
 Open Access This file is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. In the cases where the 
authors are anonymous, such as is the case for the reports of anonymous peer reviewers, author attribution should be to 'Anonymous 
Referee' followed by a clear attribution to the source work. The images or other third-party material in this file are included in the article’s 
Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0. 

A vision transformer for decoding surgeon activity from surgical videos 

Corresponding author: Dani Kiyasseh

Editorial note 

This document includes relevant written communications between the manuscript’s corresponding author 
and the editor and reviewers of the manuscript during peer review. It includes decision letters relaying any 
editorial points and peer-review reports, and the authors’ replies to these (under ‘Rebuttal’ headings). The 
editorial decisions are signed by the manuscript’s handling editor, yet the editorial team and ultimately the 
journal’s Chief Editor share responsibility for all decisions. 
 
Any relevant documents attached to the decision letters are referred to as Appendix #, and can be found 
appended to this document. Any information deemed confidential has been redacted or removed. Earlier 
versions of the manuscript are not published, yet the originally submitted version may be available as a 
preprint. Because of editorial edits and changes during peer review, the published title of the paper and the 
title mentioned in below correspondence may differ.
 
Correspondence 

Wed 08 Jun 2022 
Decision on Presubmission Enquiry nBME-22-1333-PE 

Dear Dr Kiyasseh, 
 
Thank you for submitting to Nature Biomedical Engineering your Presubmission Enquiry, "Decoding surgeon 
activity from surgical videos with a unified artificial intelligence system". 
 
As you may know, we screen Presubmission Enquiries against our editorial criteria. These editorial 
judgements are based on considerations of fit to the journal's scope and, when enough information is 
provided, of the degree of advance, broad implications, and breadth and depth of the work. 
 
In this case, the topic of the Presubmission Enquiry is within the remit of the journal, and we would like to 
invite you to submit a full manuscript so that we can carry out a full editorial assessment. 
 
I should also ask you to please fill in our reporting summary and policy checklist. (Please note that these 
forms are dynamic PDF files that can only be properly visualized and filled in by using Acrobat Reader.) 
 
Both documents are aimed at ensuring good reporting standards and at easing the interpretation of results, 
and will be available to any reviewers. Should the manuscript be eventually published, the reporting 
summary will be attached to the published PDF of the paper and will also be available as supplementary 
information. More information is available on the editorial policies page. 
 
Moreover, we highly recommend that you use our manuscript template. This will help you ensure that the 
manuscript complies with our data-presentation recommendations, that it includes all the necessary sections, 
and that it is structured to facilitate the assessment of peer reviewers and editors. In particular, please make 
sure that the manuscript provides thorough information on statistics and methods, and that the images 
comply with our guidelines for image integrity. 
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Direct electrical stimulation of the brain is a technique for 
modulating brain activity that can help treat a variety of 
brain dysfunctions and facilitate brain functions1–3. For 

example, deep brain stimulation (DBS) is effective in neuro-
logical disorders4 such as Parkinson’s disease5 and epilepsy6, and  
holds promise for neuropsychiatric disorders such as chronic  
pain7, treatment-resistant depression8 and obsessive–compulsive 
disorder9. Direct electrical stimulation also has the potential to 
modulate brain functions such as learning10, and for use in investi-
gating their neural substrates, for example, in speech production11 
and sensory processing12.

Although the mechanism of action by which direct electri-
cal stimulation alters brain activity is still unknown4, studies have 
shown that stimulation alters the activity of multiple brain regions 
(both local and long range4,13–17) distributed across large-scale brain 
networks. This network-level stimulation effect has been observed 
with various signal modalities such as local field potential (LFP)16, 
electrocorticogram (ECoG)13,17, functional magnetic resonance 
imaging (fMRI)15 and diffusion tensor imaging (DTI)14. These 
observations highlight the essential need for modelling the effect 
of stimulation on large-scale multiregional brain network activity, 
which has largely not been possible to date. Such modelling is espe-
cially important when the temporal pattern of stimulation needs to 
change in real time and when the activity of multiple brain regions 
needs to be monitored. For example, closed-loop DBS therapies for 
neurological and neuropsychiatric disorders1–3,18–21 aim to change 
the stimulation pattern (for example, the frequency and amplitude 
of a stimulation pulse train) in real time on the basis of feedback 
of changes in brain activity. In addition, neural feedback may need  

to be provided from multiple brain regions1–3,21–23, for example, in 
neuropsychiatric disorders that involve a large-scale multiregional 
brain network whose functional organization is not well under-
stood24–26. Despite its importance across a wide range of applica-
tions, establishing the ability to predict how ongoing stimulation 
(input) drives the time evolution (that is, dynamics) of large-scale 
multiregional brain network activity (output) remains elusive1,18.

Computational modelling studies to date have largely focused 
on building biophysical models of spiking neurons. Biophysical 
models can provide valuable insights into the mechanisms of 
action of stimulation—for example, in explaining population-level 
disease-specific observations especially for Parkinson’s disease27–31 
and epilepsy32,33—and guide the design of open-loop stimula-
tion patterns using numerical simulations34,35. However, biophysi-
cal models are typically for disease-specific brain regions, require 
some knowledge of their functional organization (for example, the 
cortical-basal-ganglia network in Parkinson’s disease27–29,31) and 
involve a large number of nonlinear model parameters that can be 
challenging to fit to experimental data from an individual33. Thus, 
biophysical models are difficult to generalize to modelling how 
stimulation drives large-scale multiregional brain network dynam-
ics in an individual, especially in neuropsychiatric disorders where 
the disease-relevant brain networks are not well characterized24–26.

An alternative approach to biophysical models is data-driven 
modelling, as suggested by computer simulations18,36,37. However, 
previous data-driven studies of the brain38–42 have not aimed at 
modelling the dynamic response of large-scale multiregional brain 
networks to ongoing stimulation. Some studies have built models 
of brain structural connectivity using diffusion-weighted imaging 
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Direct electrical stimulation can modulate the activity of brain networks for the treatment of several neurological and neuro-
psychiatric disorders and for restoring lost function. However, precise neuromodulation in an individual requires the accurate 
modelling and prediction of the effects of stimulation on the activity of their large-scale brain networks. Here, we report the 
development of dynamic input–output models that predict multiregional dynamics of brain networks in response to temporally 
varying patterns of ongoing microstimulation. In experiments with two awake rhesus macaques, we show that the activities of 
brain networks are modulated by changes in both stimulation amplitude and frequency, that they exhibit damping and oscilla-
tory response dynamics, and that variabilities in prediction accuracy and in estimated response strength across brain regions 
can be explained by an at-rest functional connectivity measure computed without stimulation. Input–output models of brain 
dynamics may enable precise neuromodulation for the treatment of disease and facilitate the investigation of the functional 
organization of large-scale brain networks.
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When you are ready to submit the manuscript, please upload the manuscript files as well as the reporting 
summary and policy checklist.  
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Pep Pàmies 
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Tue 26 Jul 2022 
Decision on Article NBME-22-1333A 
 
Dear Dr Kiyasseh, 
 
Thank you again for submitting to Nature Biomedical Engineering your manuscript, "Decoding surgeon 
activity from surgical videos with a unified artificial intelligence system". The manuscript has been seen by 
four experts, whose reports you will find at the end of this message. 
 
You will see that the reviewers appreciate the work, and in particular its translational value. However, they 
express concerns about the degree of technical innovation and raise queries about the performance claims. 
They also provide many useful suggestions for improvement, also with regards to the reporting of the 
methodology. We hope that with significant further work you can address the criticisms and convince the 
reviewers of the merits of the study. In particular, we would expect that a revised version of the manuscript 
provides: 
 
* Benchmarking of the model against state-of-the-art surgeon-skill recognition models. 
 
* Validation of the model on public datasets. 
 
* Thorough and clear methodological details. 
 
When you are ready to resubmit your manuscript, please upload the revised files, a point-by-point rebuttal to 
the comments from all reviewers, the reporting summary, and a cover letter that explains the main 
improvements included in the revision and responds to any points highlighted in this decision. 
 
Please follow the following recommendations: 
 
* Clearly highlight any amendments to the text and figures to help the reviewers and editors find and 
understand the changes (yet keep in mind that excessive marking can hinder readability). 
 
* If you and your co-authors disagree with a criticism, provide the arguments to the reviewer (optionally, 
indicate the relevant points in the cover letter). 
 
* If a criticism or suggestion is not addressed, please indicate so in the rebuttal to the reviewer comments 
and explain the reason(s). 
 
* Consider including responses to any criticisms raised by more than one reviewer at the beginning of the 
rebuttal, in a section addressed to all reviewers. 
 
* The rebuttal should include the reviewer comments in point-by-point format (please note that we provide all 
reviewers will the reports as they appear at the end of this message). 
 
* Provide the rebuttal to the reviewer comments and the cover letter as separate files. 
 
We hope that you will be able to resubmit the manuscript within 15 weeks from the receipt of this message. If 
this is the case, you will be protected against potential scooping. Otherwise, we will be happy to consider a 
revised manuscript as long as the significance of the work is not compromised by work published elsewhere 
or accepted for publication at Nature Biomedical Engineering. 
 
We hope that you will find the referee reports helpful when revising the work. Please do not hesitate to 
contact me should you have any questions. 
 
Best wishes, 
 
Pep 
 
__ 
Pep Pàmies 
Chief Editor, Nature Biomedical Engineering 



 

 
 
 
 
__________ 
Reviewer #1 (Report for the authors (Required)): 
 
//A brief summary of the results.// 
The authors propose a unified surgical AI system that can decode surgical activities. This work developed a 
system named SAIS which can identify the procedural steps of surgery, the actions performed by a surgeon, 
and the quality of such actions by utilizing two data modalities (RGB frames and optical flow maps). The 
proposed system can be used to decode surgical steps (phase), gestures and the surgeon’s skill. Extensive 
experiments are conducted to show models' performance and robustness in generalizing across videos, 
hospitals and surgical produces in performing those tasks. The author’s writing in the introduction section is 
commendable as it adequately stresses the need and advantage of such application. This work has merits in 
terms of application. However, it needs major revision in the results and methodology section to help readers 
understand it easily. The details on the dataset, dataset preparation and proposed model are scattered 
between the results and methodology 
section making it hard to fully comprehend. Furthermore, the proposed system lacks significant novelty and 
benchmarks against the existing system. The workload of this work in preparing the dataset is heavy. 
However, the work lacks comparative experiments and technical novelty. 
 
//Your reasoned opinion on the degree of advance (fundamental, mechanistic, methodological, technological, 
therapeutic, translational and/or clinical) of the work with respect to the state of the art. If the results or 
conclusions are not original, please provide relevant references.// 
 
This work showcases application novelty, where similar architectures (the last layer of the architecture 
changes depending on the number of classes for each task) for phase/gesture/skill recognition. While the 
results provided are original and interesting, the degree of advancement in terms of the model is unclear due 
to the following: 
 
•Based on my understanding, the proposed SAIS model is a single-task (pseudo-tri-task) model, which can 
be trained to recognise phase/gesture/surgeon skills. However, to perform all three tasks at once requires 
three SAIS models in parallel. In such a case, how different is the SAIS model compared to existing gesture 
recognition models, which can also be technically used for the remaining tasks since they also warrant only 
changing the last layer? 
 
• What is the advantage of using multiple SAIS models in parallel vs using the existing state-of-the-art 
models for phase/gesture/skill recognition in parallel? Additional comparison of computation requirements 
will also provide additional insights. 
 
• Are different models trained for different surgical tasks (tissue dissection/suturing)? If so, it raises questions 
on full automation of the system as it would warrant manual video segmentation of surgical tasks before 
being fed to the SAIS model. 
 
• While results on model generalization to videos and hospital is shown, the datasets appear to be severely 
controlled to meet the study requirement (same surgical tools). For instance, even for the same surgical task, 
the number and type of tools may vary depending on the surgical system used. While an out-of-distribution 
approach is used to handle unknown data, the work doesn’t provide insights or acknowledge its limitation in 
handling new surgical tools for the same tasks. 
 
• The degree of advancement in terms of the SAIS model is unclear due to a lack of fair comparison. The 
use of two non-public self-generated datasets also raises questions on model biases. To fairly benchmark 
the SAIS model, it must be evaluated against existing state-of-the-art task/gesture/surgeon skill recognition 
models on a public dataset.  
 
//As numbered lists: 
* Any major technical criticisms or questions.// 
 
• As stated above, application merit is clear but technical novelty is unclear. 



 

 
• The work presented as it has value in terms of application. Providing clear details on the dataset and SAIS 
model by rewriting the results and methodology section is necessary and will improve the paper. Additionally, 
benchmarking against state-of-the-art models on the public datasets in terms of performance, computational 
cost and ease of training and deployment will further validate the SAIS model and add value to the paper.  
 
//Any minor technical criticisms or questions.// 
This work uses the same ViT model to achieve three different tasks (phase recognition, gesture recognition, 
and skill assessment). Simply pursuing the number of tasks does not seem to justify more novelties. In this 
work, is the learning among these three tasks isolated and independent of each other (The proof is that the 
input video segments are different for surgical phase tasks and surgical gestures)? However, there is 
actually a connection between these tasks, so can the paper give insights into the progressive relationships? 
 
Furthermore, based on the assumption that “the tissue dissection and suturing are commonly performed 
within almost any surgery”, when decoding suturing gestures (78 videos from USC) and dissection gestures 
(86 videos from USC), why did the authors choose different surgical videos for training? 
The development of such a system is to be encouraged. It's good to see the integration of these tasks. The 
experimental design and methodology can be further improved to enrich the work. 
 
//Any missing or unclear details about statistics, protocols or materials.// 
• As the information on details on details and model is scattered between results and methodology section, 
it’s difficult to comprehend fully on how the dataset is prepared and inputed to the model. Please clarify the 
following: 
 
* For phase/gesture/skill recognition tasks, If the full surgical videos are auto segmented into 1 second with 2 
FPS, are each classification done using two frames? How does test-time augmentation contribute here? 
 
