” 

 The correlation between the system-level CUE and microbial CUE (𝜂123) retrieved 

from the 57,267 SOC profiles via data assimilation is also presented here as Response Letter 

Fig. 5. 

Because litter is often removed from soil samples before incubations in the 

experiments for studying microbial CUE, we used the retrieved microbial CUE of the mineral 

soil part (i.e., 𝜂123  in Response Letter Table 1) to show the CUE-SOC relationship (Fig. 2 of 

the manuscript), which is comparable with the relationship from our meta-analysis. When we 

evaluated the relative importance of the seven components in determining SOC storage, 

however, we used system-level values of CUE and other components. 
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Response Letter Fig. 5 | Dependence of system-level CUE on the CUE of the mineral soil 

part.  

 

These questions relate to the broader debate about interpreting CUE measurements. From a 

more empirical standpoint, CUE can have multiple meanings and interpretations depending 

on the scale of analysis or the method used (Geyer et al. 2016; Geyer et al. 2019). Does 

system level CUE isolate the ratio of carbon used for growth versus metabolism? Or is it an 

index that is also sensitive to other factors like microbial turnover (see Hagerty et al. 2014; 

Hagerty et al. 2018)? The manuscript would benefit from more explicit consideration of these 

questions, and some direct discussion of how the “cue_mic” parameter relates to system level 

CUE. 

 

R5.2e We thank the referee for the suggestions. As explained in R5.2d, the system-level CUE 

does isolate the ratio of carbon used for growth versus metabolism. When microbial turnover 

occurs, microbial biomass carbon goes through a cycle of transfer from microbial carbon 

pool to DOC, mSOC, and enzyme pools back to the microbial pool with a fraction of carbon 

released to CO2. Thus, we can isolate microbial CUE from other factors such as microbial 



 13 

turnover. In R5.2d, we discussed the strong dependence of the system-level CUE on the CUE 

of the mineral soil part (i.e., 𝜂123). 

 

R3.2a: The authors have addressed this comment by comparing PRODA retrieved CUE 

estimates to the observations from the meta-analysis. This is good, but it also raises new 

issues. First, Response Letter Figure 4 clearly shows that CLM5-derived CUE and CUE from 

field experiments are correlated, but the relationship appears to be strongly biased (i.e., the 

slope is very far from 1:1). CLM5/PRODA retrieved CUE mostly varies between 0.35 and 

0.42, whereas observed CUE values vary between 0.1 and 0.7. This is related to the slope 

mismatch issue that Reviewer 3 raised earlier and which the authors address at length. I think 

at some level this mismatch is to be expected because “bulk” or “system level” CUE estimate 

from CLM5 is only roughly analogous to the CUE being measured in experiments—so we 

might expect a positive relationship, but not a 1:1 relationship. This supports the 

interpretation that CLM5-derived CUE is a proxy for true microbial CUE and not identical to 

it. 

 

R5.2f We thank the referee for the comments. We used the results by the microbial model in 

the revised manuscript to show the CUE-SOC relationship. The microbial model-retrieved 

CUE for the mineral soils (i.e., 𝜂123) presented similar variations with those from the meta-

analysis and thus we observed similar slopes in the CUE-SOC relationships (Response Letter 

Fig. 2). The issue related to CLM5-derived CUE no longer exists as we completely deleted 

CLM5 results from this version of the manuscript.  

 

I would also like to point out a concern with the meta-analysis dataset. My concern is that the 

analysis combines 13C-based and 18O-based CUE estimates. It has been shown clearly that 

these two methods are actually measuring fundamentally different quantities—one substrate 

specific CUE, the other non-specific (Geyer et al 2019). We really ought to stop treating 

these measurements as synonymous—no level of statistical analysis can get around the fact 

that they are based on different assumptions and typically yield very different values (e.g., 

~0.6 for 13C glucose CUE, versus around 0.3 for 18O CUE). A lot of the variation in 

compilations of CUE measurements might actually be due to the fact that different ways of 

measuring or calculating CUE will automatically yield different answers. 
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R5.2g We greatly appreciate this referee for pointing out this issue. We checked our data sets 

used in the meta-analysis. The mean (variance) of measured CUE is 0.33 (0.049) with the 
13C/14C method and 0.33 (0.022) with the 18O method (Response Letter Fig. 6). 

 

 
Response Letter Fig. 6 | Distribution of microbial CUE values measured by 13C/14C (n = 21) 

and 18O (n = 111) methods in the meta-analysis. 

