Article

# A vision transformer for decoding surgeon activity from surgical videos

In the format provided by the authors and unedited



Article

# A vision transformer for decoding surgeon activity from surgical videos

In the format provided by the authors and unedited



Article

# A vision transformer for decoding surgeon activity from surgical videos

In the format provided by the authors and unedited



## Supplementary Note 1 - Dataset splits for training and evaluation

### Sub-phase recognition

We use 10-fold Monte Carlo cross-validation in order to evaluate the performance of our deep learning framework. As such, in this section, we outline the training, validation, and test splits for each of those folds across the machine learning tasks described in the main manuscript (surgical sub-phase recognition, gesture classification, and skills assessment).

| Fold | Tra  | aining | ŗ  | Vali | datio | on | Testing |   |   |
|------|------|--------|----|------|-------|----|---------|---|---|
| Polu | n    | v      | S  | n    | v     | S  | n       | v | S |
| 0    | 3805 | 63     | 17 | 425  | 7     | 6  | 544     | 8 | 4 |
| 1    | 3853 | 63     | 18 | 379  | 7     | 5  | 542     | 8 | 6 |
| 2    | 3845 | 63     | 16 | 427  | 7     | 6  | 502     | 8 | 6 |
| 3    | 3771 | 63     | 18 | 455  | 7     | 6  | 548     | 8 | 6 |
| 4    | 3855 | 63     | 17 | 396  | 7     | 5  | 523     | 8 | 7 |
| 5    | 3854 | 63     | 16 | 455  | 7     | 6  | 465     | 8 | 6 |
| 6    | 3842 | 63     | 16 | 438  | 7     | 6  | 494     | 8 | 8 |
| 7    | 3827 | 63     | 16 | 449  | 7     | 5  | 498     | 8 | 6 |
| 8    | 3859 | 63     | 19 | 428  | 7     | 6  | 487     | 8 | 5 |
| 9    | 3818 | 63     | 17 | 488  | 7     | 4  | 468     | 8 | 6 |

Supplementary Table 1. Total number of video samples (n), videos (n), and surgeons (s), in the training, validation, and test sets of each fold for sub-phase recognition. These data splits are used for the 10-fold Monte Carlo cross-validation.

#### **Gesture classification**

| Fold | Tra  | aining | ç. | Val | lidatio | on | Т  | esting | <u>g</u> | Fold | Tra  | aining | ŗ  | Va  | lidatio | on | Т   | esting | ;  |
|------|------|--------|----|-----|---------|----|----|--------|----------|------|------|--------|----|-----|---------|----|-----|--------|----|
| Polu | n    | v      | S  | n   | v       | S  | n  | v      | S        | Polu | n    | v      | s  | n   | v       | s  | n   | v      | S  |
| 0    | 1161 | 66     | 10 | 36  | 11      | 5  | 44 | 12     | 5        | 0    | 1236 | 85     | 15 | 120 | 16      | 10 | 186 | 20     | 9  |
| 1    | 1208 | 65     | 9  | 36  | 10      | 6  | 36 | 10     | 7        | 1    | 1308 | 82     | 15 | 90  | 18      | 10 | 114 | 20     | 10 |
| 2    | 1206 | 65     | 10 | 44  | 11      | 7  | 32 | 12     | 7        | 2    | 1272 | 84     | 15 | 96  | 18      | 10 | 150 | 20     | 11 |
| 3    | 1183 | 67     | 10 | 36  | 11      | 6  | 36 | 11     | 6        | 3    | 1224 | 85     | 15 | 78  | 16      | 12 | 198 | 20     | 9  |
| 4    | 1173 | 65     | 10 | 40  | 11      | 7  | 36 | 10     | 6        | 4    | 1302 | 82     | 15 | 120 | 17      | 12 | 120 | 20     | 11 |
| 5    | 1192 | 64     | 10 | 44  | 11      | 6  | 36 | 11     | 5        | 5    | 1176 | 84     | 15 | 132 | 18      | 7  | 222 | 19     | 9  |
| 6    | 1187 | 66     | 10 | 40  | 10      | 5  | 28 | 11     | 7        | 6    | 1302 | 84     | 15 | 234 | 16      | 8  | 120 | 21     | 8  |
| 7    | 1204 | 64     | 10 | 36  | 11      | 6  | 32 | 10     | 4        | 7    | 1326 | 86     | 15 | 126 | 19      | 11 | 96  | 20     | 8  |
| 8    | 1211 | 66     | 10 | 44  | 11      | 7  | 52 | 12     | 6        | 8    | 1302 | 83     | 15 | 198 | 18      | 8  | 120 | 17     | 8  |
| 9    | 1207 | 66     | 10 | 36  | 10      | 6  | 40 | 11     | 4        | 9    | 1176 | 85     | 15 | 102 | 18      | 10 | 216 | 21     | 10 |