* It is actually unclear how many temporal frames are used for each classification task? In case more than 2 
frames are used for each forward propagation, what is the computational requirement from start to end 
(extracting features from each frame to end classification)? Is the computational load justified compared to 
using existing state-of-the-art models? 
 
* I recommend rewriting the results and methodology.Simply results to just results and observation. Move the 
information in the results sections related to the dataset/methodology into the methodology section. In the 
methodology section, have a dataset and dataset preparation subsections. Under dataset, state the total 
number of videos generated and used for each task. Under dataset preparation, state how the video was 
segmented and augmented for each task. Under methodology, clearly define step-by-step forward 
propagation. How many frames were used, and how was it combined. Move the architecture figure to the 
methodology section for easy reference.  
 
//Any missing citations to relevant literature (please keep in mind that the suggested maximum number of 
references is 50).// 
1-3 Provides state-of-the-art models and public datasets. 4 is an attention-based model that is worth 
benchmarking.  
 
1) CholecTriplet2021: A benchmark challenge for surgical action triplet recognition 
2) PEg TRAnsfer Workflow recognition challenge report: Does multi-modal data improve recognition? 
3) Learning and Reasoning with the Graph Structure Representation in Robotic Surgery 
4) Rendezvous: Attention mechanisms for the recognition of surgical action triplets in endoscopic videos 
Many related and recent AI-engineering references on “Surgical Scenes understanding”, “Surgical 
Interaction Recognition”, “surgical report generation” (searching these keywords will yield the references) are 
missing. 
 
//Any optional suggestions for improvement.// 
(1) may use the same set of surgical videos for these tasks and consider dependencies between tasks, 
rather than isolating them. 
(2) In addition to those mentioned in the paper, surgical evaluation can be evaluated from more 
perspectives. Such as: Whether the task can be completed within the expected time? 
 
//Any stylistic issues or recommendations.// 



 

(1) can add some Tables to the paper 
(2) can polish Figure 2 by filling the text in green blocks. 
(3) Formulas can be centered 
 
 
 
Reviewer #2 (Report for the authors (Required)): 
 
I appreciate the opportunity to review your manuscript. I understand this is the experimental study to develop 
SAIS which can automatically recognize surgical phases (dissection or suturing), dissection gestures, sub-
phases, and the skill level of sub-phases. SAIS might be able to provide surgeons with optimal feedback 
intraoperatively, and it might contribute to improving surgical skills. Ultimately, it might contribute to improving 
patients’ postoperative outcomes. Several comments and questions are listed below.  
 
The methodology of sub-phase recognition is clear; however, phase recognition is unclear. How many 
surgical phases did you define and annotate? I understand SAIS can recognize and distinguish each sub-
phase with high accuracy but how high is the accuracy of the phase recognition task and which figure does 
show it? According to Supplementary Table 1, each fold had approximately 3800 samples, but what do 
samples mean and include? In my understanding, samples mean the target video scene, but if so, does it 
means that each intraoperative video includes approximately 50 target scene? If each sample includes only 
the scene of NS, HD, and VUS with various time duration, you can extract only 3 scenes from each video, 
right? Besides, when you input the entire video into SAIS, can SAIS extract only the target scene from the 
entire video with high accuracy?  
 
SAIS uses a Vit pre-trained in a self-supervised manner on the ImageNet dataset. In my understanding, the 
strong point of using a self-supervised pre-training manner is that you can use a big dataset with the same 
domain information for pre-training. In other words, ImageNet is just a general annotation dataset including 
various types of information such as foods, animals, vehicles, etc. However, by adopting a self-supervised 
manner for pre-training, you can use the big dataset of robotic surgical images in a self-supervised manner. 
Please explain the motivation and reason why you combined self-supervised pre-training manner and 
ImageNet in this study.  
 
According to Figure 2, this network architecture is similar to I3D (3D-CNN). I strongly agree with your policy 
of selecting a spatiotemporal model for surgical video analysis tasks instead of the standard CNN model 
which can only analyze a static image. A previous study used I3D for surgical skill assessment (JAMA Netw 
Open. 2021 Aug 2;4(8):e2120786.), so you should lightly mention it in your text.  
 
In the section on Qualitative evaluation, you just introduce only one case. I wonder if this tendency you 
realized as the outlier can adopt and apply to the other case. You set a 60-second interval as the threshold, 
but this threshold should be optimized based on the result of more cases. The rationale for the number 60 is 
ambiguous.  
 
In the section on Generalizing across videos, you mentioned that for needle handling, skill assessment is 
based on the number of grip reposition times, and the fewer the better. If the manual skill assessment is 
performed strictly following this rule, you should develop a model which can recognize the grip reposition 
action and count the number of target actions. I think that skill assessment based on the results is highly 
reliable and interpretable compared to the proposed SAIS output.  
 
In the section on Generalizing across hospitals, you mentioned the potential source of distribution shift 
includes variety in the camera recording devices between the surgical robots. However, I assume all surgical 
robot used in this study is DaVinci with the same camera. If not, please show the list of the type of surgical 
robots.  
 
In the section on SAIS that can provide surgeons with actionable feedback, you mentioned that SAIS can 
allow surgeons to better focus on the element of intraoperative surgical activity that requires improvement. 
Please clarify whether your goal is intraoperative feedback or postoperative feedback. If yours is the former 
one, inference speed should be mentioned. I assume the network architecture which focuses on temporal 
information tends to take a bit longer inference time.  
 
As you also mentioned in your discussion, the most crucial theme of this research field is how this 



 

contributes to improving patient outcomes, and as for this point, I strongly agree with your opinion. I would 
like you to show the data about the correlation between SAIS output and erectile function or urinary 
incontinence even a preliminary one. The correlation between them will be truly observed or not so far.  
 
 
 
Reviewer #3 (Report for the authors (Required)): 
 
This paper presents a framework for multi-task surgical action classification. It uses the same neural network 
to estimate the phase of the surgery, the gesture being performed, and the skill at which the gesture is 
performed. Several datasets are curated, including two types of procedures in different anatomy and data 
from two hospitals. The proposed network uses a pretrained feature extractor to get frame-by-frame 
information from both RGB images and optical flow. The features are then stacked and passed through a 
transformer network, which uses self-attention to selectively process the video information. Lastly, the video 
features are aggregated between the RGB and optical branches and the resulting feature vector is used to 
classify 1) the surgical gesture, 2) the surgical phase, and 3) the skill at which this gesture is performed. The 
authors showed that not only can the same architecture be used across tasks, but it also generalizes across 
datasets collected at different 
institutions, with different practices. This is a good step in translational advance. The thorough evaluations of 
the proposed model make a good case that neural networks can obtain consistent and generalizable results 
in clinical settings. The results from this paper could be useful in introducing more machine learning-based 
analysis into surgery training programs, though it would have been more convincing if there was a user study 
showing how the analysis actually benefitted surgeon training.  
 
Major technical criticisms or questions: 
 
1) While there are interesting ablations of what features were important, the technical and performance-wise 
advance is somewhat lacking. The idea of using video analysis to assess surgical skill and gesture is not 
new, nor is it new to do both simultaneously, using a complex neural network followed by a simpler classifier 
(Khalid et al, 2020, Wu et al, 2021). The previous works were limited translationally since the publicly 
available datasets are on benchtop setups. Nevertheless, it would have been interesting to see a 
comparison to the previous methods on a consistent dataset to understand the technical contributions of this 
work. Comparisons with previous methods on the proposed dataset would be helpful in placing the proposed 
technical framework in the context of the existing body of work. Alternatively, the authors could provide 
results by using their method on the benchmark dataset in this field, JIGSAWS (Gao et al. 2014). Although 
JIGSAWS is a benchtop dataset rather than 
in vivo, evaluating on it would demonstrate the technical innovation better than solely evaluating on a 
proprietary dataset.  
 
2) What is the benefit of using the same network for multiple tasks? There did not seem to be evidence 
suggesting that multi-task learning is actually more human-interptable as the evaluation was mostly based 
on ROC curves. While it is hard to compare surgical gesture accuracy across different datasets, as different 
gestures are labelled at different granularity, state-of-the-art methods for surgical skill have accuracies above 
90% (Funke et al. 2019, and Wang and Fey 2018, using video and robot kinematics respectively). The 
dataset for the previous works is simpler as it used data from phantoms rather than actual surgeries, but it 
does sort skills into three classes instead of two. There should be a discussion about what multi-task 
learning brings that is worth the trade-off for lower accuracy.   
 
3) The paper is missing discussion on how camera views affect what the network learns. Shifting the camera 
should shift both the tool's position in the RGB image and the optical flow. Does the network see the same 
gesture in the two views as different examples of the gesture?  
 
Minor technical criticisms or questions:  
 
1) Natural images often place importance on corners and edges, both of which tend to be less distinct in 
endoscope images so it is interesting that this works. This is particularly true for the optical flow images, 
which should have very different characteristics compared to ImageNet. Since the stated goal of this 
manuscript is to build an explainable pipeline, it seems important to know what features a network trained on 
natural images picks up from endoscope images and optical flow. How was the ViT architecture determined? 
What was the self-supervised task on ImageNet?  



 

 
2) One of the drawbacks of this method appears to be poor generalization to new anatomy (ex. from NS in 
RARP to HD in RAPN) despite both being dissection and sharing a common set of gestures. This suggests 
that the network focuses too much on the underlying image of the anatomy. While optical flow should provide 
some generalization over different backgrounds so it is unclear whether the drop is caused by image 
features or by true differences in how gestures are performed in the different procedures. It would be 
interesting to see whether incorporating robot motions into the analysis would benefit generalization. Since 
both are robot-assisted procedures, it should be possible to capture anatomy-independent motion cues from 
the joint information rather than obtaining it from optical flow.   
 
3) It is unclear from the description whether videos from one surgeon can be in both the testing and training 
set (if two videos were performed by the same surgeon). If it could, there might be a leak of information 
between the two sets that is specific to how one surgeon performs a gesture (ex. if the network sees the 
surgeon performing a gesture in training and saw the label for the skill level, and then it sees the same 
gesture performed the same way during testing, the skill level is leaked).  
 
4) At what time scale is skill level assessed? Gestures are decoded at 1 s intervals, at 2 fps. But from Fig. 6, 
more than 2 frames appear to be used for skill assessment, which makes sense since it should pick up on 
repetitions of a behaviour.  
 
5) The authors suggest that differences in performance between the two sites may be partially due to 
different cameras. In that case, what are the characteristics of the cameras (ex. the dimensions of the 
images captured could have an effect on the artifacts created by scaling)?  
 
Missing or unclear details about statistics: 
 
How many actions were low skill level vs. high skill level and how consistent was this label for one surgeon?  
 
Additional citations to relevant literature: 
 
(Funke et al. 2019) Funke, I., Mees, S.T., Weitz, J. et al. Video-based surgical skill assessment using 3D 
convolutional neural networks. Int J CARS 14, 1217–1225 (2019). https://doi.org/10.1007/s11548-019-
01995-1 
 
(Gao et al. 2014) Gao, Y., Vedula, S. S., Reiley, C. E., Ahmidi, N., Varadarajan, B., Lin, H. C., ... & Hager, G. 
D. (2014, September). Jhu-isi gesture and skill assessment working set (jigsaws): A surgical activity dataset 
for human motion modeling. In MICCAI workshop: M2cai (Vol. 3, No. 3). 
 
(Khalid et al. 2020) Khalid S, Goldenberg M, Grantcharov T, Taati B, Rudzicz F. Evaluation of Deep Learning 
Models for Identifying Surgical Actions and Measuring Performance. JAMA Netw Open. 2020;3(3):e201664. 
doi:10.1001/jamanetworkopen.2020.1664 
 
(Wang and Fey 2018) Wang, Z., Majewicz Fey, A. Deep learning with convolutional neural network for 
objective skill evaluation in robot-assisted surgery. Int J CARS 13, 1959–1970 
(2018). https://doi.org/10.1007/s11548-018-1860-1 
 
(Wu et al. 2021) Wu, J., Tamhane, A., Kazanzides, P., & Unberath, M. (2021). Cross-modal self-supervised 
representation learning for gesture and skill recognition in robotic surgery. International Journal of Computer 
Assisted Radiology and Surgery, 16(5), 779-787. 
 
Stylistic issues or recommendations: 
 
1) It would be helpful to have a section describing the datasets. 
 
 
 
Reviewer #4 (Report for the authors (Required)): 
 
Summary: 
This work proposes a machine learning model to classify multiple aspects of surgical activities. The authors 



 

train and test their model on the classification of surgical phases, gestures and skill level. The authors 
evaluate the potential generalization capability of the model on videos from different surgeons, two hospitals 
and two different surgical procedures. 
 
Degree of advance: 
The authors demonstrate a method with some generalization capability by collecting data from different 
surgeons, two hospitals, and two different surgical procedures with their corresponding anatomical sites.  
The proposed architecture is relatively simple and can perform reasonably well on multiple classification 
tasks on multiple frames of a surgical video.  
However, there is no comparison to other established machine learning models, so the difficulty of the 
proposed task and dataset vs. the capability of the model remain unknown. 
The authors provide detailed demonstrations of the clinical utility their model could bring by decoding 
surgical activity. While interesting from a clinical translational point of view, the work however does not aim at 
demonstrating high technical novelty. 
 
Implications: 
The implications of this work are that the proposed machine learning model based on transformers is able to 
perform well and generalize on the classification of multiple classification tasks in isolated surgical activities. 
The performance on the proposed tasks seems satisfactory. However, the clinical applicability needs further 
validation.  
 
