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Supplementary Figures 

 

Supplementary Figure 1|Sex disaggregated burial registrations. Panel (a) shows the total weekly burial 

registrations through time, plotted by sex. Panel (b) shows the weekly deaths by age group and sex, 

relative to 2018-2019 medians. 



 

Supplementary Figure 2|Burial age structure k-fold cross validation. Comparison of excess burial 

registration predictions k-fold cross validation with 2018-2019 median (grey line). Points with bars show 

median with 95% credible intervals from 12,500 d. 

  



Supplementary Figure 3|Excess burial registration comparison. Comparison of excess burial 

registration estimates using a 0-4 age group baseline with estimates using a 5-14 age group baseline. 

Lines and ribbons show medians with 95% credible intervals. See Methods for more details. 

 

  



 

Supplementary Figure 4|Excess mortality relative to 2018-2019 median. Patterns shown in (a) all ages 

and (b) 50+ age group. Lines and ribbons show medians with 95% credible intervals. 

 

 

Supplementary Figure 5|SAR-CoV-2 polymerase chain reaction (PCR) prevalence and seroprevalence 

(Sero) by age group during 2020. Points and bars show mean and 95% binomial confidence intervals for 

(a) PCR prevalence (n=10, 82, 93, 126, 36, 30, 12 and 11 for each age group, left to right) or (b) 

seroprevalence data (n=7, 81, 101, 127, 33, 29, 22 and 9 for each age group, left to right). Dotted lines 

and ribbons show median and 95% credible intervals of model fit. 



 

Supplementary Figure 6|Model fits varying age-gradient and overall infection-fatality ratio (IFR) 

assumptions. Facets show model fits as age-gradient of IFR varies (0.4, 1 and 2.5 times the default 

assumptions) while colours show fits as overall IFR varies (0.4, 1 and 2.5 times the default assumptions) 

for a given age-gradient. All plots show the median of 100 model replicates fit to the data. (a-b) show 

the model fit to burial registrations by age and week. (c-d) show the model fit to total (causal and 

coincidental COVID-19) post-mortem polymerase chain reaction (PCR) positivity, with 95% binomial 

confidence intervals. (e) shows fit to population PCR prevalence and seroprevalence (Sero), with 95% 

binomial confidence intervals given and the time frame of data sampling given by horizontal error bars. 



 

Supplementary Figure 7|Sensitivity analyses on inference of age-gradient and scale of severity. Each 

heatmap shows the log of average posterior model fits over 100 samples for varied combinations of age 

gradient and overall infection-fatality ratio (IFR). (a) shows default model assumptions as a point of 

comparison. (b) Model not fit to post-mortem data during 13th-19th July 2020. (c) Model not fit to burial 

registry or post-mortem data from 0-4 age group. (d) Model fit to unscaled estimates of excess mortality 

and not fit to weeks 4-5 of burial registrations. Duration until death following illness that would benefit 

from hospitalisation decreased to 4.41 days (e) or increased to 10.01 days (f). Relative rate of baseline 

deaths (relative to 0-4 age group) decreased or increased by 10% (g and h, respectively) or by 20% (i and 

j, respectively). Burial registration rate capture decreased to 80% (k) or increased to 100% (l). 



 

 

Supplementary Figure 8|Estimates of spread and transmissibility of infection in best-fitting models 

varying assumptions of IFR age-gradient and overall IFR. Attack rate (a), 𝑅0(𝑡) (b), and 𝑅eff (c) trends 

showing median and 95% credible intervals of 100 samples for each best model fit. Best model fits 

included an overall IFR from 80-167% (differentiated by colour) with default age-gradient assumptions. 

 

 

 

 

Supplementary Figure 9|Log likelihood of baseline burial registration models under different 

registration distribution assumptions. Points and bars show median log likelihood and 95% credible 

intervals for 3,000 draws from the joint posterior of the model fit to burial registration data, assuming 

burial registrations follow a Poisson or negative binomial distribution with a range of overdispersion 

assumptions. “Size” in the “dnbinom” R function is inversely correlated with overdispersion such that 

overdispersion decreases and the negative binomial distribution approaches the Poisson distribution as 

size increases. 