 

We also used the mixed-effects model to examine if the isotope methods would affect 

CUE-SOC relationship. We used the study sources (“Source” in Supplementary Table 1) as 

the random effects for different isotope methods to estimate CUE. The positive CUE-SOC 

relationship shown in Fig. 2a is the result after considering the impacts of different CUE 

values measured by different methods (detailed statistics is shown in Extended Data Tables 1 

- 2). We also conducted the mixed-effects model analyses by separately applying data 

measured by either carbon isotopes (i.e., 13C/14C) or oxygen isotope (i.e., 18O) 

(Supplementary Table 7). While results from the mixed-effects model suggest that the 

random factor (i.e., study source) contributes to the variation in both the slopes and intercepts 

of the CUE-SOC relationship (i.e., the variation of random effects as shown in Extended Data 

Table 1), the positive relationship between CUE and SOC is supported by all the above 

analyses. 

 

R3.2b I concur with Reviewer 3 that the large difference in the CUE-SOC slope in the 
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observations and the CLM5-derived CUE estimates is a major concern (this relates to my 

response to R3.2a above). It is encouraging that the microbial model produces a closer match, 

but this does nothing to increase my confidence that CLM5 can be used to represent the 

experimental data accurately, and the manuscript remains highly reliant on the CLM5 

analysis. 

 

R5.2h We understand the concerns by the referee. We have used the results of the microbial 

model only in the revised manuscript. The CUE-SOC relationship emerged from the 

microbial model data assimilation showed a similar slope with that from the meta-analysis 

(Response Letter Fig. 2).  

 

R3.2c Here I think the authors have done a good job of addressing Reviewer 3’s comment. 

However, I have a major concern that is related. I am concerned about the fact that during 

model optimization, 72,350 soil profiles were originally considered but ultimately only 

52,819 were analyzed (27% excluded). In the Methods, it is mentioned that profiles were 

excluded if they did not show a clear monotonic decline in SOC with depth. It is implied that 

SOC depth profiles that show a bimodal SOC distribution are the result of measurement 

errors or some sort of aberrant “geologic process”: “While these atypical vertical SOC 

distributions could be caused by geological processes even if not by measurement errors, they 

may not offer information to help understand processes underlying SOC storage.” I do not 

think this is a defensible argument. In particular, and entire soil order – the Spodosol order in 

the USDA taxonomy – is partly defined by the presence of a sandy, relatively SOC-poor E 

horizon that overlies a finer textured B horizon rich in reactive Al and Fe oxyhydroxides and 

SOC. The process of soil development can naturally generate a bimodal SOC distribution in 

this case: this is most certainly a “process underlying SOC storage”. I am worried that the 

down-selection procedure has systematically biased this analysis to exclude soils with 

complex SOC-depth profiles that emerge due to pedogenesis. If this is true, the analysis 

might be downplaying the role of minerals in protecting microbial products and hence 

predetermining its findings at some level. 

 

R5.2i We thank the referee for the comments on our profile selection criteria. We relaxed the 

selection criteria. Now we used 57,267 profiles in this study, instead of the original 2,500 

profiles in the previous version, for the microbial model. We used all the 72,377 SOC 

profiles in our site-level data assimilation. We adopted two criteria to select the data 
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assimilation results. The G-R statistics quantifies the convergence of the estimated 

parameters from three independent Markov chains in data assimilation. A larger G-R value 

indicates inconsistent results on the estimated parameters from independent data assimilation 

runs (i.e., equifinality). Results with strong equifinality issue will hinder the neural network 

model to generalise site-level data assimilation results to the global scale (i.e., too much noise 

in training data) and potentially introduce more overfitting problems. Thus, we set a threshold 

(i.e., G-R < 1.05) to control the convergence of data assimilation results and thus control the 

overfitting problem in the later neural network training (see R5.4e for more details). After 

this procedure, a total of 59,476 profiles was left. Moreover, we used the modelling 

efficiency (i.e., E, see Equation 2 of the manuscript) as one additional metric in selecting 

profiles. A small value of E indicates that the model cannot capture the variability in the data, 

suggesting that such SOC vertical profiles may not offer enough information on the processes 

underlying SOC storage investigated in this study. In the revised manuscript, we relaxed the 

threshold of E from E >0.75 to E > 0.0 to include as many profiles as possible. Eventually, 

we used 57,267 profiles in this study.  