Supplementary Table 2. Total number of videos samples (n), videos (v), and surgeons (s) in the training, validation, and test sets of each fold for gesture classification. These data splits are used for the 10-fold Monte Carlo cross-validation. Data are used for (left) suturing gesture classification and (right) dissection gesture classification.

| Fold | Tra  | ining |   | Те | stin | g |
|------|------|-------|---|----|------|---|
| TOIG | n    | v     | S | n  | v    | S |
| 0    | 1364 | 33    | 7 | 14 | 5    | 3 |
| 1    | 1386 | 33    | 7 | 14 | 6    | 4 |
| 2    | 1390 | 33    | 7 | 14 | 6    | 2 |
| 3    | 1358 | 33    | 7 | 21 | 4    | 2 |
| 4    | 1318 | 34    | 6 | 14 | 5    | 3 |
| 5    | 1375 | 33    | 6 | 14 | 5    | 3 |
| 6    | 1367 | 32    | 7 | 14 | 6    | 3 |
| 7    | 1310 | 33    | 7 | 14 | 5    | 3 |
| 8    | 1385 | 33    | 7 | 14 | 4    | 2 |
| 9    | 1411 | 34    | 7 | 14 | 5    | 3 |

| Fold | Tra | aining | ç | Те  | sting | ŗ |
|------|-----|--------|---|-----|-------|---|
| TOIG | n   | v      | S | n   | v     | S |
| 0    | 691 | 34     | 7 | 102 | 5     | 1 |
| 1    | 697 | 34     | 7 | 96  | 5     | 1 |
| 2    | 679 | 34     | 7 | 114 | 5     | 1 |
| 3    | 701 | 34     | 7 | 92  | 5     | 1 |
| 4    | 703 | 34     | 7 | 90  | 5     | 1 |
| 5    | 677 | 34     | 7 | 116 | 5     | 1 |
| 6    | 707 | 35     | 7 | 86  | 4     | 1 |
| 7    | 696 | 34     | 7 | 97  | 5     | 1 |

Supplementary Table 3. Total number of videos samples (n), videos (v), and surgeons (s) in the training and test sets of each fold for gesture classification in external datasets. (left) DVC UCL dataset and (right) JIGSAWS dataset. These data splits are used for 10-fold cross-validation.