 



 

Supplementary Figure 10|Age structured compartmental model structure. Susceptible individuals (𝑆) 

are infected by SARS-CoV-2 at a rate determined by an age-specific force of infection that utilises given 

age-specific contact patterns. Infected individuals experience a period of latency (𝐸), followed by 

disease progression into either mild disease (𝐼𝑀𝑖𝑙𝑑, including asymptomatic individuals) or disease 

sufficiently severe to benefit from hospitalisation (𝐼𝑆𝑒𝑣𝑒𝑟𝑒), regardless of whether they themselves are 

hospitalised. A proportion of severe disease cases, determined by the selected infection-fatality-ratio 

(IFR) pattern, then transition to an antemortem stage (𝐴), following which death (𝐷) occurs. Mild 

disease cases and the remaining severe disease cases that do not result in death result in recovery (𝑅). 

 

 

 

 

Supplementary Figure 11|Polymerase chain reaction positive (a) and seroprevalence (b) detection 

probabilities. 

  



Supplementary Tables 

Panel Description Effects 

A Default Model Assumptions Best fitting envelope (within 4 of best fitting log-
likelihood): 
80-167% overall severity 

B Week 5 of post-mortem data removed from likelihood fitting. 
 
Assumptions: Post-mortem prevalence during week 5 is anomalous. 6 tests of which 4 
were positive at the CT<40 threshold. 

 
Potential biases: Removing accurate data points reflecting higher prevalence in week 5. 
 

Best fitting envelope:  
80-167% overall severity 
No fundamental change. 

C 0-4 age group burial registration and post-mortem data removed from likelihood 
fitting. 

 
Assumptions: The 0-4 age group is affected by processes that increase post-mortem 
prevalence beyond that reflected in the model. 

 
Potential biases: Removing accurate data points reflecting higher prevalence in age group 
0-4. 

 

Best fitting envelope: 
100%-167% overall severity 
Small increase in lower bound of best fitting models. 

D Modelled weekly COVID-19 deaths not scaled using 0-4 age weekly scaling factor based 
on 2018-2019 median burial registration. Weeks 4-5 of burial registration data 
removed from the likelihood fitting. 

 
Assumptions: Changes in 0-4 age burial registrations are reflective of trends in underlying 
mortality and do not need scaling using age 2018-2019 median. Within this, burial 
registrations from weeks 4-5 are anomalous. 

 
Potential biases: Underestimating total mortality based inaccurate representation of 
changes in burial registrations. 

 

Best fitting envelope: 
100%-167% overall severity 
Small increase in lower bound of best fitting models. 
 



E-F Duration until death for cases of non-hospitalised disease increased or decreased (to 
match hospitalised disease). 

 
Assumptions: Time to death for non-hospitalised disease (BID, assumed to be 70% of the 
population) is 20% of (4.41 days overall) or equal to (10.01 days) hospitalised disease. 

 
Potential biases: Time to death over or underestimated in non-hospitalised disease. 
 

Best fitting envelope: 
E: 80-167% overall severity 
No fundamental change. 
 
F: 100-167% overall severity 
Small increase in lower bound of best fitting models. 
 

G-J Estimates of age 5+ baseline mortality are 10% or 20% lower or higher than pre-
pandemic levels. 

 
Assumptions: 5+ age group dependence on 0-4 age baseline mortality during 2020 is 10% 
lower (F), 10% higher (G), 20% lower (H) or 20% higher (I) than pre-pandemic levels. 

 
Potential biases: Under or overestimation of non-COVID-19 deaths (see main text for 
examples of what a 10% or 20% shift would be equivalent to)  

 

Best fitting envelope: 
G: 100-250% overall severity 
Small increase in upper and lower bound of best 
fitting models. 
 
H: 60-167% overall severity 
Small decrease in lower bound of best fitting models. 
 
 
I: 125-250% overall severity and 250% overall 
severity at 80% slope 
Increased upper and lower bounds, some improved 
fits with flatter age-gradient. 
 
J: 60-167% overall severity and 125% overall severity 
at 60% slope. 
Small decrease in lower bound of best fitting models 
with improved fits with steeper age-gradient. 

K-L Modelled COVID-19 deaths not scaled or scaled by 80% to account for incomplete 
registration. 

 
Assumptions: 80% (K) or 100% (L) of mortality is captured in burial registration records 
(weekly scaling remains as standard). 

 
Potential biases: Under or overestimation of underlying mortality 

K: 100-167% overall severity 
Small increase in lower bound. 
 
L: 80-167% overall severity 
No fundamental change. 

Supplementary Table 1: Description of sensitivity analyses performed. 