 Our profile selection criteria did not cause significant discrimination to profiles in 

specific soil orders or ecosystems. The profiles eventually used in this study covers all 

ecoregions and soil orders (including Spodosols, Response Letter Fig. 7). Meanwhile, the soil 

profiles included in this study are inclusive to those with irregular vertical shapes (Response 

Letter Fig. 8). While the majority of the 57,267 profiles (66.2%) show monotonically 

decreasing SOC stocks with soil depths, 4.4% of them record the highest SOC stock at the 

middle of the soil depths and 29.4% of them show zigzagged SOC stock with increasing soil 

depths. We apologize that the descriptions in the previous version of the manuscript were not 

accurate.  

 In the revised manuscript, we introduced our profile selection criteria with more 

details (L468 – L510) and added the results about criteria inspection (Supplementary Figs. 5 - 

6).  
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Response Letter Fig. 7 | Coverage of different sources of data in multi-dimensional 

covariate spaces. Panels show the percentage of data sites located at different climates (a), 

soil textures (b) soil orders (c), and land cover types (d) in the profiles used in the PRODA 

approach of this study (i.e., 57,267 profiles) and the meta-analysis with 132 data sets. For 

different climate types: Af, Am and Aw are tropical rainforest, monsoon and savannah 

climates, respectively. BW and BS are arid desert and steppe climates, respectively. Cs, Cw 

and Cf are temperate climates with dry summer, dry winter, and without dry season, 

respectively. Ds, Dw and Df are cold climates with dry summer, dry winter, and without dry 

season, respectively. E is polar climate. For different soil texture, Cl is clay, SiCl is silty clay, 

SaCl is sandy clay, ClLo is clay loam, SiClLo is silty clay loam, SaClLo is sandy clay loam, 

Lo is loam, SiLo is silty loam, SaLo is sandy loam, Si is silt, LoSa is loamy sand, Sa is sand. 
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Response Letter Fig. 8 | Different vertical shapes of SOC profiles used in this study. 

Shown in the figure are 1,000 profiles randomly selected from the 57,276 profiles. SOC 

values are normalised by the value at the first soil layer of each profile.  

 

R3.3a: This response shows that the data assimilation algorithm has a strong influence on the 

range of system level CUE values extracted from the model. When CLM5 is optimized via 

the SCE procedure, it yields a CUE SOC relationship several times less steep than if it is 

optimized by the MCMC procedure. This is an interesting methods comparison and I laud its 

thoroughness, but ultimately this result indicates that CUE extracted from the data-

assimilation / PRODA approach is sensitive to the algorithm used. This makes it very hard to 

evaluate the degree of agreement between the models, or between the models and 

observations: to what extent are these results an artifact of the method applied? The fact that 

SCE and MCMC derived results are correlated is small comfort given the difference in output 

ranges when different algorithms are applied.  

 

R5.2j We thank the referee for the comments. In the revised manuscript, we adopted an 

analytical solution reported by Georgiou et al. (2017)1 for the steady state values of the 

mineral soil organic carbon pools in the microbial model (Equation 7 on page 28 of the 
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revised manuscript). The analytical solution enables the MCMC method for data assimilation. 

We used the MCMC method instead of the SCE method in the microbial model data 

assimilation. (The SCE method presents more equifinality problem than the MCMC method 

as we discussed in the previous version of the manuscript.) Now, the CUE-SOC relationship 

retrieved from the 57, 267 vertical profiles of SOC is similar to that from the meta-analysis. 

In addition, estimations of parameters from the MCMC method at site level are more easily 

to be generalized to the global scale by the neural network.  

 

R3.3b: Once again, this response is based on correlations, not a rigorous analysis of the 

absolute goodness of fit between different model outcomes or the observations. Correlation 

statistics are not strong evidence that the analysis is robust to the model type or data 

assimilation approach, particularly given that the absolute values of the CUE estimates 

occupy very different ranges. 

 

R5.2k We thank the referee for the comments. In the revised manuscript, we used the 

microbial model alone to do data assimilation and other analyses. The variance of CUE 

retrieved from the microbial model after data assimilation is similar to that observed in the 

meta-analysis (Response Letter Fig. 2). We extracted the CUE values predicted by the 

PRODA approach in those pixels where the CUE was measured for the meta-analysis and 

then evaluated the agreement between the model-retrieved CUE values (i.e., 𝐶𝑈𝐸()#*%) and 

field measurements (i.e., 𝐶𝑈𝐸$/-%) by the mixed-effects model. We considered the 

methodological differences among different studies as the random effects in the mix-effects 

model (i.e., 𝐶𝑈𝐸$/-%~𝐶𝑈𝐸()#*% + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒	)). The regression analysis indicates 

that CUE estimated with the PRODA-optimised microbial model agrees well with the field 

observations (R2 = 0.54, Response Letter Table 2). The regression slope is not significantly 

different from 1 at a significance level of 0.05 (Response Letter Table 2). 