Major technical criticisms: 
1. Metrics like mAP and F1 Score are well established in the domain of surgical phase and action recognition 
and they should be reported here as well. 
2. The demonstrated model is not evaluated on other datasets. 
The dataset is unfortunately not public, therefore the results are not reproducible even though the model and 
code are to be published. 
3. The authors claim that previous work commonly allows for the leakage of data from the same video into 
training and test set without any specific reference or example. This is incorrect. Avoiding data leakage is 
standard practice in the community and most of the referenced papers are doing so. If the authors are aware 
of any exceptions, they need to reference them explicitly and discuss the issues. Describing not allowing 
data leakage in this work as especially rigorous evaluation is therefore misleading. 
4. Simplification of surgical events might not represent the true complexity of surgical interventions e.g. Skill 
level: High and Low. 
 
Minor technical criticisms: 
1. The relevance of steps, gestures and skill level on suturing and dissection activities to postoperative 
patient outcomes remains unknown until further studies in this direction are published. 
2. It can be assumed that the impact of skill difference in the suturing step on patient outcome is limited. The 
impact of the quality of the dissection step can be assumed to be higher, but it is not analyzed here. 
3. The authors proclaim that their model can already be reliably deployed on surgical videos of the nerve-
sparing dissection step, but the performance on some of the classes e.g. in Fig. 5a does not seem sufficient 
for deployment in a clinical setting. (Recall ~ 0.5 and lower) 
4. Parts of the surgical procedure (clips of suturing and dissection) are isolated manually, limiting automated 
analysis capability as proposed in this paper. 
 
Stylistic Issues: 
1. In figure 7. the caption and the paragraph below state that SAIS can provide skill information that 
otherwise would not be available - but this is also true for all surgical assessment methods. 
 
2. In Discussion the first sentence says: “Only in the past decade or so has it been demonstrated that 
intraoperative surgical activity can have a direct influence on postoperative patient outcomes”. This has been 
a known fact of surgery, in the last decades only the automatic analysis has been discussed. 
 
  



 

Thu 27 Oct 2022 
Decision on Article NBME-22-1333B 

Dear Dr Kiyasseh, 
 
Thank you for your patience in waiting for the feedback on your revised manuscript, "Decoding surgeon 
activity from surgical videos with a unified artificial intelligence system", which has been seen by the original 
reviewers. As noted in previous e-mail correspondence, despite our chasing efforts Reviewer #4 has not yet 
provided their feedback, and we feel that it is unlikely that they will. 
 
The reports of the other three reviewers that I had already forward to you are included at the end of this 
message. The reviewers acknowledge the improvements to the work, and question the inherent 
technological novelty of the work. As I noted earlier, in particular with respect to the comments of Reviewer 
#1, for this manuscript editorially we have placed emphasis on the extended benchmarking and validation 
across datasets rather than on raw technical novelty or innovation. However, I hope that the next version of 
the manuscript can better frame the background of the story to take the reviewers' points into account. 
 
As before, when you are ready to resubmit your manuscript, please upload the revised files, a point-by-point 
rebuttal to the comments from Reviewers #1 and #3, the reporting summary, and a cover letter that explains 
the main improvements included in the revision and responds to any points highlighted in this decision. 
 
We look forward to receive a further revised version of the work. Please do not hesitate to contact me should 
you have any questions. 
 
Best wishes, 
 
Pep 
 
__ 
Pep Pàmies 
Chief Editor, Nature Biomedical Engineering 
 
 
 
 
__________ 
Reviewer #1 (Report for the authors (Required)): 
 
I appreciate the efforts of the authors to revise the manuscript. 
 
The key issues are still there regarding the lack of a significant degree of advance (fundamental, 
mechanistic, methodological, technological, therapeutic) in the work with respect to state of the art. 
 
The authors themselves also agreed that “application merit is clear but technical novelty is unclear” and 
admitted that “the primary benefit of SAIS is translational in nature as it lends confidence into its use for live 
surgical videos stemming from distinct settings”. However, more novel 
fundamental/mechanistic/methodological/technological/therapeutic contributions are typically expected for a 
publication appears in the top journal of “Nature Biomedical Engineering”. 
 
This work uses the same ViT model to achieve three different tasks (phase recognition, gesture recognition, 
and skill assessment). Simply pursuing the number of tasks does not seem to justify more novelties. 
 
The learning among these three tasks (sub-phase recognition, gesture classification, and skill assessment) 
are independent of one another) are independent of each other. However, there are actually inherent 
connections between these tasks. The authors responded and would like to leave these discoveries to future 
work, which left many important questions unanswered. 
 
Still, many related and recent AI-engineering references on Surgical Workflow Recognition, Surgical State 
Estimation, Surgical Scenes understanding, Surgical Interaction Recognition are missing. 
 



 

Related ideas with original methodological algorithms have been published in the literature. For example: 
 
Qin, Y., Allan, M., Burdick, J. W., & Azizian, M. (2021). Autonomous hierarchical surgical state estimation 
during robot-assisted surgery through deep neural networks. IEEE Robotics and Automation Letters, 6(4), 
6220-6227. This paper proposed Hierarchical Estimation of Surgical States to estimate the associated super- 
and fine-grained states concurrently. 
 
Shi, X., Jin, Y., Dou, Q., & Heng, P. A. (2021). Semi-supervised learning with progressive unlabeled data 
excavation for label-efficient surgical workflow recognition. Medical Image Analysis, 73, 102158. 
 
Wagner, M., Müller-Stich, B. P., Kisilenko, A., Tran, D., Heger, P., Mündermann, L., ... & Bodenstedt, S. 
(2021). Comparative validation of machine learning algorithms for surgical workflow and skill analysis with 
the HeiChole benchmark. arXiv preprint arXiv:2109.14956. 
 
Soleymani, A., Asl, A. A. S., Yeganejou, M., Dick, S., Tavakoli, M., & Li, X. (2021, November). Surgical skill 
evaluation from robot-assisted surgery recordings. In 2021 International Symposium on Medical Robotics 
(ISMR) (pp. 1-6). IEEE. 
 
Shi, X., Jin, Y., Dou, Q., & Heng, P. A. (2020). LRTD: long-range temporal dependency based active 
learning for surgical workflow recognition. International Journal of Computer Assisted Radiology and 
Surgery, 15(9), 1573-1584. 
 
Seenivasan, L., Mitheran, S., Islam, M., & Ren, H. (2022). Global-Reasoned Multi-Task Learning Model for 
Surgical Scene Understanding. IEEE Robotics and Automation Letters, 7(2), 3858-3865. 
 
van Amsterdam, B., Clarkson, M. J., & Stoyanov, D. (2020, May). Multi-task recurrent neural network for 
surgical gesture recognition and progress prediction. In 2020 IEEE International Conference on Robotics and 
Automation (ICRA) (pp. 1380-1386). IEEE. 
 
Zia, A., Guo, L., Zhou, L., Essa, I., & Jarc, A. (2019). Novel evaluation of surgical activity recognition models 
using task-based efficiency metrics. International journal of computer assisted radiology and surgery, 14(12), 
2155-2163. 
 
Gao, X., Jin, Y., Dou, Q., & Heng, P. A. (2020, May). Automatic gesture recognition in robot-assisted surgery 
with reinforcement learning and tree search. In 2020 IEEE International Conference on Robotics and 
Automation (ICRA) (pp. 8440-8446). IEEE. 
 
 
 
Reviewer #2 (Report for the authors (Required)): 
 
Thank you for the opportunity to review the manuscript again. 
My questions were answered clearly and appropriately by the authors. 
I have no further comments. 
 
 
 
Reviewer #3 (Report for the authors (Required)): 
 
The authors have strengthened the clinical contribution of the work by clarifying the dataset description, 
adding another hospital, and adding the section correlating skill to clinical outcome. This is a valuable 
contribution to the field since curating datasets and long term studies to track patient outcome is often not 
possible depending on the institution. The translational contirbution is useful as it does show that AI systems 
can help with targeting surgeon training, and potentially improving patient outcome. The authors have done a 
thorough job in addressing the concerns raised in the initial review.  
 
The technical contribution of the work is still not obvious though. As mentioned by multiple reviewers, there is 
a lot of existing work on this topic and from Tables 1 and 2, it is unclear that the proposed method gets better 
performance than existing methods (even with other modalities that only use video). It's not clear to me that 
a percentage improvement over majority class is a convincing metric since the improvement seems to mostly 



 

derive from Random doing much worse. This is especially concerning if G5 was discarded from the analysis 
for SAIS but included in MA-TCN. The architecture proposed does not seem fundamentally different than 
other transformer-based architecture (such as MA-TCN), combined with established ensemble methods. The 
value was that it was validated on data from multiple hospitals. 
  



 

Tue 13 Dec 2022 
Decision on Article NBME-22-1333C 

Dear Dr Kiyasseh, 
 
Thank you for your revised manuscript, "Decoding surgeon activity from surgical videos with a unified 
artificial intelligence system". Having consulted with Reviewers #1 and #3 (whose comments you will find at 
the end of this message), I am pleased to write that we shall be happy to publish the manuscript in Nature 
Biomedical Engineering. 
 
The reviewers do not have any additional technical concerns, yet they do not feel that the manuscript 
provides sufficient technical innovation. We have taken their opinion into consideration. Yet, as outlined in 
our earlier decision e-mail, for this manuscript editorially we have placed emphasis on the extended 
benchmarking and validation across datasets rather than on raw technical novelty or innovation. 
 
We will be performing detailed checks on your manuscript, and in due course will send you a checklist 
detailing our editorial and formatting requirements. You will need to follow these instructions before you 
upload the final manuscript files. 
 
Please do not hesitate to contact me if you have any questions. 
 
Best wishes, 
 
Pep 
 
__ 
Pep Pàmies 
Chief Editor, Nature Biomedical Engineering  
 
 
 
 
__________ 
Reviewer #1 (Report for the authors (Required)): 
 
I appreciate the efforts of the authors to revise the manuscript. 
 
The responses and revisions still have the key issues: the lack of a significant degree of advance 
(fundamental, mechanistic, methodological, technological, therapeutic) in the work with respect to state of 
the art. 
For the claim “Methodological Contribution 1 – SAIS is a unified AI system”, the SOTA multi-task learning 
framework in the AI community and their adoption in decoding multiple elements of intraoperative surgical 
activity have been reported. 
For the claim “Methodological Contribution 2 – SAIS provides explainable findings”, the paper claimed “SAIS' 
has finer level of explainability, but such a claim lacks evidence or supporting data, nor details on this claim 
of “explainability” throughout the paper. 
For the claim “Methodological Contribution 3 – SAIS is a flexible AI system”, “primarily due to its transformer 
architecture,” – this work just utilized the transformer architecture and inherited the related benefits rather 
than a significant degree of advance (fundamental, mechanistic, methodological, technological). 
For the claim “Methodological Contribution 4 – SAIS is architecturally different from baseline methods,” – the 
“architecture” here is still referring to “transformer architecture”, so this work just utilized the transformer 
architecture and inherited the related benefits rather than a significant degree of advance (fundamental, 
mechanistic, methodological, technological). 
Still, though directing readers towards more comprehensive review papers can make the manuscript more 
concise, the key and highly related recent references are worth discussing. 
The inherent connections between multiple tasks are just briefly discussed in the Discussion section, rather 
than in-depth analysis. 
 
 
 



Reviewer #3 (Report for the authors (Required)): 

The updated manuscript's method has not changed from the previous revisions'. Therefore, there are still the 
same concerns about technical innovation. The discussion introduced in this revision largely highlights the 
translational advantages of the method, not technical innovation. 



Rebuttal 1 
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We thank the reviewers for taking the time and effort to read our manuscript and provide us with 
valuable feedback.  
 
 
In addition to addressing each of your comments, we have grouped those with a common theme 
and addressed them first. The three high-level themes include a: 

1) better description of the datasets and methods 
2) comparison of our model to baseline models  
3) deployment of our model on publicly-available datasets 

 
THEMES 

 
Theme 1a – better description of the datasets 
For ease of access and readability, we have now moved the description of the datasets used for 
training and evaluating models from the Results section to the Methods section. Specifically, the 
Methods section now contains the following modified sub-sections: 

• Description of the surgical procedures and activities – this provides a high-level overview to 
the lay reader of the surgical procedures the specific surgical activities we are focusing on. 
By providing such context, readers can better appreciate the tasks that we plan to achieve: 
sub-phase recognition, gesture classification, and skill assessment. Methods → Description 
of surgical procedures and activities (page 11) 

• Surgical video samples and annotations – this describes, in detail, our definition of a video 
sample and the process of annotating such video samples by trained human raters. 
Importantly, we have included a new table (Table 4, page 12) which summarizes all the 
datasets we have used in the manuscript. In doing so, readers can easily refer to the table 
when reading the appropriate parts of the Results section. For further clarification on the 
duration of the video samples, we present, in Supplementary Note 2, a distribution of such 
durations for video samples across hospitals and suturing sub-phases: needle handling, 
needle driving, and needle withdrawal. Methods → Surgical video samples and annotations 
(page 11) 
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Theme 1b – better description of the methods 
We have now moved the description of our model (SAIS) from the Results section to the Methods 
section. Considering the reader’s convenience, we have also moved the corresponding figure of the 
model to the Methods section. Specifically, the Methods section now contains the following 
modified sub-sections: 

• Single forward pass through SAIS – this describes, through a series of steps, the mechanism 
of a single forward pass of data through the SAIS model, from extracting spatial features, to 
aggregating such features over time, and making the final prediction. These descriptions are 
also more consistent with the summary figure (Figure 7, page 14) enabling readers to more 
easily map the descriptive text to the figure. Methods → SAIS is a model for decoding 
surgeon activity from surgical videos → Single forward pass through SAIS (page 13) 

• Implementation details of inference on entire videos – this describes, also through a series of 
steps, how we went about performing inference with SAIS on entire surgical videos with 
minimal human annotations. We provide such descriptions for the sub-phase recognition 
task and the gesture classification task. These details should allow a machine learning 
practitioner to replicate our approach. Methods → Implementation details of inference on 
entire videos (page 16) 

 
Theme 2 – comparison of our model to baseline models 
We now compare our model to baseline models in the following ways: 