 

Parameter Symbol Value Description 

Epidemiological parameter 

Transmission 
parameter. 

𝛽 - Calculated from 𝑅0. 

Basic 
reproduction 
number. 

𝑅0 - Estimated from model fitting. 

Mean latent 
period. 

1
𝛼⁄  4.6 days. Estimated at 5.1 days1. The last 0.5 

days are incorporated in the 
infectious periods to capture pre-
symptomatic infectivity. 

Mean duration 
of mild 
infection. 

1
𝛾1

⁄  2.1 days. Incorporates 0.5 days of 
infectiousness prior to symptoms. In 
combination with mean duration of 
severe illness this gives a mean 
serial interval of 6.75 days 2. 

Mean duration 
of severe 
infection. 

1
𝛾2

⁄  4.5 days. Mean onset-to-admission of 4 days 
based on unpublished analysis of 
data from the ICNARC study3. 
Includes 0.5 days of 
infectiousness prior to symptom 
onset. 

Mean delay 
between onset 
of illness 
sufficiently 
severe to 
benefit from 
hospitalisation 
and death. 

1
𝛾3

⁄  Default: 6.51 days 
Sensitivity analyses assumes 
untreated (70%) deaths have 
durations until death equal to 
(10.01 days) and 20% of treated 
deaths (4.41 days). 

Calculated based upon squire 
default parameters using data 
estimated from unpublished 
analysis of ICNARC study3 (see 
description above). 

Age-stratified parameters 

Default Age-
adjusted IFR. 

IFRDef(𝑎) 0 to 4 
5 to 9 
10 to 14 
15 to 19  
20 to 24  
25 to 29  
30 to 34 
35 to 39  
40 to 44 
45 to 49  
50 to 54  
55 to 59  
60 to 64  
65 to 69  
70 to 74  

0.004 
0.007 
0.011 
0.017 
0.026 
0.041 
0.064 
0.100 
0.156 
0.245 
0.384 
0.601 
0.941 
1.473 
2.307 

Age-stratified estimates of the 
IFR from Brazeau et al.4 



75 to 79  
80+ 

3.613 
6.914 

Default 
proportion of 
infections that 
require 
hospitalisation 

𝜑2,Def(𝑎) 0 to 4 
5 to 9 
10 to 14 
15 to 19  
20 to 24  
25 to 29  
30 to 34 
35 to 39  
40 to 44 
45 to 49  
50 to 54  
55 to 59  
60 to 64  
65 to 69  
70 to 74  
75 to 79  
80+ 

0.001 
0.001 
0.001 
0.002 
0.003 
0.05 
0.007 
0.009 
0.013 
0.018 
0.025 
0.036 
0.050 
0.071 
0.100 
0.140 
0.233 

Smooth scaling age-stratified 
estimate of the proportion of 
infections 
that require 
hospitalisation from Salje et al.5 

Simulated 
proportion of 
infections that 
require 
hospitalisation. 

𝜑1(𝑎) See equations 12-16. 

Simulated 
Proportion of 
hospitalised 
cases dying. 

𝜑2(𝑎) See equations 12-16. 

Supplementary Table 2|Parameter descriptions and values. 

 

Parameter Symbol Distribution Prior Range 

Start Date. 𝑡0 Uniform. - 10-55 days 
relative to the 
first 10 
cumulative 
deaths. 

Basic Reproduction 
Number. 

𝑅0 Normal. Mean = 3, sd = 1 [1.6,5.6] 

Pseudo-random walk 
parameters. 

𝜌𝑖 Uniform. - [-1,1] 

Supplementary Table 3|Priors used in squire model fitting. 

 

  



Supplementary Methods 

K-fold cross validation 

K-fold cross-validation was applied to our model fitting process to investigate the consistency of age-

specific relative rate parameters as registrations in persons aged under 5 years changes, using 26 

randomly selected four-week groups of registrations from 2018-2019, (with no replacement). The 

results of each cross validation are compared with summed burial registrations in each four-week group 

set for each age group in Supplementary Figure 1. 

 

Mathematical Model of SARS-CoV-2 transmission and disease progression 

We modelled the dynamics of a SARS-CoV-2 outbreak using an SEIR model structure (“squire”) adapted 

from that used in Walker et al.6 and Watson et al.7. This model uses estimates of key parameters from 

2020 determining the natural history and spread of the virus. The standard model (downloadable as an 

R package from https://github.com/mrc-ide/squire8) is age-stratified and explicitly incorporates mixing 

patterns across and between different age groups. For these analyses, the deterministic model 

implementation of squire v0.7.1 was used, with 5 initially infected individuals distributed randomly by 

age to seed the epidemic.  