 In the revised manuscript, the Response Letter Table 2 is presented as Supplementary 

Table 5.  

 

Response Letter Table 2 | Relationship between PRODA-retrieved CUE values in these 

pixels where CUE was measured in the meta-analysis and the measured values. CUE 

predicted by the PRODA approach (𝐶𝑈𝐸()#*%) was set as the fixed effects to measurements 

in the meta-analysis (𝐶𝑈𝐸$/-%). The study source was set as the random effect. We assumed 
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random intercepts in the regression. The total observation size 𝑛&%$(=/ = 132; the random 

effects size 𝑛&-+*7 = 16. The difference of the regression slope between 𝐶𝑈𝐸$/-% and 

𝐶𝑈𝐸()#*% from 1 was tested by offsetting 𝐶𝑈𝐸()#*% in the same mix-effects model structure.  

 

  Intercept 𝐶𝑈𝐸!"#$% 

𝐶𝑈𝐸&'(%~𝐶𝑈𝐸!"#$% + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒	), R2 = 0.54 

Fixed Effects 

Estimates 0.14 0.66 

Std. Error 0.068 0.22 

t value 1.99 3.01 

P 0.050 0.0032 

Random Effects Standard Deviation 0.11 NA 

𝐶𝑈𝐸&'(%~𝐶𝑈𝐸!"#$% + 1 ∗ 𝐶𝑈𝐸!"#$% + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒	) 

Fixed Effects 

Estimates 0.14 -0.34 

Std. Error 0.068 0.22 

t value 1.99 -1.56 

P 0.050 0.12 

Random Effects Standard Deviation 0.11 NA 

 

Summary of critiques: 

(1) Microbial CUE has been defined too broadly, and is not a good descriptor of the model 

components being optimized in the CLM5 case, which do not isolate microbial physiology or 

represent microbial growth and metabolism. 

 

R5.3a We thank the referee for all the constructive critiques. In this revision, we deleted 

CLM5 results from this manuscript and only used the microbial model which explicitly 

represents the microbial carbon partitioning processes to isolate CUE from other factors. The 

main conclusions of this study remain the same. Please see our responses in R5.1a for details.  

 

(2) The actual CUE parameter in the microbial model is not compared to “system level” 

CUE, and the exact relationship between these two quantities is not explored. 

 

R5.3b We apologize for not clearly explaining the system-level CUE in the previous version 

of the manuscript. In this revision, we calculated the system-level CUE strictly following the 
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definition of microbial CUE (i.e., 𝐶𝑈𝐸 = !"#$%&&	()#*+,-"#.
&+!&-)%-/	+(-%0/

). The system-level CUE 

integrates all the microbial CUE values along the microbial assimilation pathways for both 

litter organic carbon and DOC of the mineral soil part (see R5.2d). We found a strong 

dependence of system-level CUE on the CUE for the mineral soil part (i.e., 𝜂123).  

 

(3) CLM5 derived CUE estimates cover a much narrower range than the observations, which 

undermines the idea that CLM5 derived bulk CUE is equivalent to measured microbial CUE. 

 

R5.3c We removed results of CLM5 from the revised manuscript and used the results only 

from the microbial model as the backbone of this study (R5.1a). CUE retrieved from the 

microbial model presents a similar range with that in the meta-analysis.  

 

(4) Observed CUE data in the meta analysis combine methods that quantify fundamentally 

different aspects of CUE. 

 

R5.3d We thank the referee for pointing this out. While it is true that the two methods 

quantify fundamentally different aspects of CUE, we checked our data sets from the meta-

analysis. The mean (variance) values of the measured CUE values are 0.33 (0.049) with the 
13C/14C method and 0.33 (0.022) with the 18O method in our database. We also used the mix-

effects model to address the methodological difference among different studies in quantifying 

the relationship between CUE and SOC storage and the positive CUE-SOC relationship is 

supported by all the analyses. Please see our responses in R5.2g for details. 

 

(5) Down-selection of soil profiles may be systematically biased to ignore important 

biogeochemical processes (e.g., podzolization). 

 

R5.3d We relaxed our profile selection criteria. We now used 57,267 profiles, instead of the 

original 2,500, in our analysis with the microbial model. Our analyses also suggested that our 

profile selection criteria do not cause significant discrimination to profiles in specific soil 

orders or ecoregions. Please see our responses in R5.2f for details. 

 

(6) CUE estimates are dependent on the data assimilation algorithm used; correlations are 
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evidence of a relationship, but not equivalence. 