• Sub-phase recognition – we take the suggestion of several reviewers to compare against the 
Inception3D (I3D) model and thus train I3D to perform sub-phase recognition. We then 
deploy it on entire videos to decode surgical sub-phases and compare its performance to 
that of SAIS using the F1@10 metric (see Figure 2e), a commonly-used metric for predicting 
temporal segments. Results → SAIS reliably decodes surgical sub-phases → Benchmarking 
against baseline models (page 3) 
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• Skill assessment – given the success of I3D in surgical skill assessment, we also train it to 
distinguish between low and high-skill surgical activity. We compare its performance to that 
of SAIS in Table 3 (page 8). Results → SAIS reliably decodes surgical skills → Benchmarking 
against baseline models (page 7) 

  
 
Theme 3 – deployment of our model on publicly-available datasets 
We now train our model on publicly-available datasets and compare its performance to state-of-the-
art models on those datasets. Specifically, we demonstrate competitive performance with baseline 
models when SAIS is tasked with distinguishing between suturing gestures on the: 

• JIGSAWS dataset – this dataset of laboratory-based videos has long been the benchmark 
dataset of sorts in the realm of surgery. These results are presented in Table 1 and 
compared to the best-performing methods that use different data modalities (kinematics, 
video, etc.). Results → SAIS reliably decodes surgical gestures → Validating on external 
video datasets (page 5) 

• DVC UCL dataset – this is a recently-released dataset of live surgical videos depicting 
suturing gestures. These results are presented in Table 2 and compared to the best-
performing reported method. Results → SAIS reliably decodes surgical skills → 
Benchmarking against baseline models (page 7) 
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Additions to the manuscript beyond the above themes 
We have since added results, beyond those related to the above themes, to the manuscript. These 
include results: 

1) With data from a new hospital (Houston Methodist) to further demonstrate the 
generalizability of our findings 

2) For distinguishing between the dissection and suturing steps to demonstrate that the full 
workflow for automation of surgeon performance assessment is achievable 

3) For a preliminary analysis associated SAIS’ outputs with patient outcomes to further 
emphasize the clinical significance of our work 

 
ADDITIONS 

 
Addition 1 
Specifically, to further demonstrate the generalizability of our model to videos from unseen 
surgeons at distinct hospitals, we now include data from a third and entirely new hospital: Houston 
Methodist Hospital (HMH). These data are used for: 

• Sub-phase recognition – Figure 2c now depicts the performance of SAIS when decoding 
surgical sub-phases on video samples from HMH. We demonstrate consistently strong 
performance across hospitals. Results → SAIS reliably decodes surgical sub-phases → 
Generalizing across hospitals (page 3) 

 
• Skill assessment – Figure 5a and c (page 7) now depict the performance of SAIS when 

decoding the skill-level of surgical activity on video samples from HMH. We demonstrate 
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consistently strong performance across hospitals. Results → SAIS reliably decodes surgical 
skills → Generalizing across hospitals (page 7) 

 
Addition 2 
We provide evidence that SAIS can comfortably distinguish between the tissue dissection and tissue 
suturing steps of a surgery. Specifically, we demonstrate that SAIS achieves an AUC = 1 when 
distinguishing between the nerve-sparing (NS) dissection step and the vesico-urethral anastomosis 
(VUA) step (Supplementary Note 3 → Supplementary Figure 2). We had hypothesized, prior to 
conducting these experiments, that such an initial task (phase recognition) compared to 
downstream tasks (e.g., sub-phase recognition or gesture classification) would be relatively 
straightforward as the various steps of surgery are often more distinguishable based on visual cues 
compared to the more subtle elements of surgery (e.g., sub-phases, gestures, etc.).  
 

 
Addition 3 
We have also included a preliminary analysis associating SAIS’ skill assessments with postoperative 
patient outcomes. Specifically, we demonstrate a statistically-significant relationship between the 
surgeons’ needle driving skill assessments provided by SAIS and patients’ 3-month urinary 
continence recovery. Further large-scale studies are required to cement this relationship. Results → 
SAIS’ skills assessments are associated with patient outcomes (page 9) 
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POINT-BY-POINT RESPONSE 
 
Reviewer 1  
 
Summary 
The authors propose a unified surgical AI system that can decode surgical activities. This work 
developed a system named SAIS which can identify the procedural steps of surgery, the actions 
performed by a surgeon, and the quality of such actions by utilizing two data modalities (RGB frames 
and optical flow maps). The proposed system can be used to decode surgical steps (phase), gestures 
and the surgeon’s skill. Extensive experiments are conducted to show models' performance and 
robustness in generalizing across videos, hospitals and surgical produces in performing those tasks. 
The author’s writing in the introduction section is commendable as it adequately stresses the need 
and advantage of such application. This work has merits in terms of application. However, it needs 
major revision in the results and methodology section to help readers understand it easily. The 
details on the dataset, dataset preparation and proposed model are scattered between the results 
and methodology section making it hard to fully comprehend. Furthermore, the proposed system 
lacks significant novelty and benchmarks against the existing system. The workload of this work in 
preparing the dataset is heavy. However, the work lacks comparative experiments and technical 
novelty. 
 
R1 – Comment 1 
 
This work showcases application novelty, where similar architectures (the last layer of the 
architecture changes depending on the number of classes for each task) for phase/gesture/skill 
recognition. While the results provided are original and interesting, the degree of advancement in 
terms of the model is unclear due to the following: 
 
Based on my understanding, the proposed SAIS model is a single-task (pseudo-tri-task) model, which 
can be trained to recognise phase/gesture/surgeon skills. However, to perform all three tasks at 
once requires three SAIS models in parallel. In such a case, how different is the SAIS model 
compared to existing gesture recognition models, which can also be technically used for the 
remaining tasks since they also warrant only changing the last layer? What is the advantage of using 
multiple SAIS models in parallel vs using the existing state-of-the-art models for phase/gesture/skill 
recognition in parallel? Additional comparison of computation requirements will also provide 
additional insights. 
 
Response to R1 – Comment 1 
 
The reviewer’s understanding is correct in that three unique SAIS models would be needed to 
decode the three elements of surgical activity that we have presented: sub-phases, gestures, and 
skills. We consider SAIS a unified architecture because it is capable of reliably decoding all of these 
elements. We now more explicitly outline the advantages of a unified architecture (see Discussion 
section, page 10, paragraph 1). 
 



Nature Biomedical Engineering - NBME-22-1333A  Point-by-point response 

 
 
We also provide additional insight into the advantages of SAIS relative to existing state-of-the-art 
models like Inception3D (I3D) and 3D convolutional neural networks (3D-CNNs) more generally. In 
short, these advantages include the flexibility of SAIS in dealing with mini-batches of video samples 
of different sizes, facilitating transfer learning, and its ability to provide explanations (see Discussion 
section, page 10, paragraph 2). 
 

 
 
We also compare our model to existing models for the tasks of sub-phase recognition, gesture 
classification, and skill assessment. Importantly, we demonstrate that SAIS outperforms an existing 
state-of-the-model, Inception3D (I3D), for sub-phase recognition and skill assessment (see Results 
section, page 3 and page 8). 
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R1 – Comment 2 
 
Are different models trained for different surgical tasks (tissue dissection/suturing)? If so, it raises 
questions on full automation of the system as it would warrant manual video segmentation of 
surgical tasks before being fed to the SAIS model. 
 
Response to R1 – Comment 2 
 
Yes, a different SAIS model is trained to decode a different element of surgical activity. Its ability to 
reliably decode these various elements, though, opens the door for future research to look into 
decoding all elements of surgical activity with a single SAIS model, akin to a multi-task framework.  
 
As for full automation, we do not make any claims in the manuscript that SAIS will fully automate the 
decoding of all elements of surgical activity for all videos. Although SAIS will require being fed videos 
of a particular surgical step (e.g., nerve-sparing dissection of the radical prostatectomy), identifying 
this video manually only requires the provision of two timestamps (the start and end time of the 
nerve-sparing dissection step), which is not time-consuming or laborious.  
 
If, for some reason, providing these two time-stamps happens to be a bottleneck for researchers, 
then we also provide additional evidence that SAIS can comfortably distinguish between the tissue 
dissection and tissue suturing steps of a surgery. Specifically, we demonstrate that SAIS achieves an 
AUC = 1 when distinguishing between the nerve-sparing (NS) dissection step and the vesico-urethral 
anastomosis (VUA) step (Supplementary Note 3 → Supplementary Figure 2). We had hypothesized, 
prior to conducting the experiments, that such a task (phase recognition) would be relatively 
straightforward as the various steps of surgery are often more distinguishable based on visual cues 
compared to the more subtle elements of surgery (e.g., sub-phases, gestures, etc.).  
 

 
Once the video of a surgical step is provided to SAIS, it can then automatically decode the various 
elements of surgical activity. We had originally presented such an example of decoding from an 
entire nerve-sparing video in the context of dissection gesture classification (Figure 4). We now also 
present such a decoding from an entire vesico-urethral anastomosis suturing video in the context of 
sub-phase recognition (Figure 2e). We provide details of this inference in Methods → 
Implementation details of inference on entire videos.  
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R1 – Comment 3 
 
While results on model generalization to videos and hospital is shown, the datasets appear to be 
severely controlled to meet the study requirement (same surgical tools). For instance, even for the 
same surgical task, the number and type of tools may vary depending on the surgical system used. 
While an out-of-distribution approach is used to handle unknown data, the work doesn’t provide 
insights or acknowledge its limitation in handling new surgical tools for the same tasks. 
 
Response to R1 – Comment 3 
 
We agree that surgery can be unpredictable and that the surgical field of view may exhibit content a 
model has never seen before. While our video samples from a particular task (e.g., gesture 
classification) are from a particular step (e.g., nerve-sparing dissection step), we do not explicitly 
constrain such video samples to only reflect a particular type or number of surgical tools. Although 
there can be exceptions, as with the clipping gesture which is often only performed with the same 
surgical tool, this is likely to be representative of what naturally occurs during surgery.  
 
We acknowledge that SAIS, and many other surgical AI systems, are unlikely to be exposed to the full 
scope of the variability of surgical videos. To that end, when decoding elements of surgical activity 
from entire videos, we had adopted a state-of-the-art out-of-distribution (OOD) approach to 
explicitly deal with video samples that SAIS might be uncertain about. The exact details of this OOD 
method are provided in Methods → implementation details of inference on entire videos → 
abstaining from prediction. We now also acknowledge the limitations of SAIS in recognizing novel 
surgical activity (see Discussion section, page 10, paragraph 4).  
 

 
 
R1 – Comment 4 
 
The degree of advancement in terms of the SAIS model is unclear due to a lack of fair comparison. 
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The use of two non-public self-generated datasets also raises questions on model biases. To fairly 
benchmark the SAIS model, it must be evaluated against existing state-of-the-art 
task/gesture/surgeon skill recognition models on a public dataset.  
 
Response to R1 – Comment 4 
 
While evaluating SAIS on a privately-held dataset might raise questions about model biases, our 
rigorous evaluation of SAIS on video samples from unseen surgeons at two distinct hospitals (with a 
third hospital added in the revision) should help alleviate that concern. Generalizing to such video 
samples, which is what we have demonstrated, is indicative of a model which is less likely to be 
latching onto surgeon-specific or hospital-specific features in the data.  
 
Nonetheless, we have now compared SAIS to several baseline models on both our privately-held 
datasets (for sub-phase recognition and skill assessment), and on two publicly-available datasets 
(JIGSAWS and DVC UCL). We demonstrate that SAIS performs competitively with baseline methods 
on these two datasets. We hope these results allay the reviewer’s concerns about model biases.  
 
R1 – Comment 5 
 
As stated above, application merit is clear but technical novelty is unclear. 
 
Response to R1 – Comment 5 
 
We agree that the primary benefit of SAIS is translational in nature as it lends confidence into its use 
for live surgical videos stemming from distinct settings (surgeons, hospitals, and surgical 
procedures). This sends a signal to the broader community that AI systems can reliable cope with 
such videos. While the use of transformer architectures, dual-modality inputs (RGB and optical flow), 
and prototypes for classification are not new in and of themselves, their combination has resulted in 
a reliable system for decoding surgical activity, whose ramifications can be far-reaching.  
 
R1 – Comment 6 
 
The work presented as it has value in terms of application. Providing clear details on the dataset and 
SAIS model by rewriting the results and methodology section is necessary and will improve the 
paper. Additionally, benchmarking against state-of-the-art models on the public datasets in terms of 
performance, computational cost and ease of training and deployment will further validate the SAIS 
model and add value to the paper.  
 
Response to R1 – Comment 6 
 
We have taken the reviewer’s suggestion of rewriting the Results and Methods sections in order to 
improve clarity. Please refer to the Themes section at the top of this rebuttal for details on how 
these sections have since been modified.  
 
R1 – Comment 7 
 
This work uses the same ViT model to achieve three different tasks (phase recognition, gesture 
recognition, and skill assessment). Simply pursuing the number of tasks does not seem to justify 
more novelties. In this work, is the learning among these three tasks isolated and independent of 
each other (The proof is that the input video segments are different for surgical phase tasks and 
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surgical gestures)? However, there is actually a connection between these tasks, so can the paper 
give insights into the progressive relationships? 
 
Response to R1 – Comment 7 
 
Yes, the learning of the three tasks (sub-phase recognition, gesture classification, and skill 
assessment) are independent of one another. As the reviewer pointed out, it is likely that videos of 
different surgical steps (e.g., nerve-sparing and vesico-urethral anastomosis) within the same 
surgery (robot-assisted radical prostatectomy) do indeed exhibit temporal and complex relationships 
with one another. We hypothesize that such relationships may also hold for the distinct tasks. For 
example, how gestures are performed during the nerve-sparing dissection step may be associated 
with the skill-level of the suturing activity performed by the surgeon in subsequent suturing steps. 
While our team has explored relationships between subsequent suturing activities, future work 
could begin to unearth relationships between different steps of surgery.  
 