Following infection, the default implementation of squire is structured in order to capture severity 

pathways including indication for requiring hospitalisation and intensive care. Given the computational 

intensity of our analysis, and the observation that in Lusaka a high proportion of mortality occurs 

outside of hospital9,10, we developed a simplified framework (see Supplementary Figure 9) that 

maintains the generation time distribution of the default structure, whilst permitting easier control of 

the infection-to-death delay distribution (a key uncertainty in the context of mortality occurring outside 

of the health system). All model states are specified by age group (𝑎) at a given time (𝑡) and include the 

susceptible population, 𝑆(𝑡, 𝑎), with the subsequent 5.1 day latent period split across two sequential 

stages 𝐸0(𝑡, 𝑎) and 𝐸1(𝑡, 𝑎) in order to generate an Erlang distributed waiting time. Subsequently, 

individuals follow one of two possible pathway: either entering two sequential states of infection that 

are either asymptomatic or mildly symptomatic 𝐼Mild,0(𝑡, 𝑎) and 𝐼Mild,1(𝑡, 𝑎) or two sequential states for 

infections that are symptomatic and would subsequently benefit from hospitalisation, 𝐼Severe,0(𝑡, 𝑎) and 

𝐼Severe,1(𝑡, 𝑎). To ensure the generation time distribution of COVID-19 matches those in the literature to 

which squire was originally calibrated2, the durations in these infectious stages, and age-dependent 

probabilities of severe disease (where mathematically possible given a selected IFR pattern) are 

maintained to their defaults (Supplementary Table 2). Aside from this factor, we do not rely upon the 

distinction between severe and mild disease for the remainder of our analysis. Following completion of 

the infectious period those who will eventually die from the disease pass through two antemortem 

categories, 𝐴0(𝑡, 𝑎) and 𝐴1(𝑡, 𝑎), to produce the requisite delay between onset of severe disease and 

death.   

Those that die or recover are denoted by 𝐷(𝑡, 𝑎) and 𝑅(𝑡, 𝑎), respectively. Given the relatively short 

timeframe of analysis, June-October 2020, prior to the emergence of the alpha and beta variants of 

concern, those that have recovered are deemed effectively immune to reinfection for the remainder of 



the simulation. The social contact mixing matrix is given by 𝑐(𝑎, 𝑎′), denoting contacts between 

individuals in age-groups 𝑎 and 𝑎′. 

The differential equations describing the model in full are shown below (Equations 1-11), with the 

parameter symbols, description and values shown in Supplementary Table 2. 

𝑑𝑆(𝑡, 𝑎)

𝑑𝑡
= −𝛽

𝑆(𝑡, 𝑎)

𝑁
∑ 𝑐(𝑎, 𝑎′)[𝐼Mild(𝑡, 𝑎′) + 𝐼Severe(𝑡, 𝑎′)]

𝑑

 (1) 

𝑑𝐸0(𝑡, 𝑎)

𝑑𝑡
= 𝛽

𝑆(𝑡, 𝑎)

𝑁
∑ 𝑐(𝑎, 𝑎′)[𝐼Mild(𝑡, 𝑎′) + 𝐼Severe(𝑡, 𝑎′)]

𝑑

− 2𝛼𝐸0(𝑡, 𝑎) (2) 

𝑑𝐸1(𝑡, 𝑎)

𝑑𝑡
= 2𝛼𝐸0(𝑡, 𝑎) − 2𝛼𝐸1(𝑡, 𝑎) (3) 

𝑑𝐼Mild,0(𝑡, 𝑎)

𝑑𝑡
= (1 − 𝜑1(𝑎))2𝛼𝐸1(𝑡, 𝑎) − 2𝛾1𝐼Mild,0(𝑡, 𝑎) (4) 

𝑑𝐼Mild,1(𝑡, 𝑎)

𝑑𝑡
= 2𝛾1𝐼Mild,0(𝑡, 𝑎) −  2𝛾1𝐼Mild,1(𝑡, 𝑎) (5) 

𝑑𝐼Severe,0(𝑡, 𝑎)