 

R5.3d We thank the referee for pointing this issue out. We only used the MCMC method to 

do the data assimilation in the revised manuscript. The MCMC method became possible 

because we adopted an analytic solution of the microbial model. Thus, the issue caused by 

the data assimilation algorithm is resolved. Moreover, the CUE retrieved from the microbial 

model is conceptually the same with CUE measurements in the meta-analysis and agrees well 

with the observations in the meta-analysis. Please see R5.1a for more details.  

 

Detailed comments: 

 

Lines 113-116: I’m not sure this statement is true, or at least it seems like a rather slanted 

interpretation of CLM5. Also, as far as I can tell, the reference cited does not actually support 

this claim, or delve into the details of CLM5 soil biogeochemistry much at all.  

 

R5.4a We addressed this issue by totally removing results of CLM5 from the revised 

manuscript.   

 

Line 523: Here the transfer coefficients in CLM5 are called “microbial CUE”. This is a 

misrepresentation in my view: these coefficients are analogous to microbial CUE and 

implicitly include it, but are not equivalent to it, because CLM5 does not represent microbes 

explicitly. 

 

R5.4b We agree with the referee. We addressed this issue by totally removing results of 

CLM5 from the revised manuscript.   

 

Lines 229-237: Could the relationship with bulk density simply be because these soils have 

more organic C? 

 

R5.4c We agree with the referee that soils with rich organic matter may also contribute to a 

lower bulk density. We have discussed the possible mutual dependence between well-

structured soil and abundance of soil organic carbon in the manuscript L227 – L228. 
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Line 447: Why not random slopes? 

 

R5.4d In the mixed-effects model, we considered both random slopes and intercepts in the 

regressions but we only showed the results that was converged in regressions (L433 – L440). 

Because we used the logarithmic values of SOC in regressions, the difference in slopes 

among different study sources may be suppressed and the mixed-effects model with random 

slopes cannot be converged in regressions. We also used the original values of SOC, in 

addition to the logarithmic values, in the mixed-effects model regressions and presented the 

converged results in Extended Data Tables 1 - 2. 

 

Lines 637-638: What does it mean to optimize so many parameters (23) on a profile-by-

profile basis? Aren’t there many more unknowns than observations in this case? It seems like 

there would be a significant danger of overfitting the model. The total number of optimized 

parameters globally must number in the tens of thousands, unless I am misunderstanding 

something. 

 

R5.4e We optimised 23 parameters in data assimilation at each profile. Thus, the optimised 

parameter values vary across profiles. The referee is correct that the neural network 

eventually predicts 57,267 sets of parameters over the globe. We controlled the overfitting 

issue by several means. First, we found that the vertical SOC shape is a strong constraint to 

parameters in addition to the number of measured SOC content values. Thus, we only kept 

soil profiles with more than two layers of observations in this study. Meanwhile, the depth of 

observation at each profile has to be deeper than 50cm to ensure sufficient information about 

vertical SOC shapes to constraint the model (L469 – L472). Second, we used the G-R 

statistics to exclude non-convergent data assimilation results that may lead to equifinality 

(L478 – L486). Third, the neural network used in this study is also a tool to generalise results 

from different profiles at the site-level data assimilation to the global scale. Only features 

(i.e., the relationship between parameters and environmental variables) that are commonly 

shown across profiles will be learnt by the neural network to eventually generate the global 

maps of different parameters. Fourth, the bootstrapping applied in this study further 

quantified the uncertainty of the neural network prediction results (L679 – L689). These 

means of controlling overfitting ensure effective retrieval of enough information from the 

57,267 vertical profiles of SOC to constrain the seven components of the microbial model. 
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Lines 667-669: Does CLM5 really explicitly simulate mineral regulation of microbial CUE? 

Or does it represent the efficiency of transfers between operationally defined SOC pools, 

which are sensitive to both microbial physiology and both the direct and indirect 

(physiologically mediated) effects of mineralogy? 

 

R5.4f We thank the referee for asking this issue. This issue is no longer relevant as we have 

totally deleted results of CLM5 from the revised manuscript.   

 

Lines 688-689: So this suite of environmental variables might predict CUE? In this case, 

aren’t there “environmental modifiers” at play here, in that the environment modifies CUE? 

 

R5.4f Environmental modifiers refer to the modification of temperature and soil moisture to 

SOC decomposition process (L558 – L561). Here all the environmental variables are used to 

predict the spatial patterns of CUE and other parameters. 