R1 – Comment 8 
 
Furthermore, based on the assumption that “the tissue dissection and suturing are commonly 
performed within almost any surgery”, when decoding suturing gestures (78 videos from USC) and 
dissection gestures (86 videos from USC), why did the authors choose different surgical videos for 
training? The development of such a system is to be encouraged. It's good to see the integration of 
these tasks. The experimental design and methodology can be further improved to enrich the work. 
 
Response to R1 – Comment 8 
 
While nerve-sparing dissection steps and vesico-urethral suturing steps appear in almost every RARP 
surgical procedure, we chose to work with a different subset of videos (which partially overlap) for 
suturing and dissection. This is because such videos were originally annotated for the purpose of 
associating intraoperative activity to postoperative outcomes (e.g., erectile function and urinary 
continence) which our team has published on recently [1], [2]. We have now improved the 
description of the datasets used and the methods (please refer to Themes section at the top of the 
rebuttal for details on that). 
 
R1 – Comment 9 
 
As the information on details on details and model is scattered between results and methodology 
section, it’s difficult to comprehend fully on how the dataset is prepared and inputed to the model. 
Please clarify the following: 
 
For phase/gesture/skill recognition tasks, If the full surgical videos are auto segmented into 1 second 
with 2 FPS, are each classification done using two frames? How does test-time augmentation 
contribute here? 
 
Response to R1 – Comment 9 
 
First, to improve clarity, we have included the dataset description only in the Methods section. We 
have also now provided a better description of the datasets, method, and implementation details 
(see Methods section). In Table 4, for example, we outline the total number of video samples 
available for each task. Further, in Supplementary Note 2, we outline the average duration, in 
seconds, of these video samples.  
 

https://www.liebertpub.com/doi/full/10.1089/end.2021.0417?casa_token=vMydsbcHf-QAAAAA%3AO8N-z0JMPfoz2ahlqg59cXWpIfA2CtAr0HlDpioBiwVsSq88eWMg5aB6WvX1CTEVJibruj5oEuzLWLC-
https://www.liebertpub.com/doi/abs/10.1089/end.2022.0158
https://www.liebertpub.com/doi/abs/10.1089/end.2021.0890
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As an illustrative example, given a video sample with a frame-rate of 30Hz and is 10s long, that 
individual video sample would consist of 300 frames. We sample a subset of these frames (see 
description below) and input them into SAIS. As such, test-time augmentation (TTA) can still take 
place by temporally offsetting the sampled frames. A description of this is now provided in Methods 
→ implementation details and hyperparameters (page 15).  
 

 
 
R1 – Comment 10 
 
It is actually unclear how many temporal frames are used for each classification task? In case more 
than 2 frames are used for each forward propagation, what is the computational requirement from 
start to end (extracting features from each frame to end classification)? Is the computational load 
justified compared to using existing state-of-the-art models? 
 
Response to R1 – Comment 10 
 
As outlined in the answer to Comment 9 above, we address this comment in Methods → 
implementation details and hyperparameters. In short, yes, each video sample contains more than 
2 frames.  
 
In the same section, we provide insight into how we pre-process these frames offline so that the 
training and inference process of SAIS is computationally light (e.g., by freezing the parameters of 
the ViT feature extractor, and extracting and storing frame representations before conducting 
experiments).  
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R1 – Comment 11 
 
I recommend rewriting the results and methodology. Simply results to just results and observation. 
Move the information in the results sections related to the dataset/methodology into the 
methodology section. In the methodology section, have a dataset and dataset preparation 
subsections. Under dataset, state the total number of videos generated and used for each task. 
Under dataset preparation, state how the video was segmented and augmented for each task. 
Under methodology, clearly define step-by-step forward propagation. How many frames were used, 
and how was it combined. Move the architecture figure to the methodology section for easy 
reference.  
 
Response to R1 – Comment 11 
 
We have now incorporated all of the reviewer’s suggestions into the manuscript. Please refer to the 
Themes section at the top of the rebuttal for a detailed description of how we responded to this 
comment.  
 
R1 – Comment 12 
  
1-3 Provides state-of-the-art models and public datasets. 4 is an attention-based model that is worth 
benchmarking.  
 
1) CholecTriplet2021: A benchmark challenge for surgical action triplet recognition 
2) PEg TRAnsfer Workflow recognition challenge report: Does multi-modal data improve 
recognition? 
3) Learning and Reasoning with the Graph Structure Representation in Robotic Surgery 
4) Rendezvous: Attention mechanisms for the recognition of surgical action triplets in endoscopic 
videos 
Many related and recent AI-engineering references on “Surgical Scenes understanding”, “Surgical 
Interaction Recognition”, “surgical report generation” (searching these keywords will yield the 
references) are missing. 
 
Response to R1 – Comment 12 
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We thank the reviewer for bringing these studies to our attention. We have now included an additional 
number of relevant references to the manuscript, highlighting previous public datasets and 
corresponding networks. Methods → Previous work → Computational methods (page 11).  
 
R1 – Comment 13 
 
May use the same set of surgical videos for these tasks and consider dependencies between tasks, 
rather than isolating them. In addition to those mentioned in the paper, surgical evaluation can be 
evaluated from more perspectives. Such as: whether the task can be completed within the expected 
time? 
 
Response to R1 – Comment 13 
 
We agree that surgeons and surgical activity can be evaluated in a multitude of ways. While we have 
evaluated surgical activity in a handful of ways, we believe our framework can be reliably depended 
on by future researchers looking to evaluate the surgical activity in their videos through whatever 
lens they wish.  
 
R1 – Comment 14 
 
(1) can add some Tables to the paper 
(2) can polish Figure 2 by filling the text in green blocks. 
(3) Formulas can be centered 
 
Response to R1 – Comment 14 
 
We have now included several tables in the manuscript (Tables 1-4) to summarize results and 
facilitate the comparison of methods. We have also modified Figure 1 to fill in the green blocks with 
text. Formulas will be centred upon publication (our latex style file overrides any centering of 
equations at the moment). 
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Reviewer 2  
 
Summary 
I appreciate the opportunity to review your manuscript. I understand this is the experimental study 
to develop SAIS which can automatically recognize surgical phases (dissection or suturing), dissection 
gestures, sub-phases, and the skill level of sub-phases. SAIS might be able to provide surgeons with 
optimal feedback intraoperatively, and it might contribute to improving surgical skills. Ultimately, it 
might contribute to improving patients’ postoperative outcomes. Several comments and questions 
are listed below.  
 
R2 – Comment 1 
 
The methodology of sub-phase recognition is clear; however, phase recognition is unclear. How 
many surgical phases did you define and annotate? I understand SAIS can recognize and distinguish 
each sub-phase with high accuracy but how high is the accuracy of the phase recognition task and 
which figure does show it? According to Supplementary Table 1, each fold had approximately 3800 
samples, but what do samples mean and include? In my understanding, samples mean the target 
video scene, but if so, does it means that each intraoperative video includes approximately 50 target 
scene? If each sample includes only the scene of NS, HD, and VUS with various time duration, you 
can extract only 3 scenes from each video, right? Besides, when you input the entire video into 
SAIS, can SAIS extract only the target scene from the entire video with high accuracy?  
 
Response to R2 – Comment 1 
 
To clarify, we had not initially performed phase recognition and had instead only performed suturing 
sub-phase recognition. We have since removed any mention of phase recognition to avoid confusion 
and consistently used the term sub-phase recognition throughout the manuscript. The results for 
sub-phase recognition can be found in Figure 2. However, new results to distinguish between two 
steps of surgery (dissection and suturing) are now provided in Supplementary Note 3, 
demonstrating strong performance (AUC = 1), indicating the relatively trivial nature of this task.  
 

 
 
We have since modified the description of the datasets and methods to improve clarity. Please refer 
to the Themes section at the top of the rebuttal for details on how. In short, a video sample is now  
defined in Methods → surgical video samples and annotations (page 11), and its average duration 
can be found in Supplementary Note 2.  
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With regards to extracting the “target scene”, as the reviewer has described it, SAIS is capable of 
decoding the element of surgical activity based on an entire video of a surgical step (e.g., nerve-
sparing dissection). For example, we had initially provided evidence (Figure 4) that one can provide 
SAIS with an entire nerve-sparing video (which only requires the minimal effort of providing a start 
and end time-stamp by a human) and it will extract all the dissection gestures for you (precision of 
up to 0.80).  
 
If, for some reason, providing these two time-stamps (start and end) happen to be a bottleneck for 
researchers, then we also provide additional evidence that SAIS can comfortably distinguish 
between the tissue dissection and tissue suturing steps of a surgery. Specifically, we demonstrate 
that SAIS achieves an AUC = 1 when distinguishing between the nerve-sparing (NS) dissection step 
and the vesico-urethral anastomosis (VUA) step (Supplementary Note 3 → Supplementary Figure 
2). We had hypothesized, prior to conducting the experiments, that such a task (phase recognition) 
would be relatively straightforward as the various steps of surgery are often more distinguishable 
based on visual cues compared to the more subtle elements of surgery (e.g., sub-phases, gestures, 
etc.).  
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We have since provided additional evidence in Figure 2e (page 3) that one can provide SAIS with an 
entire vesico-urethral video and it will extract all the suturing sub-phases for you.  

 
R2 – Comment 2 
 
SAIS uses a Vit pre-trained in a self-supervised manner on the ImageNet dataset. In my 
understanding, the strong point of using a self-supervised pre-training manner is that you can use a 
big dataset with the same domain information for pre-training. In other words, ImageNet is just a 
general annotation dataset including various types of information such as foods, animals, vehicles, 
etc. However, by adopting a self-supervised manner for pre-training, you can use the big dataset of 
robotic surgical images in a self-supervised manner. Please explain the motivation and reason why 
you combined self-supervised pre-training manner and ImageNet in this study.  
 
Response to R2 – Comment 2 
 
We agree that self-supervised models can be used to pre-train on a large corpus of surgical videos. 
The motivation for leveraging a ViT pre-trained on ImageNet in a self-supervised manner in this 
study is twofold (Methods → Single forward pass through SAIS → Extracting spatial features, page 
13). First, recent evidence has pointed the superior performance of self-supervised models pre-
trained on ImageNet relative to supervised models pre-trained on ImageNet. Second, ease of use; 
pre-training on surgical videos can be a computationally expensive process that requires a large 
enough corpus of data in order to result in the learning of meaningful representations. As we begin 
to curate ever-larger datasets of surgical videos, we look forward to pre-training on such datasets in 
the future as a means of learning more meaningful surgery-specific representations.  
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R2 – Comment 3 
 
According to Figure 2, this network architecture is similar to I3D (3D-CNN). I strongly agree with your 
policy of selecting a spatiotemporal model for surgical video analysis tasks instead of the standard 
CNN model which can only analyze a static image. A previous study used I3D for surgical skill 
assessment (JAMA Netw Open. 2021 Aug 2;4(8):e2120786.), so you should lightly mention it in your 
text.  
 
Response to R2 – Comment 3 
 
We have since mentioned the I3D network, and due to its apparent similarity to SAIS, we have 
compared its performance to that of our model on multiple tasks (sub-phase recognition and skill 
assessment). For sub-phase recognition results, please refer to Results → SAIS reliably decodes 
surgical sub-phases → Benchmarking against baseline models (page 3). For skill assessment results, 
please refer to  Results → SAIS reliably decodes surgical skills → Benchmarking against baseline 
models (page 7). In both of these settings, we demonstrate that SAIS outperforms the I3D network.  

 
 

 
R2 – Comment 4 
 
In the section on Qualitative evaluation, you just introduce only one case. I wonder if this tendency 
you realized as the outlier can adopt and apply to the other case. You set a 60-second interval as the 
threshold, but this threshold should be optimized based on the result of more cases. The rationale 
for the number 60 is ambiguous.  
 
Response to R2 – Comment 4 
 
In Methods → SAIS provides surgical gesture information otherwise unavailable to surgeons, we 
provide both a quantitative and qualitative analysis. The quantitative analysis suggests that SAIS 
often identifies the correct dissection gesture. To clarify, for the qualitative analysis, we do not 
define a-priori the 60-second interval that the reviewer is mentioning here. Instead, we performed 
inference with SAIS on the entire nerve-sparing video using video samples 1-second in duration, and 
it just so happened that SAIS discovered a 60-second interval which it classified as a camera move. It 
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is entirely conceivable that other outliers in other videos may be shorter or longer in duration. We 
provide a better description of the inference process in Methods → implementation details of 
inference on entire videos → nerve-sparing dissection gesture classification (page 16).  
 
R2 – Comment 5 
 
In the section on Generalizing across videos, you mentioned that for needle handling, skill 
assessment is based on the number of grip reposition times, and the fewer the better. If the manual 
skill assessment is performed strictly following this rule, you should develop a model which can 
recognize the grip reposition action and count the number of target actions. I think that skill 
assessment based on the results is highly reliable and interpretable compared to the proposed SAIS 
output.  
 
Response to R2 – Comment 5 
 
While counting the number of repositions is a possible way to assess skill, we opted to follow a skill 
assessment scoring system (known as EASE) rigorously developed through a Delphi process with 
expert surgeons and subsequently validated. Doing so legitimizes the skill assessments that SAIS 
outputs and, because of the strict guidelines that the scoring system follows, these outputs remain 
interpretable the user on the receiving end of the AI-based skill assessments.  
 
R2 – Comment 6 
 
In the section on Generalizing across hospitals, you mentioned the potential source of distribution 
shift includes variety in the camera recording devices between the surgical robots. However, I 
assume all surgical robot used in this study is DaVinci with the same camera. If not, please show the 
list of the type of surgical robots.  
 
Response to R2 – Comment 6 
 
The reviewer’s assumption is correct in that the surgical videos are recording daVinci machines in 
operation. We are now more precise in describing the potential sources of distribution shift across 
hospitals. These sources are less related to the camera hardware itself and more related to, for 
example, the behaviour of surgeons which is unique to hospitals and the content in the surgical field 
of view (e.g. more or less blood).  
 