𝑑𝑡
= 𝜑1(𝑎)2𝛼𝐸1(𝑡, 𝑎) − 2𝛾2𝐼Severe,0(𝑡, 𝑎) (6) 

𝑑𝐼Severe,1(𝑡, 𝑎)

𝑑𝑡
= 2𝛾2𝐼Severe,0(𝑡, 𝑎) − 2𝛾2𝐼Severe,1(𝑡, 𝑎) (7) 

𝑑𝐴0(𝑡, 𝑎)

𝑑𝑡
= 𝜑2(𝑎)2𝛾2𝐼Severe,1(𝑡, 𝑎) − 2𝛾3𝐴0(𝑡, 𝑎) (8) 

𝑑𝐴1(𝑡, 𝑎)

𝑑𝑡
= 2𝛾3𝐴0(𝑡, 𝑎) − 2𝛾3𝐴1(𝑡, 𝑎) (9) 

𝑑𝑅(𝑡, 𝑎)

𝑑𝑡
= 2𝛾1𝐼Mild,1(𝑡, 𝑎) + (1 − 𝜑2(𝑎))2𝛾2𝐼Severe,1(𝑡, 𝑎) (10) 

𝑑𝐷(𝑡, 𝑎)

𝑑𝑡
= 2𝛾3𝐴1(𝑡, 𝑎) (11) 

 

Probabilities of mortality conditional on severe disease, 𝜑2(𝑎), are derived conditional on the given age-

dependent IFR patterns used within the simulation. Default IFR patterns by age estimated as the joint-

posterior median of Brazeau et al.4 are denoted IFRDef(𝑎). We then generate alternative assumptions 

with respect to these IFR patterns by varying the overall IFR within the population according to a 

multiplier 𝑠 of the default when adjusted for the demography of Lusaka (pop𝑤) and the age-gradient of 

the IFR pattern according to a multiplier 𝑔 of the default age-specific log IFR curve: 

   
 IFRSim(𝑎, 𝑠, 𝑔) = 𝑠IFRDef

̅̅ ̅̅ ̅̅ ̅̅
exp[𝑔log(IFRDef(𝑎))] pop𝑤(𝑎)

∑ exp[𝑔log(IFRDef(𝑎))] pop𝑤(𝑎)
, 

 

(12) 

where 



   
 

IFRDef
̅̅ ̅̅ ̅̅ ̅̅ = IFRDef(𝑎)pop𝑤(𝑎) (13) 

and 

   
 

pop𝑤(𝑎) =
pop(𝑎)

∑ pop(𝑎)
. 

(14) 

For our assessment of the relative fit of the different IFR assumptions, 𝑠 and 𝑔 were then sampled 

systematically on the geometric scale. A given IFR pattern (IFRSim) was then incorporated into the 

model structure by adjusting 𝜑2(𝑎) parameters, holding the age-dependent probabilities of severe 

disease 𝜑1(𝑎) to their defaults as derived from Salje et al.11 (denoted 𝜑1,Def(𝑎)) wherever 

mathematically feasible to maintain the generation time originally derived for squire. For more extreme 

assumptions, with respect to IFR patterns, age-specific IFR occasionally exceeded 𝜑1,Def(𝑎), 

necessitating alterations to 𝜑1(𝑎) used within the simulations to generate the required IFR pattern (as 

specified in equations 15 and 16), however such changes had negligible impact on the average infectious 

period used within the model with the mean ranging between 2.2-2.4 days. 

   
 𝜑2(𝑎) = min (

IFRSim(𝑎, 𝑠, 𝑔)

𝜑1,Def(𝑎)
, 1) 

(15) 

 𝜑1(𝑎) = max(𝜑2,Def(𝑎), IFRSim(𝑎, 𝑠, 𝑔)) (16) 

We also adjusted the delay distribution between the onset of severe disease and death relative to squire 

defaults to account for the likely more rapid progression of severe disease in those who are not 

admitted to hospital (found by Mwananyanda et al.12 to represent 70% of all deaths). Squire’s default 

parameterisation, based upon estimates obtained from data from UK-based patients during the early 

stages of the pandemic3,8, produces an average delay between admission to hospital and death of 10.0 

days. In the absence of more detailed data for Lusaka we use this mean duration for the 30% of deaths 

which occurred in hospital and apply a halving in survival time for the 70% brought in dead, producing a 

weighted delay of 6.5 days. We then conduct a sensitivity analysis with an upper limit of a mean 

duration of 10.0 days and a lower limit of 4.4 days, representing an assumption of an 80% reduction in 

survival time in those who would requires hospitalisation but were not able to access to care. 