 

Lines 702-710: This is a fairly weak cross validation approach: only 10% of the data, 

sampled with replacement (so presumably the same observations can be used in testing and 

training). In addition it would be much better to test on spatially coherent regions rather than 

by random sampling: spatial autocorrelation between training and testing data will yield 

artificially high performance on testing (Roberts et al. 

2017:https://doi.org/10.1111/ecog.02881). This should be standard practice when performing 

cross validation on spatial data—I would go ahead with it, even if many papers are 

unfortunately still published with spatially random testing data. 

 

R5.4f We used the bootstrapping method to quantify the uncertainty of the PRODA-

optimised model simulations in this study. Bootstrapping is considered as a more rigorous 

method to quantify uncertainty than the cross-validation method while its costs much more 

time to implement. Random sampling with replacement in the training set is the core feature 

of bootstrapping. Moreover, we only used observations that were not included in training to 

test the final performance of the neural network after training. Taking 10% of the data as 

validation in training is a common procedure in training a neural network, especially when 

the data is abundant. 
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We had considered the spatial autocorrelation in the initial version of the manuscript, 

but removed the related results from the revised manuscript following the suggestion by 

referee #2, who commented “there is a current hype about the idea that spatial 

autocorrelation should be accounted for when estimating validation statistics in a spatial 

context. This is a misconception and I urge the authors not to propagate this wrong idea in a 

scientific paper… Spatial cross-validation … provides overpessimistic validation statistics 

and has no underlying theory”. Nevertheless, in the initial version of the manuscript, 

considering spatial autocorrelation did not influence the model performance much in a ten-

fold cross-validation.  

  

Figure 2: In panel a, the R squared value is actually equal to 0.55? This is surprising—unless 

“explained variation” refers to some other statistic? Also, the p values can’t be zero—please 

report them in terms of a maximum values, e.g. <0.001. 

 

R5.4f The “explained variation” mentioned in this manuscript refers to the R2 (i.e., 

coefficient of determination) in regressions. Because we used the mixed-effects model that 

considered the random effects of the identified factors in the regression (i.e., varying 

intercepts and slopes with different source IDs in the meta-analysis and with different climate 

types in data assimilation results), the performance of the mixed-effects model is usually 

better than a linear regression model. The fixed-effect results of the mixed-effects model are 

close to the results of a linear regression model, where the intercept and slope are fixed across 

source IDs in the meta-analysis and climate types in the data assimilation results. We also 

reported results of the fixed-effect in the manuscript (Extended Data Table 1).  

 We thank the referee for the suggestion. We have changed “P = 0” to “P < 0.001” in 

the related figures.  

 

Figure 4: Proportional change in mechanisms: are these mechanisms? Or model 

components/indices? I think the latter. 

 

R5.4f We thank the referee for pointing out this typo. We revised it to “components”.  

 

SI lines 96-98: Based on SI figure 2, it seems that the CUE-SOC relationship is strongly 

modulated by soil texture and pH. In this case, is “microbial CUE” the control, or is this 

modeling exercise identifying some sort of emergent interplay between microbes and the soil 
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physico-chemical environment? 

 

R5.4f We thank the referee for asking this issue. This issue is no longer relevant as we have 

totally deleted results of CLM5 from the revised manuscript. 

 

SI table 2: what is “nonmicrobial biomass”? 

 

R5.4f We defined the “non-microbial biomass carbon” as the remaining SOC after excluding 

microbial biomass in L103 – L104 of the revised manuscript.   

 

SI table 8: It wasn’t clear until I reached this table, but it seems that the actual CUE term in 

the microbial model is being largely ignored here. Instead, a more aggregated “system level” 

CUE index is being calculated. How does the actual CUE parameter (mic_cue) behave? This 

seems critical. 

 

R5.4f We thank the referee for asking this question. In this revision, we used the microbial 

model to retrieve the actual CUE parameter (i.e., 𝜂123) by the PRODA approach with 57,267 

vertical SOC profiles. The quantitative relationship between the actual CUE and SOC is 

similar with its counterpart from the meta-analysis. Meanwhile, the system-level CUE was 

calculated in the revised manuscript to integrate CUE values of different microbial 

assimilation pathways for both litter organic carbon and mineral soil organic carbon pools. 

The system-level CUE showed strong dependence on the CUE of the mineral soil part (i.e., 

𝜂123 , the actual CUE suggested by the referee). Please see R5.1a and R5.2d for more 

detailed explanations.  

 

SI table 10: Water holding capacity is not a chemical property, and soil bulk density is 

separate from soil texture. 

 

R5.4f We thank the referee for the comment. We renamed the class “soil texture” to “soil 

structure” to make it more inclusive. We classified the water holding capacity and bulk 

density as properties of soil structure. 