R2 – Comment 7 
 
In the section on SAIS that can provide surgeons with actionable feedback, you mentioned that SAIS 
can allow surgeons to better focus on the element of intraoperative surgical activity that requires 
improvement. Please clarify whether your goal is intraoperative feedback or postoperative feedback. 
If yours is the former one, inference speed should be mentioned. I assume the network architecture 
which focuses on temporal information tends to take a bit longer inference time.  
 
Response to R2 – Comment 7 
 
One of the potential downstream use-cases of SAIS is the provision of postoperative feedback to 
surgeons. In other words, a surgery is performed, a video is recorded, that video is analysed after 
surgery, and feedback is then provided to a surgeon at a suitable time. This goal therefore reduces 
the need for very high inference speeds. Having said that, because of the way we pre-process the 
frames (e.g., by extracting representations offline), we find that we can decode the elements of 

https://www.auajournals.org/doi/10.1097/JU.0000000000002532.17
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surgical activity from videos quite quickly. For example, decoding dissection gestures from 100 
nerve-sparing videos can be achieved in under 6 hours. Moreover, our approach for performing 
inference means every time a new video is recorded, its features can simply be extracted and stored 
for future inference. 
 
R2 – Comment 8 
 
As you also mentioned in your discussion, the most crucial theme of this research field is how this 
contributes to improving patient outcomes, and as for this point, I strongly agree with your opinion. I 
would like you to show the data about the correlation between SAIS output and erectile function or 
urinary incontinence even a preliminary one. The correlation between them will be truly observed or 
not so far.  
 
Response to R2 – Comment 8 
 
To address the reviewer’s suggestion, we have now included an additional section Results → SAIS’ 
skill assessments are associated with patient outcomes (page 9). Here, we provide preliminary 
evidence that demonstrated the association of SAIS’ skill assessments for needle driving with urinary 
continence recovery 3 months after surgery. Although we found a statistically significant 
relationship, even after controlling for potential confounding factors, further large-scale studies 
would be required to cement this relationship. A description of this experiment in provided in 
Methods → Association between SAIS’ skill assessments and patient outcomes (page 18).   
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Reviewer 3 
 
Summary 
This paper presents a framework for multi-task surgical action classification. It uses the same neural 
network to estimate the phase of the surgery, the gesture being performed, and the skill at which 
the gesture is performed. Several datasets are curated, including two types of procedures in 
different anatomy and data from two hospitals. The proposed network uses a pretrained feature 
extractor to get frame-by-frame information from both RGB images and optical flow. The features 
are then stacked and passed through a transformer network, which uses self-attention to selectively 
process the video information. Lastly, the video features are aggregated between the RGB and 
optical branches and the resulting feature vector is used to classify 1) the surgical gesture, 2) the 
surgical phase, and 3) the skill at which this gesture is performed. The authors showed that not only 
can the same architecture be used across tasks, but it also generalizes across datasets collected at 
different institutions, with different practices. This is a good step in translational advance. The 
thorough evaluations of the proposed model make a good case that neural networks can obtain 
consistent and generalizable results in clinical settings. The results from this paper could be useful in 
introducing more machine learning-based analysis into surgery training programs, though it would 
have been more convincing if there was a user study showing how the analysis actually benefitted 
surgeon training.  
 
R3 – Comment 1 
 
While there are interesting ablations of what features were important, the technical and 
performance-wise advance is somewhat lacking. The idea of using video analysis to assess surgical 
skill and gesture is not new, nor is it new to do both simultaneously, using a complex neural network 
followed by a simpler classifier (Khalid et al, 2020, Wu et al, 2021). The previous works were limited 
translationally since the publicly available datasets are on benchtop setups. Nevertheless, it would 
have been interesting to see a comparison to the previous methods on a consistent dataset to 
understand the technical contributions of this work. Comparisons with previous methods on the 
proposed dataset would be helpful in placing the proposed technical framework in the context of 
the existing body of work. Alternatively, the authors could provide results by using their method on 
the benchmark dataset in this field, JIGSAWS (Gao et al. 2014). Although JIGSAWS is a benchtop 
dataset rather than in vivo, evaluating on it would demonstrate the technical innovation better than 
solely evaluating on a proprietary dataset.  
 
Response to R3 – Comment 1 
 
We agree with the reviewer that previous work has been limited from a translational standpoint. As 
a community, and in particularly within healthcare, we should strive toward developing AI systems 
that exhibit the characteristics requisite for deployment amongst our target stakeholders. To that 
end, we hope SAIS contributes to this mission as evident by its reliable performance on live surgical 
videos across hospitals.  
 
To contextualize SAIS, we now compare it to multiple baseline models across the tasks. Specifically, 
we incorporate both of the reviewer’s suggestions into the manuscript. First, we compare SAIS to 
previous methods (Inception3D) on our privately-held datasets for sub-phase recognition (Figure 2e, 
page 3) and skill assessment (Table 3, page 8), demonstrating that SAIS outperforms I3D in both of 
these settings. Second, we compare SAIS to the best-performing models on two publicly-available 
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datasets (JIGSAWS and DVC UCL), demonstrating competitive performance on both of these datasets 
(Tables 1-2). We hope these findings provide further insight into the utility of our framework.  

 
 

 
 
R3 – Comment 2 
 
What is the benefit of using the same network for multiple tasks? There did not seem to be evidence 
suggesting that multi-task learning is actually more human-interptable as the evaluation was mostly 
based on ROC curves. While it is hard to compare surgical gesture accuracy across different datasets, 
as different gestures are labelled at different granularity, state-of-the-art methods for surgical skill 
have accuracies above 90% (Funke et al. 2019, and Wang and Fey 2018, using video and robot 
kinematics respectively). The dataset for the previous works is simpler as it used data from 
phantoms rather than actual surgeries, but it does sort skills into three classes instead of two. There 
should be a discussion about what multi-task learning brings that is worth the trade-off for lower 
accuracy.  
 
Response to R3 – Comment 2 
 
To clarify, SAIS is not a multi-task learning framework, although, with minor modifications it can be 
trained as one. Instead, one would train 3 distinct SAIS models to decode the 3 distinct elements of 
surgical activity (sub-phases, gestures, skills). Figure 1b demonstrates this through the repetition of 
the SAIS model box 3 times. Further, we do not claim that the interpretability of the model stems 
from the supposed multi-task nature of SAIS. Instead, its interpretability stems from the temporal 
attention mechanism used as part of its network architecture.  
 
We nonetheless provide a lengthy description of the advantages of SAIS relative to existing models 
in the Discussion section (page 10). To enable a comparison to existing state-of-the-art models, we 
have demonstrated that SAIS outperforms I3D on the task of skill assessment (Table 3, page 8). This 
allows readers to have an “apples-to-apples” comparison of the performance of the various methods 
when trained and evaluated on exact same dataset. 
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R3 – Comment 3 
 
The paper is missing discussion on how camera views affect what the network learns. Shifting the 
camera should shift both the tool's position in the RGB image and the optical flow. Does the network 
see the same gesture in the two views as different examples of the gesture?  
 
Response to R3 – Comment 3 
 
While we had not explicitly discussed the effect of camera views on performance, we had provided 
results on the effect of the anatomical location of the nerve-sparing dissection step (left vs. right) 
relative to the prostate gland on dissection gesture classification (see Figure 4a). We outline in 
Results →  SAIS provides surgical gesture information otherwise unavailable to surgeons (page 6) 
how videos of these different anatomical locations do indeed capture gestures from a different 
angle and are thus akin to different camera views. By demonstrating equivalent performance across 
the anatomical locations, we are in effect demonstrating SAIS’ robustness to camera angles.  
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R3 – Comment 4 
 
Natural images often place importance on corners and edges, both of which tend to be less distinct 
in endoscope images so it is interesting that this works. This is particularly true for the optical flow 
images, which should have very different characteristics compared to ImageNet. Since the stated 
goal of this manuscript is to build an explainable pipeline, it seems important to know what features 
a network trained on natural images picks up from endoscope images and optical flow. How was the 
ViT architecture determined? What was the self-supervised task on ImageNet?  
 
Response to R3 – Comment 4 
 
We have now provided a brief description of the self-supervised task the ViT model was pre-trained 
on. In short, it is a contrastive learning task in which representations of augmented versions of the 
same image are encouraged to be similar to one another (pre-training method is called DINO). The 
motivation for the ViT architecture itself is provided in Methods → Single forward pass through 
SAIS → Extracting spatial features (page 14). We also include Figure 8 (page 15) which shows that 
the ViT model places high importance on instrument tips, needles, and anatomical edges.  

 
 
R3 – Comment 5 
 
One of the drawbacks of this method appears to be poor generalization to new anatomy (ex. from 
NS in RARP to HD in RAPN) despite both being dissection and sharing a common set of gestures. This 
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suggests that the network focuses too much on the underlying image of the anatomy. While optical 
flow should provide some generalization over different backgrounds so it is unclear whether the 
drop is caused by image features or by true differences in how gestures are performed in the 
different procedures. It would be interesting to see whether incorporating robot motions into the 
analysis would benefit generalization. Since both are robot-assisted procedures, it should be possible 
to capture anatomy-independent motion cues from the joint information rather than obtaining it 
from optical flow.  
 
Response to R3 – Comment 6 
 
While kinematics data can reduce a model’s dependence on visual cues, potentially making it more 
robust to misleading and confusing content in the surgical field of view, such data face two 
overarching limitations. First, kinematics data are not accessible to the vast majority of researchers 
without a special arrangements with the robot manufacturer. Second, kinematics data present their 
own unique challenges in terms of the degree of noise they exhibit, the need for signal processing 
techniques to alleviate such noise, and so forth. Having said that, SAIS would conceivably be able to 
incorporate additional data modalities such as kinematics into its pipeline.  
 
R3 – Comment 7 
 
It is unclear from the description whether videos from one surgeon can be in both the testing and 
training set (if two videos were performed by the same surgeon). If it could, there might be a leak of 
information between the two sets that is specific to how one surgeon performs a gesture (ex. if the 
network sees the surgeon performing a gesture in training and saw the label for the skill level, and 
then it sees the same gesture performed the same way during testing, the skill level is leaked).  
 
Response to R3 – Comment 7 
 
Yes, distinct videos from the same surgeon may appear in both the training and testing set but only 
when we are in the generalizing across videos evaluation setting (see Methods → Motivation 
behind evaluating SAIS with Monte Carlo cross validation → Data splits, page 13). Although this 
could reflect the leakage of surgeon data across sets and, in turn, provide an over-estimate of model 
performance, we see that SAIS continues to perform well even when deployed, in the more rigorous 
setting, on video samples from unseen surgeons at distinct hospitals, as reflected by the generalizing 
across hospitals evaluation setup. 
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To clarify, once again, SAIS is not a multi-task learning framework and therefore will not “see” the 
labels from different tasks at the same time during training. For example, it will not see the label for 
skill-level and gesture at the same time.  
 
R3 – Comment 8 
 
At what time scale is skill level assessed? Gestures are decoded at 1 s intervals, at 2 fps. But from Fig. 
6, more than 2 frames appear to be used for skill assessment, which makes sense since it should pick 
up on repetitions of a behaviour.  
 
Response to R3 – Comment 8 
 
We provide additional details about the video samples used in Methods → surgical video samples 
and annotations (page 11). We also provide information about the number of frames used in each 
video sample in Methods → Implementation details and hyperparameters (page 15). Lastly, we 
present the average duration of such video samples in Supplementary Note 2. In short, each video 
sample is on the order of 10-30 seconds long and can therefore span 300 frames. Details of the 
inference process are now provided in Methods → Implementation details of inference on entire 
videos (page 16).  
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R3 – Comment 9 
 
The authors suggest that differences in performance between the two sites may be partially due to 
different cameras. In that case, what are the characteristics of the cameras (ex. the dimensions of 
the images captured could have an effect on the artifacts created by scaling)?  
 
Response to R3 – Comment 9 
 
We are now more precise in describing the potential sources of distribution shift across hospitals. 
These sources are less related to the camera hardware itself and more related to, for example, the 
behaviour of surgeons which is unique to hospitals and the content in the surgical field of view (e.g. 
more or less blood). We also include the dimensionality of the frames of videos collected from the 
different hospitals in Methods → implementation details and hyperparameters.  
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R3 – Comment 10 
 
How many actions were low skill level vs. high skill level and how consistent was this label for one 
surgeon?  
 
Response to R3 – Comment 10 
 
We now include the total number of video samples in Table 4 (page 12). As mentioned in the caption 
of Table 4, we always train and evaluate, unless otherwise noted, on a balanced dataset. This means 
that for skill assessment 50% of the video samples are low-skill and the other 50% are high-skill. We 
also provide the motivation behind this setup in Table 4’s caption.  
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R3 – Comment 11 
 
Additional citations to relevant literature: 
 
(Funke et al. 2019) Funke, I., Mees, S.T., Weitz, J. et al. Video-based surgical skill assessment using 3D 
convolutional neural networks. Int J CARS 14, 1217–1225 (2019). https://doi.org/10.1007/s11548-
019-01995-1 
 
(Gao et al. 2014) Gao, Y., Vedula, S. S., Reiley, C. E., Ahmidi, N., Varadarajan, B., Lin, H. C., ... & Hager, 
G. D. (2014, September). Jhu-isi gesture and skill assessment working set (jigsaws): A surgical activity 
dataset for human motion modeling. In MICCAI workshop: M2cai (Vol. 3, No. 3). 
 