 

Model fitting 

We developed a methodological framework to fit our model to mortality and SARS-CoV-2 prevalence 

data sources from Lusaka. The model fitting process varies the start date of the pandemic (𝑡0), the basic 

reproduction number (𝑅0) and several pseudo-random walk parameters (𝜌𝑖) introduced at two-week 

intervals to capture changes in transmission. The time-varying reproduction number (𝑅𝑡) is calculated in 

equation 17, where 𝑓(𝑥) = 2𝑒𝑥/(1 + 𝑒𝑥), following previously used transmission models13. Each 𝜌𝑖 

parameter is set to 0 until they sequentially come into effect at two-week intervals. 

 𝑅0(𝑡) = 𝑅0𝑓(1 − 𝜌1 − 𝜌2 … 𝜌𝑛) (17) 



 

A Bayesian framework using a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) based sampling 

scheme, with the adaptive tuning of the proposal during sampling implementation using the Johnstone-

Chang optimisation algorithm14. Reported parameter inferences are based on 8 chains of 30,000 

iterations, with the first 10,000 discarded as burn-in. Details on prior distributions are given in 

Supplementary Table 3. 

We sampled 100 parameter sets from the MCMC chains weighted by their log likelihood for each model 

fit. These parameter samples were used to simulate SARS-CoV-2 epidemics in Lusaka, including SARS-

CoV-2 prevalence and COVID-19 fatalities that were used in our likelihood functions and then averaged 

to generate the overall likelihood. The model likelihood was written to match the available data sources, 

including burial registrations, cross-section population prevalence15 and post-mortem PCR prevalence12. 

Our Bayesian inferential framework for during the pandemic period can be represented thus: 

𝑃(𝐵, 𝑀, CX|𝑅𝑡 , 𝑡0, IFRSim(𝑎, 𝑠, 𝑔), Θ) ∝ (18) 
 

∫ [𝑃(𝐵|ncd𝑎,𝑡 , cd𝑎,𝑡)𝑃(𝑀|ncd𝑎,𝑡 , cd𝑎,𝑡 , 𝑝𝑎,𝑡)]d ncd𝑎,𝑡

 

ncd𝐴,𝑇 

 

𝑃(CX|𝑝𝑎,𝑡, 𝑠𝑎,𝑡)𝑃(cd𝑎,𝑡 , 𝑝𝑎,𝑡 , 𝑠𝑎,𝑡|𝑅𝑡, 𝑡0, IFRSim(𝑎, 𝑠, 𝑔), Θ)𝑃(𝑅𝑡)𝑃(𝑡0)𝑃(IFRSim(𝑎, 𝑠, 𝑔))𝑃(Θ) 

   
where 𝐵, 𝑀 and CX represent burial registration data, mortuary sampling data and cross-sectional 

population-based prevalence sampling data respectively. 𝑅𝑡 represents the underlying trends in the 

reproduction number to be fitted within the framework (inclusive of 𝑅0 and all 𝜌𝑖 parameters), 𝑡0 

represents the simulation starting date, IFRSim(𝑎, 𝑠, 𝑔) represents the patterns of IFR by age (𝑎) for a 

given IFR slope (𝑠) and gradient (𝑔), Θ represents the remaining model parameters and structural 

assumptions inherent within the transmission modelling framework. ncd𝑎,𝑡, cd𝑎,𝑡 , 𝑝𝑎,𝑡 and 𝑠𝑎,𝑡 

represent, respectively, the number of non-COVID-19 burial registrations, COVID-19 deaths, PCR 

prevalence and seroprevalence by age (a) and time (𝑡). 

The framework can then be viewed as being comprised of observation models for the burial 

registrations data, 𝑃(𝐵|ncd𝑎,𝑡, cd𝑎,𝑡), the mortuary data 𝑃(𝑀|ncd𝑎,𝑡, cd𝑎,𝑡 , 𝑝𝑎,𝑡) and the cross-sectional 

survey 𝑃(CX|𝑝𝑎,𝑡, 𝑠𝑎,𝑡), with uncertainty in the number of non-COVID-19 deaths by age integrated over 

by drawing 1000 samples of our model fitted to pre-COVID-19 mortality patterns (See section Methods: 