 

SI figure 7: What do these environmental relationships mean, and why do they emerge? What 

controls CUE? This is not a minor question, and should get more attention. 
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R5.4f We agree with the referee that the relationship between CUE and environmental 

variables are important to be explored. We discussed the possible explanations of these 

relationships in L221 - L228. We did not expand the discussion because there is a lack of 

observations that hinders us to make more conclusive interpretations. Meanwhile, this topic is 

out of the main scope of this study, that is to identify the positive or negative sign of CUE-

SOC relationship and to quantify the relative importance of CUE in comparison with other 

components at the global scale. This topic may be explored more in future studies. 

 

Additional comments by referee #5 

 

I think this manuscript would require more than a few caveats—its central argument would 

need to be fundamentally revised. For instance, I do not think the title of the paper is a 

defensible statement, since it largely depends on the assumption that CLM5-derived CUE is 

equivalent to “microbial CUE”. Like the title, many of the arguments made in the paper 

appear to be significant overstatements given that the modelling approaches used in the 

analysis do not isolate microbial CUE from other factors. 

It is difficult for me to imagine what the manuscript would look like if the arguments 

were scaled back appropriately. Consequently, I am afraid I can’t recommend accepting this 

manuscript. I realize that a great deal of effort has been put into producing and reviewing this 

research, so this is a difficult verdict to communicate. My apologies that I cannot offer a 

more positive assessment! 

 I think the approach that depends on CLM5 is fundamentally not appropriate for 

isolating microbial CUE—it can only provide a proxy. The “CUE_mic” parameter in the 

microbial model could arguably be used to isolate CUE via model inversion (this would be 

distinct from the approach used in the manuscript: see section R3.1c of my review for 

details). Refocusing the paper on the microbial model in this way would require a significant 

re-write, but this might be one path forward. I still have significant reservations however, 

including the two about data sources (points 4 and 5). I stand by my overall assessment of the 

manuscript. 

 

R5.5a We appreciate the referee for offering us constructive comments on our manuscript, 

which helped us think deeper on the concept of microbial carbon use efficiency. Following 

the suggestions and comments by the referee, we deleted CLM5 and only used the microbial 
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model that explicitly represents the microbial carbon partitioning processes in the PRODA 

approach to isolate microbial CUE from other factors in the revised manuscript. We re-

conducted all the analyses to quantify the CUE-SOC relationship and the relative importance 

of CUE in comparison with six other components. Our main conclusion on the critical role of 

CUE in global SOC storage using the microbial model remains the same with previous 

analyses. Moreover, we further explained how we considered the methodological differences 

among different studies in quantifying the CUE-SOC relationship in the meta-analysis by the 

mixed-effects model. We also carefully inspected our profile selection criteria to make sure 

there is no significant discrimination against profiles belonging to specific soil orders or 

ecosystems. 

We hope that our responses and revisions are satisfactory to the referee. 
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Reviewer Reports on the Fourth Revision: 

Referee #5 (Remarks to the Author): 

The authors have made a significant effort to overhaul this analysis, dropping the first-order CLM 

model entirely and focusing on a microbial model. This has eliminated some of the basic conceptual 

flaws that I discussed in my previous review. 

The authors have also addressed my concerns about the meta-analysis to a large extent. I am still 

not convinced that 18O and 13- or 14C based CUE are measuring the same thing. Even if the mean 

values are similar, the methods are targeting different components of substrate uptake. But at least 

the analysis now seems to control for this methodological difference, which is sufficient. 

I also appreciate that the soil profiles used for training no longer exclude non-monotonic carbon 

depth patterns. 

I still have qualms about the overall model-dependence of the conclusions presented here, but at 

this point I think it would be better if these play out in future scientific debate rather than via the 

review process. 

Two minor suggestions worth addressing: 

This version of the paper relies on a steady-state solution to a microbial model. I think the steady 

state assumption should be clearly stated in the main body of the paper, perhaps in the paragraph 

introducing the modeling approach, lines 107-125. As it stands now the steady state assumption is 

only clear in the methods. In reality, soil carbon stocks are unlikely to be at steady state—particularly 

in agricultural soils. Hence the need to make this assumption clear. 

I would also revise the discussion of soil physical / structural properties (lines 221-229). As it stands, 

this paragraph emphasized bulk density above other structural properties. Soil texture is also part of 

this group of variables (supplementary Figure 3). The partial dependence plots in supplementary 

Figure 3 do not give me a high level of confidence that the neural network is identifying actual 

mechanistic or function relationships between CUE and soil physical parameters—the responses are 

inexplicably “wiggly” and hard to interpret (typical for machine learning). Perhaps what they show is 

that CUE is related to soil type or structure in some more generalized sense, without suggesting a 

readily interpretable functional relationship.