#### Skill assessment

| Fold | Tr  | ainin | g  | Vali | datio | on | Te  | sting | 5 | Fold | Ti  | ainin | g  | Val | idati | on | Te | estin | g |
|------|-----|-------|----|------|-------|----|-----|-------|---|------|-----|-------|----|-----|-------|----|----|-------|---|
| TOIU | n   | v     | S  | n    | v     | S  | n   | v     | s | Tolu | n n | v     | s  | n   | v     | S  | n  | v     | S |
| 0    | 748 | 63    | 17 | 82   | 7     | 6  | 82  | 8     | 4 | 0    | 442 | 63    | 17 | 42  | 7     | 6  | 46 | 8     | 4 |
| 1    | 752 | 63    | 18 | 82   | 7     | 5  | 78  | 8     | 6 | 1    | 438 | 63    | 18 | 42  | 7     | 5  | 50 | 8     | 6 |
| 2    | 778 | 63    | 16 | 44   | 7     | 6  | 90  | 8     | 6 | 2    | 432 | 63    | 16 | 44  | 7     | 6  | 54 | 8     | 6 |
| 3    | 730 | 63    | 18 | 102  | 7     | 6  | 80  | 8     | 6 | 3    | 452 | 63    | 18 | 42  | 7     | 6  | 36 | 8     | 6 |
| 4    | 728 | 63    | 17 | 60   | 7     | 5  | 124 | 8     | 7 | 4    | 438 | 62    | 17 | 38  | 7     | 5  | 54 | 8     | 7 |
| 5    | 774 | 63    | 16 | 46   | 7     | 6  | 92  | 8     | 6 | 5    | 448 | 63    | 16 | 30  | 7     | 6  | 52 | 8     | 6 |
| 6    | 724 | 63    | 16 | 102  | 7     | 6  | 86  | 8     | 8 | 6    | 400 | 63    | 16 | 62  | 7     | 6  | 68 | 8     | 8 |
| 7    | 752 | 63    | 16 | 102  | 7     | 5  | 58  | 8     | 6 | 7    | 450 | 63    | 16 | 54  | 7     | 5  | 26 | 8     | 6 |
| 8    | 754 | 63    | 19 | 86   | 7     | 6  | 72  | 8     | 5 | 8    | 408 | 63    | 19 | 48  | 7     | 6  | 74 | 8     | 5 |
| 9    | 756 | 63    | 17 | 90   | 7     | 4  | 66  | 8     | 6 | 9    | 412 | 63    | 17 | 58  | 7     | 4  | 60 | 8     | 6 |

Supplementary Table 4. Total number of videos samples (n), videos (v), and surgeons (s) in the training, validation, and test sets of each fold for skill assessment. These data splits are used for the 10-fold Monte Carlo cross-validation. Data are used for (left) needle handling skill assessment and (right) needle driving skill assessment.

## Supplementary Note 2 - Duration of video samples

In this section, we present the distribution of the duration of video samples used for training and evaluating SAIS' ability to decode surgical sub-phases and the skill-level of surgeons (Fig. 1). These are shown for the three suturing sub-phases of needle handling, needle driving, and needle withdrawal (columns) for the different hospitals: USC, SAH, and HMH (rows). As we can see, the video samples can span 5 - 100 seconds.



Supplementary Figure 1. Distribution of the duration of video samples for the three sub-phases and across hospitals. Each row reflects a different hospital. Each column reflects a different suturing sub-phase: needle handling, needle driving, and needle withdrawal. We see that video samples can span 5 - 100 seconds.

### Supplementary Note 3 - Distinguishing between tissue dissection and suturing

In this main manuscript, we claimed that SAIS can reliably distinguish between the surgical activities of tissue dissection and tissue suturing. Here, we provide evidence in support of that claim and details of the experiments conducted.

Throughout the manuscript, we trained and evaluated SAIS using 10-fold Monte Carlo cross-validation. We adopt the same strategy to distinguish between video samples of the nerve-sparing (NS) dissection step and the vesico-urethral anastomosis (VUA) suturing step (Table 5). We balance the number of samples from each category (NS and VUA) in each data split (training, validation test), such that 50% of the samples are from each category. We also follow the same implementation details outlined in the Methods section as it pertains to the video samples used, the frames selected in each video sample, and so forth. Video samples of the VUA step consisted of a subset of those used for the sub-phase recognition task (Table 1). Video samples of the NS step consisted of a subset of those used for the dissection gesture classification task (Table 2, right).