(Khalid et al. 2020) Khalid S, Goldenberg M, Grantcharov T, Taati B, Rudzicz F. Evaluation of Deep 
Learning Models for Identifying Surgical Actions and Measuring Performance. JAMA Netw Open. 
2020;3(3):e201664. doi:10.1001/jamanetworkopen.2020.1664 
 
(Wang and Fey 2018) Wang, Z., Majewicz Fey, A. Deep learning with convolutional neural network 
for objective skill evaluation in robot-assisted surgery. Int J CARS 13, 1959–1970 (2018). 
https://doi.org/10.1007/s11548-018-1860-1 
 
(Wu et al. 2021) Wu, J., Tamhane, A., Kazanzides, P., & Unberath, M. (2021). Cross-modal self-
supervised representation learning for gesture and skill recognition in robotic surgery. International 
Journal of Computer Assisted Radiology and Surgery, 16(5), 779-787. 
 
Response to R3 – Comment 11 
 
We thank the reviewer for bringing these studies to our attention. We have included relevant 
references in Methods → Previous work → Computational methods (page 11).  
 
R3 – Comment 12 
 
It would be helpful to have a section describing the datasets. 
 
Response to R3 – Comment 12 
 
We now describe the datasets in Methods → Description of surgical procedures and activities and 
Methods → surgical video samples and annotations (page 11). The datasets are also summarized in 
a new Table 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1007/s11548-019-01995-1
https://doi.org/10.1007/s11548-019-01995-1
https://doi.org/10.1007/s11548-018-1860-1
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Reviewer 4  
 
Summary 
This work proposes a machine learning model to classify multiple aspects of surgical activities. The 
authors train and test their model on the classification of surgical phases, gestures and skill level. 
The authors evaluate the potential generalization capability of the model on videos from different 
surgeons, two hospitals and two different surgical procedures. 
 
R4 – Comment 1 
 
The authors demonstrate a method with some generalization capability by collecting data from 
different surgeons, two hospitals, and two different surgical procedures with their corresponding 
anatomical sites. The proposed architecture is relatively simple and can perform reasonably well on 
multiple classification tasks on multiple frames of a surgical video. However, there is no comparison 
to other established machine learning models, so the difficulty of the proposed task and dataset vs. 
the capability of the model remain unknown. The authors provide detailed demonstrations of the 
clinical utility their model could bring by decoding surgical activity. While interesting from a clinical 
translational point of view, the work however does not aim at demonstrating high technical novelty. 
 
Response to R4 – Comment 1 
 
We agree with the reviewer that the primary advantage of SAIS is its translational nature. As a 
community, and in particularly within healthcare, we should strive toward developing AI systems 
that exhibit the characteristics requisite for deployment amongst our target stakeholders. To that 
end, we hope SAIS robustly contributes to this mission as evident by its reliable performance on live 
surgical videos across hospitals.  
 
To contextualize SAIS, we now compare it to multiple baseline models across the tasks. Specifically, 
we incorporate both of the reviewer’s suggestions into the manuscript. First, we compare SAIS to 
previous methods (Inception3D) on our privately-held datasets for sub-phase recognition (Figure 2e) 
and skill assessment (Table 3, page 8), demonstrating that SAIS outperforms I3D in both of these 
settings. Second, we compare SAIS to the best-performing models on two publicly-available datasets 
(JIGSAWS and DVC UCL), demonstrating competitive performance on both of these datasets (Tables 
1-2, page 5). We hope these findings provide further insight into the utility of our framework.  
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R4 – Comment 2 
 
The implications of this work are that the proposed machine learning model based on transformers 
is able to perform well and generalize on the classification of multiple classification tasks in isolated 
surgical activities. The performance on the proposed tasks seems satisfactory. However, the clinical 
applicability needs further validation.  
 
Response to R4 – Comment 2 
 
Indeed, SAIS opens the door to many future applications such as associating intraoperative surgical 
activity with postoperative patient outcomes. Based on a recommendation from Reviewer 2 
(Comment 8), we have now provided a preliminary analysis associating SAIS skill assessment outputs 
with postoperative outcomes (3-month urinary continence recovery), demonstrating a statistically 
significant relationship. Further studies are required on this front.  

 

 
 
R4 – Comment 3 
 
Metrics like mAP and F1 Score are well established in the domain of surgical phase and action 
recognition and they should be reported here as well. 
 
Response to R4 – Comment 3 
 
We take the reviewer’s suggestion and report the F1@10 score when both SAIS and I3D are 
deployed for decoding suturing sub-phases from entire vesico-urethral suturing videos (see Figure 
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2e, page 3). We adopted this metric based on a recent survey. A description of this inference process 
can be found in Methods → Implementation details of inference on entire videos (page 16). We 
also report the accuracy of gesture classification and compare that to the performance of baseline 
models.  

 
R4 – Comment 4 
 
The demonstrated model is not evaluated on other datasets. The dataset is unfortunately not public, 
therefore the results are not reproducible even though the model and code are to be published. 
 
Response to R4 – Comment 4 
 
Please refer to our response to R4 – Comment 1 which addresses these comments.  
 
R4 – Comment 5 
 
The authors claim that previous work commonly allows for the leakage of data from the same video 
into training and test set without any specific reference or example. This is incorrect. Avoiding data 
leakage is standard practice in the community and most of the referenced papers are doing so. If the 
authors are aware of any exceptions, they need to reference them explicitly and discuss the issues. 
Describing not allowing data leakage in this work as especially rigorous evaluation is therefore 
misleading. 
 
Response to R4 – Comment 5 
 
We have now dedicated an entire section outlining the limitations of the evaluation setup employed 
by previous work. This can be found in Methods → Previous work → Evaluation setups (page 11). 
In short, we provide several examples in which there is either minimal information provided about 
the data splits or, in some cases, data splits communicated to the public which appear to contain 
surgeon data leakage. It is for this reason that we stress the importance of rigorously evaluating AI 
systems in distinct settings (e.g., across surgical procedures, surgeons, hospitals, etc.) as we have 
started to do in this project.  
 

https://ieeexplore.ieee.org/abstract/document/9336292/
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R4 – Comment 6 
 
Simplification of surgical events might not represent the true complexity of surgical interventions 
e.g. Skill level: High and Low. 
 
Response to R4 – Comment 6 
 
We talk about the limitations of such a simplification and those of existing taxonomies in the 
Discussion section (page 10). Although the jury is still out, it is entirely conceivable that such a 
simplification may still provide sufficient insight into the variability of surgical activity, its relationship 
to postoperative outcomes, and so forth. By open-sourcing SAIS to the public, we can allow 
researchers to begin to decode their surgical videos at whatever level of detail they are interested in.  
 

 
 
R4 – Comment 7 
 
The relevance of steps, gestures and skill level on suturing and dissection activities to postoperative 
patient outcomes remains unknown until further studies in this direction are published. It can be 
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assumed that the impact of skill difference in the suturing step on patient outcome is limited. The 
impact of the quality of the dissection step can be assumed to be higher, but it is not analyzed here. 
 
Response to R4 – Comment 7 
 
We agree with the reviewer’s statement about the relevance of the decoded elements and 
outcomes. Indeed, we have included a discussion to that end in the Discussion section (page 10).  
 

 
 

In this version of the manuscript, however, we do provide preliminary evidence that SAIS’ skill 
assessments are associated with postoperative outcomes (3-month urinary continence recovery) 
although we acknowledge the need for larger-scale studies (see Results → SAIS’ skill assessments 
are associated with patient outcomes, page 9). This is consistent with prior publications by our 
group that surgeon skills assessment (albeit manually rated) are associated with long-term patient 
outcomes. By decoding surgical videos at scale from across the globe, we can begin to test 
hypotheses relating intraoperative surgical activity to postoperative outcomes.  

 
 
R4 – Comment 8 
 
The authors proclaim that their model can already be reliably deployed on surgical videos of the 
nerve-sparing dissection step, but the performance on some of the classes e.g. in Fig. 5a does not 
seem sufficient for deployment in a clinical setting. (Recall ~ 0.5 and lower). Parts of the surgical 
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procedure (clips of suturing and dissection) are isolated manually, limiting automated analysis 
capability as proposed in this paper. 
 
Response to R4 – Comment 8 
 
To clarify, the results reported in Figure 4a are of Precision and not Recall. As for the gesture 
category with relatively lower performance (cold cut), we provide the reasoning behind such 
performance and, in fact, discover that SAIS was identifying a novel gesture that it was not explicitly 
trained to identify and which overlaps significantly with the cold cut gesture. Therefore, this 
precision score would increase when considering “cutting” gestures as a whole (see Results → SAIS 
provides surgical gesture information otherwise unavailable to surgeons → Quantitative 
evaluation, page 6) 
 
As for full automation, we do not make any claims in the manuscript that SAIS will fully automate the 
decoding of all elements of surgical activity for all videos. Although SAIS will require being fed videos 
of a particular surgical step (e.g., nerve-sparing dissection of the radical prostatectomy), identifying 
this video manually only requires the provision of two timestamps (the start and end time of the 
nerve-sparing dissection step), which is not time-consuming or laborious.  
 
If, for some reason, providing these two time-stamps happen to be a bottleneck for researchers, 
then we also provide additional evidence that SAIS can comfortably distinguish between the tissue 
dissection and tissue suturing steps of a surgery. Specifically, we demonstrate that SAIS achieves an 
AUC = 1 when distinguishing between the nerve-sparing (NS) dissection step and the vesico-urethral 
anastomosis (VUA) step (Supplementary Note 3 → Supplementary Figure 2). We had hypothesized, 
prior to conducting the experiments, that such a task (phase recognition) would be relatively 
straightforward as the various steps of surgery are often more distinguishable based on visual cues 
compared to the more subtle elements of surgery (e.g., sub-phases, gestures, etc.).  
 

 
Once the video of a surgical step is provided to SAIS, it can then automatically decode the various 
elements of surgical activity. We had originally presented such an example of decoding from an 
entire nerve-sparing video in the context of dissection gesture classification (Figure 4). We now also 
present such a decoding from an entire vesico-urethral anastomosis suturing video in the context of 
sub-phase recognition (Figure 2e, page 3). We provide details of this inference in Methods → 
Implementation details of inference on entire videos (page 16).  
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R4 – Comment 9 
 
In figure 7. the caption and the paragraph below state that SAIS can provide skill information that 
otherwise would not be available - but this is also true for all surgical assessment methods. 
 
Response to R4 – Comment 9 
 
While we agree with the reviewer that surgical assessment methods would also provide surgeons 
with otherwise unavailable information, we wanted to emphasize this point to the lay reader who 
may be less familiar with the potential utility of such models.  
 
R4 – Comment 10 
 
In Discussion the first sentence says: “Only in the past decade or so has it been demonstrated that 
intraoperative surgical activity can have a direct influence on postoperative patient outcomes”. This 
has been a known fact of surgery, in the last decades only the automatic analysis has been 
discussed. 
 
Response to R4 – Comment 10 
 
We have since modified the statement to mention that empirical relationships have only just been 
unearthed (see Discussion section, page 9). 
 

 



Rebuttal 2 
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We thank the reviewers for taking the time and effort to provide us with additional feedback. We 
address your comments below. To avoid potential confusion, please note that our response to R1 – 
Comment 1 is the same as that to R3 – Comment 1.  
 

 
POINT-BY-POINT RESPONSE 

 
Reviewer 1 
 
R1 – Comment 1 
 
I appreciate the efforts of the authors to revise the manuscript.  
 
The key issues are still there regarding the lack of a significant degree of advance (fundamental, 
mechanistic, methodological, technological, therapeutic) in the work with respect to state of the 
art.  
 
The authors themselves also agreed that “application merit is clear but technical novelty is unclear” 
and admitted that “the primary benefit of SAIS is translational in nature as it lends confidence into 
its use for live surgical videos stemming from distinct settings”. However, more novel 
fundamental/mechanistic/methodological/technological/therapeutic contributions are 
typically expected for a publication appears in the top journal of “Nature Biomedical Engineering”.  
 
This work uses the same ViT model to achieve three different tasks (phase recognition, gesture 
recognition, and skill assessment). Simply pursuing the number of tasks does not seem to justify 
more novelties.  
 
Response to R1 – Comment 1 
 
Compared to previous studies, our study offers both translational and methodological contributions. 
We more clearly outline these contributions next and include them in the Discussion section (page 
10) of the manuscript.  
 
Translational Contribution – SAIS generalizes across distinct settings 
From a translational standpoint, we demonstrated SAIS' ability to generalize across videos, surgeons, 
surgical procedures, and hospitals.  
 

Why this matters 
Such a finding is likely to instill surgeons with confidence in the trustworthiness of SAIS, and 
therefore increases their likelihood of adopting it.  
 
How this compares to previous work 
This is in contrast to previous work that has evaluated AI systems on videos captured in either 
a controlled laboratory environment or a single hospital, thereby demonstrating limited 
generalization capabilities.  
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Methodological Contribution 1 – SAIS is a unified AI system 
From a methodological standpoint, SAIS has much to offer compared to AI systems previously 
developed for decoding surgical activity. First, SAIS is unified in that it is capable of decoding multiple 
elements of intraoperative surgical activity without any changes to its underlying architecture.  

 
Why this matters 
Generally speaking, the ability of a model to perform well on Task A (e.g., sub-phase 
recognition) does not guarantee that it will also perform well on Task B (e.g., skill assessment), 
particularly if the two tasks are distinct from one another and require focusing on different 
aspects of the input data. As such, we do believe that our demonstrating that a single 
architecture (with no modifications) can perform consistently well across three distinct 
surgical tasks is a worthwhile contribution to the community. By acting as a dependable core 
architecture around which future developments are made, SAIS is likely to reduce the amount 
of resources and cognitive burden associated with developing AI systems to decode additional 
elements of surgical activity.  
 
How this compares to previous work 
This is in contrast to the status quo in which the burdensome process of developing specialized 
AI systems must be undertaken to decode just a single element. 

  
Methodological Contribution 2 – SAIS provides explainable findings 
Second, SAIS provides explainable findings in that it can highlight the relative importance of individual 
video frames in contributing to the decoding.  
 

Why this matters 
Such explainability is critical to gaining the trust of surgeons and ensuring the safe deployment 
of AI systems for high-stakes decision making such as skill-based surgeon credentialing.  
 