Author Rebuttals to Fourth Revision: 

Referees' comments: 

Referee #5 (Remarks to the Author): 

The authors have made a significant effort to overhaul this analysis, dropping the first-order CLM 

model entirely and focusing on a microbial model. This has eliminated some of the basic conceptual 

flaws that I discussed in my previous review. 

Response: We thank the referee for the positive evaluation on our revision.  

The authors have also addressed my concerns about the meta-analysis to a large extent. I am still 

not convinced that 18O and 13- or 14C based CUE are measuring the same thing. Even if the mean 

values are similar, the methods are targeting different components of substrate uptake. But at least 

the analysis now seems to control for this methodological difference, which is sufficient. 

Response: We thank the referee for finding our responses sufficient to address her/his concerns. 

I also appreciate that the soil profiles used for training no longer exclude non-monotonic carbon 

depth patterns. 

Response: We thank the referee for the positive evaluation on our profile selection criteria. 

I still have qualms about the overall model-dependence of the conclusions presented here, but at 

this point I think it would be better if these play out in future scientific debate rather than via the 

review process. 

Response: We thank the referee for the comments. We agree with the referee that more discussion 

is needed on the importance of microbial carbon use efficiency (CUE) using different process-based 

models in the future. We added one sentence in the main text of the manuscript L239 – L240 to 

highlight the point: “Moreover, future studies need to carefully examine how sensitive the evaluation 

of the relative importance of CUE to global SOC storage is to different model structures”. 



Two minor suggestions worth addressing: 

This version of the paper relies on a steady-state solution to a microbial model. I think the steady 

state assumption should be clearly stated in the main body of the paper, perhaps in the paragraph 

introducing the modeling approach, lines 107-125. As it stands now the steady state assumption is 

only clear in the methods. In reality, soil carbon stocks are unlikely to be at steady state—

particularly in agricultural soils. Hence the need to make this assumption clear. 

Response: We thank the referee for the suggestion. We added one sentence in the main text L121 – 

L123 to state that the steady-state assumption was applied in conducting data assimilation: “A 

steady-state assumption for the soil carbon cycle (i.e., SOC storage does not change with time) at 

each observational profile is employed to facilitate computation (see Methods)”. We also provide a 

short paragraph in the methods L686 – L693 to explain the reasons of applying the steady state 

assumption: “It should note that the data assimilation was conducted under one assumption that 

SOC profiles are at steady state (i.e., (dX(t))/dt=0). This assumption makes data assimilation 

computationally more feasible than that under non-steady states (see the non-steady-state data 

assimilation67,68). While soil carbon stocks in some ecosystems (e.g., agricultural soils) may not be at 

the steady state because of the concurrent climate change and human activities, previous research 

demonstrated that such disequilibrium component of the transient carbon cycle dynamics, especially 

in SOC pools, is minor in comparison with the amount of SOC storage that was developed over 

thousands of years69.”. 

I would also revise the discussion of soil physical / structural properties (lines 221-229). As it stands, 

this paragraph emphasized bulk density above other structural properties. Soil texture is also part of 

this group of variables (supplementary Figure 3). The partial dependence plots in supplementary 

Figure 3 do not give me a high level of confidence that the neural network is identifying actual 

mechanistic or function relationships between CUE and soil physical parameters—the responses are 

inexplicably “wiggly” and hard to interpret (typical for machine learning). Perhaps what they show is 

that CUE is related to soil type or structure in some more generalized sense, without suggesting a 

readily interpretable functional relationship. 

Response: We thank the referee for the comment and suggestion. The referee is right that the main 

point of this paragraph is to highlight that the spatial patterns of CUE is more closely related with 

soil structural variables than other environmental features, rather than quantifying specific 



functional relationships. We, therefore, removed Supplementary Fig. 3 from the manuscript and 

revised the related discussion from L245 – L252: “Previous studies have discussed the importance of 

soil structural variables such as bulk density, texture and porosity in affecting microbial activities. A 

well-structured soil with medium physical heterogeneity may help foster niche complementarity for 

diverse soil microbial communities and eventually benefit high CUE46-48. In turn, accumulation of SOC 

due to high CUE, could also benefit the development of fertile soils. More quantitative understanding 

is needed on the mechanistic relationships between CUE and soil structural variables so as to 

facilitate the effective management of soil carbon storage in the future” 