We hypothesized that this task of phase recognition (distinguishing between nerve-sparing and suturing) is quite trivial to achieve. This is because the visual cues of each activity are markedly distinct from one another. Indeed, we found that SAIS reliably distinguished between these two activities as evident by its AUC = 1 (Fig. 2).

| Fold | Trair | ning | Valid | ation | Testing |    |  |
|------|-------|------|-------|-------|---------|----|--|
| roiu | n     | v    | n     | v     | n       | v  |  |
| 0    | 2472  | 148  | 240   | 23    | 372     | 28 |  |
| 1    | 2616  | 144  | 180   | 23    | 228     | 28 |  |
| 2    | 2544  | 147  | 192   | 24    | 300     | 28 |  |
| 3    | 2448  | 147  | 156   | 23    | 396     | 28 |  |
| 4    | 2604  | 143  | 240   | 24    | 240     | 28 |  |
| 5    | 2352  | 147  | 264   | 25    | 444     | 27 |  |
| 6    | 2604  | 147  | 468   | 24    | 240     | 28 |  |
| 7    | 2652  | 148  | 252   | 26    | 192     | 28 |  |
| 8    | 2604  | 145  | 396   | 25    | 240     | 27 |  |
| 9    | 2352  | 147  | 204   | 25    | 432     | 29 |  |

Supplementary Table 5. Total number of videos samples (n), videos (v), and surgeons (s) in the training, validation, and test sets of each fold for phase recognition. These data splits are used for the 10-fold Monte Carlo cross-validation.



**Supplementary Figure 2.** SAIS reliably decodes surgical phases across videos. SAIS is trained on video samples exclusively from USC and also evaluated on video samples from USC. Results are shown as an average ( $\pm 1$  standard deviation) of 10 Monte-Carlo cross-validation steps.

## Supplementary Note 4 - Validating SAIS on external datasets

We validated SAIS on two external datasets: JIGSAWS suturing and DVC UCL, and compared its performance to that of state-of-the-art methods for these respective datasets (see Supplementary Table 6 and 7). We report these results in the main manuscript (see Results). In short, we find that SAIS, despite not being purposefully designed for these datasets, performs competitively with the baseline methods.

| Method                     | Accuracy    | Modalities         |
|----------------------------|-------------|--------------------|
| Fusion-KV <sup>1</sup>     | 86.3        | Video + Kinematics |
| MS-RNN <sup>2</sup>        | 90.2        | Kinematics         |
| Sym. Dilation <sup>3</sup> | 90.1        | Video              |
| SAIS (ours)                | 87.5 (13.0) | Video              |

**Supplementary Table 6.** Accuracy of gesture classification on the JIGSAWS suturing dataset. We report the accuracy of the best-performing methods<sup>4</sup> evaluated using leave-one-user-out (LOUO) cross-validation and in each modality category.

| Accuracy (%)        |        |            |              |  |  |  |  |  |  |
|---------------------|--------|------------|--------------|--|--|--|--|--|--|
| Method              | Random | Reported   | Improved     |  |  |  |  |  |  |
| MA-TCN <sup>5</sup> | 25.9   | 80.9       | 3.1×         |  |  |  |  |  |  |
| SAIS (ours)         | 14.3   | 59.8 (1.0) | <b>4.2</b> × |  |  |  |  |  |  |

**Supplementary Table 7.** Accuracy of gesture classification on the DVC UCL dataset. MA-TCN reports accuracy on a private test-set with gesture imbalance. We report the average cross-validation accuracy on the publicly-available training set with balanced categories. Bold indicates the better-performing method.

## References

- 1. Qin, Y. *et al.* Temporal segmentation of surgical sub-tasks through deep learning with multiple data sources. In 2020 IEEE International Conference on Robotics and Automation (ICRA), 371–377 (IEEE, 2020).
- 2. Gurcan, I. & Van Nguyen, H. Surgical activities recognition using multi-scale recurrent networks. In *ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2887–2891 (IEEE, 2019).
- **3.** Zhang, J. *et al.* Symmetric dilated convolution for surgical gesture recognition. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, 409–418 (Springer, 2020).
- 4. van Amsterdam, B., Clarkson, M. & Stoyanov, D. Gesture recognition in robotic surgery: a review. *IEEE Transactions on Biomed. Eng.* (2021).
- 5. Van Amsterdam, B. *et al.* Gesture recognition in robotic surgery with multimodal attention. *IEEE Transactions on Med. Imaging* (2022).