How this compares to previous work 
This is in contrast to previous AI systems such as MA-TCN which is only capable of highlighting 
the relative importance of data modalities (e.g., images vs. kinematics), and therefore lacks 
SAIS' finer level of explainability. 
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Methodological Contribution 3 – SAIS is a flexible AI system 
SAIS is also flexible in that it can accept videos samples with an arbitrary number of video frames as 
input, primarily due to its transformer architecture.  
 

Why this matters and how this compares to previous work 
Such flexibility, which is absent from previous commonly-used models such as 3D-CNNs, 
confers benefits to training, fine-tuning, and performing inference with, SAIS. During training, 
SAIS can accept a mini-batch of videos each with a different number of frames. This can be 
achieved by padding videos in the mini-batch (with zeros) that have fewer frames, and 
appropriately masking the attention mechanism in the transformer encoder (see 
implementation details). This is in contrast to existing AI systems which must often be 
presented with a mini-batch of equally-sized videos. Similarly, during fine-tuning or inference, 
SAIS can be presented with an arbitrary number of video frames, and thus expanding the 
spectrum of videos that it can be presented with. This is in contrast to existing setups that 
leverage a 3D-CNN which has been pre-trained on the Kinetics dataset, whereby video 
samples must contain either 16 frames or multiples thereof. Abiding by this constraint can be 
sub-optimal for achieving certain tasks, and departing from it implies the inability to leverage 
the pre-trained parameters that have proven critical to the success of previous methods.   

 
Methodological Contribution 4 – SAIS is architecturally different from baseline methods 
SAIS is architecturally different from previous models in that it learns prototypes via supervised 
contrastive learning in order to decode surgical activity, an approach that has yet to be explored with 
surgical videos.  
 

Why this matters 
Such prototypes pave the way for multiple downstream applications from detecting out-of-
distribution video samples, to identifying clusters of intraoperative activity, and retrieving 
samples from a large surgical database, as demonstrated by our team’s previous work.  

 

https://proceedings.neurips.cc/paper/2021/hash/8303a79b1e19a194f1875981be5bdb6f-Abstract.html
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R1 – Comment 2 
 
The learning among these three tasks (sub-phase recognition, gesture classification, and skill 
assessment) are independent of one another) are independent of each other. However, there are 
actually inherent connections between these tasks. The authors responded and would like to leave 
these discoveries to future work, which left many important questions unanswered.  
 
Response to R1 – Comment 2 
 
We appreciate the reviewer’s interest in exploring the interconnections between the various surgical 
tasks (sub-phase recognition, gesture classification, and skill assessment). Indeed, there are various 
ways to go about conducting such an exploration. For example, and as we have mentioned before, 
one can train a multi-task network that simultaneously performs the aforementioned surgical tasks. 
In such a setting, positive interference between the tasks could result in even further performance 
improvements. As another example, one can train a network to initially perform sub-phase 
recognition (relatively easier task) and subsequently transfer its parameters to perform skill 
assessment (relatively harder task). This is akin to curriculum learning, whereby a network is presented 
with increasingly difficult tasks during the learning process. In light of these exciting avenues here, we 
now shed light on them through a dedicated paragraph in the Discussion section (page 11). 
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R1 – Comment 3 
 
Still, many related and recent AI-engineering references on Surgical Workflow Recognition, Surgical 
State Estimation, Surgical Scenes understanding, Surgical Interaction Recognition are missing.  
 
Related ideas with original methodological algorithms have been published in the literature. For 
example:  
 
Qin, Y., Allan, M., Burdick, J. W., & Azizian, M. (2021). Autonomous hierarchical surgical state 
estimation during robot-assisted surgery through deep neural networks. IEEE Robotics and 
Automation Letters, 6(4), 6220-6227. This paper proposed Hierarchical Estimation of Surgical States 
to estimate the associated super- and fine-grained states concurrently.  
 
Shi, X., Jin, Y., Dou, Q., & Heng, P. A. (2021). Semi-supervised learning with progressive unlabeled 
data excavation for label-efficient surgical workflow recognition. Medical Image Analysis, 73, 
102158.  
 
Wagner, M., Müller-Stich, B. P., Kisilenko, A., Tran, D., Heger, P., Mündermann, L., ... & Bodenstedt, 
S. (2021). Comparative validation of machine learning algorithms for surgical workflow and skill 
analysis with the HeiChole benchmark. arXiv preprint arXiv:2109.14956.  
 
Soleymani, A., Asl, A. A. S., Yeganejou, M., Dick, S., Tavakoli, M., & Li, X. (2021, November). Surgical 
skill evaluation from robot-assisted surgery recordings. In 2021 International Symposium on Medical 
Robotics (ISMR) (pp. 1-6). IEEE.  
 
Shi, X., Jin, Y., Dou, Q., & Heng, P. A. (2020). LRTD: long-range temporal dependency based active 
learning for surgical workflow recognition. International Journal of Computer Assisted Radiology and 
Surgery, 15(9), 1573-1584.  
 
Seenivasan, L., Mitheran, S., Islam, M., & Ren, H. (2022). Global-Reasoned Multi-Task Learning Model 
for Surgical Scene Understanding. IEEE Robotics and Automation Letters, 7(2), 3858-3865.  
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van Amsterdam, B., Clarkson, M. J., & Stoyanov, D. (2020, May). Multi-task recurrent neural network 
for surgical gesture recognition and progress prediction. In 2020 IEEE International Conference on 
Robotics and Automation (ICRA) (pp. 1380-1386). IEEE.  
 
Zia, A., Guo, L., Zhou, L., Essa, I., & Jarc, A. (2019). Novel evaluation of surgical activity recognition 
models using task-based efficiency metrics. International journal of computer assisted radiology and 
surgery, 14(12), 2155-2163.  
 
Gao, X., Jin, Y., Dou, Q., & Heng, P. A. (2020, May). Automatic gesture recognition in robot-assisted 
surgery with reinforcement learning and tree search. In 2020 IEEE International Conference on 
Robotics and Automation (ICRA) (pp. 8440-8446). IEEE.  

Response to R1 – Comment 3 
 
We thank the reviewer for bringing these references to our attention, and have now expanded our 
related work section accordingly (Methods → Related work, page 11). We do note that, since our 
manuscript is not a review paper, we direct readers towards more comprehensive review papers 
that provide a high-level overview of related methodologies.  
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Reviewer 2 
 
Summary 
Thank you for the opportunity to review the manuscript again.  
My questions were answered clearly and appropriately by the authors.  
I have no further comments. 
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Reviewer 3  
 
Summary 
The authors have strengthened the clinical contribution of the work by clarifying the dataset 
description, adding another hospital, and adding the section correlating skill to clinical outcome. This 
is a valuable contribution to the field since curating datasets and long term studies to track patient 
outcome is often not possible depending on the institution. The translational contribution is useful as 
it does show that AI systems can help with targeting surgeon training, and potentially improving 
patient outcome. The authors have done a thorough job in addressing the concerns raised in the initial 
review.  
 
R3 – Comment 1 
 
The technical contribution of the work is still not obvious though.  
 
Response to R3 – Comment 1 
 
Compared to previous studies, our study offers both translational and methodological contributions. 
We more clearly outline these contributions next and include them in the Discussion section (page 
10) of the manuscript.  
 
Translational Contribution – SAIS generalizes across distinct settings 
From a translational standpoint, we demonstrated SAIS' ability to generalize across videos, surgeons, 
surgical procedures, and hospitals.  
 

Why this matters 
Such a finding is likely to instill surgeons with confidence in the trustworthiness of SAIS, and 
therefore increases their likelihood of adopting it.  
 
How this compares to previous work 
This is in contrast to previous work that has evaluated AI systems on videos captured in either 
a controlled laboratory environment or a single hospital, thereby demonstrating limited 
generalization capabilities.  

 
 
Methodological Contribution 1 – SAIS is a unified AI system 
From a methodological standpoint, SAIS has much to offer compared to AI systems previously 
developed for decoding surgical activity. First, SAIS is unified in that it is capable of decoding multiple 
elements of intraoperative surgical activity without any changes to its underlying architecture.  
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Why this matters 
Generally speaking, the ability of a model to perform well on Task A (e.g., sub-phase 
recognition) does not guarantee that it will also perform well on Task B (e.g., skill assessment), 
particularly if the two tasks are distinct from one another and require focusing on different 
aspects of the input data . As such, we do believe that our demonstrating that a single 
architecture (with no modifications) can perform consistently well across three distinct 
surgical tasks is a worthwhile contribution to the community. By acting as a dependable core 
architecture around which future developments are made, SAIS is likely to reduce the amount 
of resources and cognitive burden associated with developing AI systems to decode additional 
elements of surgical activity.  
 
How this compares to previous work 
This is in contrast to the status quo in which the burdensome process of developing specialized 
AI systems must be undertaken to decode just a single element. 

  
Methodological Contribution 2 – SAIS provides explainable findings 
Second, SAIS provides explainable findings in that it can highlight the relative importance of individual 
video frames in contributing to the decoding.  
 

Why this matters 
Such explainability is critical to gaining the trust of surgeons and ensuring the safe deployment 
of AI systems for high-stakes decision making such as skill-based surgeon credentialing.  
 
How this compares to previous work 
This is in contrast to previous AI systems such as MA-TCN which is only capable of highlighting 
the relative importance of data modalities (e.g., images vs. kinematics), and therefore lacks 
SAIS' finer level of explainability. 
 

 
 

Methodological Contribution 3 – SAIS is a flexible AI system 
SAIS is also flexible in that it can accept videos samples with an arbitrary number of video frames as 
input, primarily due to its transformer architecture.  
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Why this matters and how this compares to previous work 
Such flexibility, which is absent from previous commonly-used models such as 3D-CNNs, 
confers benefits to training, fine-tuning, and performing inference with, SAIS. During training, 
SAIS can accept a mini-batch of videos each with a different number of frames. This can be 
achieved by padding videos in the mini-batch (with zeros) that have fewer frames, and 
appropriately masking the attention mechanism in the transformer encoder (see 
implementation details). This is in contrast to existing AI systems which must often be 
presented with a mini-batch of equally-sized videos. Similarly, during fine-tuning or inference, 
SAIS can be presented with an arbitrary number of video frames, and thus expanding the 
spectrum of videos that it can be presented with. This is in contrast to existing setups that 
leverage a 3D-CNN which has been pre-trained on the Kinetics dataset, whereby video 
samples must contain either 16 frames or multiples thereof. Abiding by this constraint can be 
sub-optimal for achieving certain tasks, and departing from it implies the inability to leverage 
the pre-trained parameters that have proven critical to the success of previous methods.   

 
Methodological Contribution 4 – SAIS is architecturally different from baseline methods 
SAIS is architecturally different from previous models in that it learns prototypes via supervised 
contrastive learning in order to decode surgical activity, an approach that has yet to be explored with 
surgical videos.  
 

Why this matters 
Such prototypes pave the way for multiple downstream applications from detecting out-of-
distribution video samples, to identifying clusters of intraoperative activity, and retrieving 
samples from a large surgical database, as demonstrated by our team’s previous work. 

 

 

https://proceedings.neurips.cc/paper/2021/hash/8303a79b1e19a194f1875981be5bdb6f-Abstract.html
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R3 – Comment 2 
 
As mentioned by multiple reviewers, there is a lot of existing work on this topic and from Tables 1 and 
2, it is unclear that the proposed method gets better performance than existing methods (even with 
other modalities that only use video). It's not clear to me that a percentage improvement over 
majority class is a convincing metric since the improvement seems to mostly derive from Random 
doing much worse. This is especially concerning if G5 was discarded from the analysis for SAIS but 
included in MA-TCN.  
 
Response to R3 – Comment 2 
 
As it pertains to Table 2 and the MA-TCN results, we would like to clarify that the performance 
improvements brought about by SAIS and MA-TCN (which happens to use kinematics data as an 
additional modality) are 4-fold and 3-fold, respectively, compared to the Random setting. Therefore, 
the difference in performance improvement between the two methods (SAIS vs. MA-TCN) is more 
than just a single percentage point. We have now modified the column heading in Table 2 to avoid 
any confusion.  
 

 
 
R3 – Comment 3 
 
The architecture proposed does not seem fundamentally different than other transformer-based 
architecture (such as MA-TCN), combined with established ensemble methods. The value was that it 
was validated on data from multiple hospitals. 
 
Response to R3 – Comment 3 
 
As it pertains to the architecture of SAIS compared to that of other attention-based models, there 
are several differences.  
 

Architectural difference  1 – vision transformer as feature extractor 
To the best of our knowledge, and at the time of submission, we are the first to use a vision 
transformer (to extract spatial features) as part of the architectural backbone in the context 
of surgical AI. In contrast, MA-TCN uses a convolutional neural network (CNN) feature 
extractor. This architectural difference also lends itself to benefits beyond performance, and 
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in particular, engenders greater flexibility in how video samples are fed into the AI system (see 
Discussion, page 10, paragraph 3).  
 
Architectural difference 2 – attention at the level of individual video frames 
As a result of using the vision transformer as a backbone for feature extraction, SAIS operates 
at the level of individual video frames. By subsequently using transformer encoders to capture 
the relationship between such frames, we can inspect the temporal attention (and therefore 
importance) of frames in contributing to the final prediction (e.g., skill assessment). While 
previous work such as MA-TCN also uses attention, it does so to combine various modalities 
and thus lacks our model’s level of interpretability (see Discussion, page 10, paragraph 2).  

 
Architecture difference 3 – prototypes are learned and used for classification 
In contrast to previous architectures, we explicitly learn prototypes (embeddings) in an end-
to-end manner via a supervised contrastive loss function, and then directly use these 
prototypes for classification. To the best of our knowledge, prototypes and this learning 
process have yet to be leveraged alongside surgical videos (see Discussion, page 10, 
paragraph 3, and Methodological Contribution 4 in Response to R3 – Comment 1).  

 
 
 
 
 
 