Modelling  SARS-CoV-2 transmission). 𝑃(cd𝑎,𝑡, 𝑝𝑎,𝑡 , 𝑠𝑎,𝑡|𝑅𝑡, 𝑡0, IFRSim(𝑎, 𝑠, 𝑔), Θ) represents the 

underlying transmission model, with  𝑃(𝑅𝑡) and 𝑃(𝑡0) representing priors described in Supplementary 

Table 1, whereas IFRSim(𝑎, 𝑠, 𝑔) and Θ are held as constant within each individual fit, with parameters 

determining IFRSim(𝑎, 𝑠, 𝑔) grid-sampled and Θ held to default values with the exception of sensitivity 

analyses as outlined in Results: SARS-CoV-2 transmission and COVID-19 severity during the first wave. 

Burial registration data observational model – 𝑃(𝐵|ncd𝑎,𝑡 , cd𝑎,𝑡 , ) 

We fitted the model to the weekly age-grouped burial registrations, 𝐵 = {𝐵𝑎,𝑡}, during the 16 weeks of 

the post-mortem study (15th June-October 4th). To take into account variation in overall registration 

patterns, a weekly scaling factor (sf𝑡, the ratio of median burial registrations of children aged 0-4 in 

2018-2019 to weekly non-COVID-19 deaths in children aged 0-4 in the study period) was applied to 

COVID-19 deaths output by the model, which was then added to baseline estimates of burial 



registration (see Results: Estimating excess mortality in Lusaka during 2020 to mid-2021 and Methods: 

Estimating excess mortality in Lusaka using burial registration data) to generate total modelled deaths 

at the burial registry level. 

 𝐵𝑎,𝑡|ncd𝑎,𝑡, cd𝑎,𝑡~Pois(ncd𝑎,𝑡 + cd𝑎,𝑡 ⋅ sf𝑡), 

 

(19) 

where 

 
sf𝑡 = 0.9 ×

Mean(𝐵1,2018/19)

ncd1,𝑡
. 

 

(20) 

Mortuary data observational model –  𝑃(𝑀|ncd𝑎,𝑡 , cd𝑎,𝑡, 𝑝𝑎,𝑡) 

The model was simultaneously to the weekly age-grouped post-mortem test data, 𝑀 =

{𝑀𝑎,𝑡
positive

, 𝑀𝑎,𝑡
total}, during the 16 weeks of the study (CT<40). We calculated SARS-CoV-2 PCR prevalence 

in the mortuary by dividing the sum of modelled COVID-19 deaths in the mortuary (cd𝑎,𝑡, with scaling 

factor) and non-causal COVID-19 deaths by the sum of modelled COVID-19 deaths (cd𝑎,𝑡, with scaling 

factor) and non-COVID-19 deaths (ncd𝑎,𝑡). Non-causal COVID-19 deaths were the product of non-COVID-

19 deaths (ncd𝑎,𝑡) generated from our excess mortality analysis with the population PCR prevalence (p), 

that we took from the mid-point of each week, Thursday). 

 
𝑀𝑎,𝑡

positive
|ncd𝑎,𝑡, cd𝑎,𝑡 , 𝑝𝑎,𝑡~ Bin (𝑀𝑎,𝑡

total,  
cd𝑎,𝑡 ⋅ sf𝑡 + ncd𝑎,𝑡𝑝𝑎,𝑡

cd𝑎,𝑡 ⋅ sf𝑡 + ncd𝑎,𝑡
) 

 

(21) 

The probability of a positive PCR test given infection was sourced from data published by Hay et al.16. 

While our code allows scaling of sensitivity, our default assumptions are that the maximum sensitivity is 

100% which occurs at 4 days following infection (Supplementary Figure 10). 

Cross-sectional population prevalence survey observational model – 𝑃(CX|𝑝𝑎,𝑡, 𝑠𝑎,𝑡) 

We used the probability of testing positive by PCR as a function since time from infection as estimate by 

Hay et al. 16 and the probability of testing positive by serology as a function of time since symptom onset 

as estimated by Brazeau et al. 17, which accounts for both seroconversion and seroreversion18 (see 

Supplementary Figure 10). 

Both PCR and serological prevalence were then averaged across age groups throughout the survey 

period in Lusaka, 𝜏 = 4th-19th July 2020, and the likelihood of the observed data, CX =

{𝑝positive, 𝑝samples, 𝑠positive, 𝑠samples} are then calculated according to the following binomial 

distributions:  

 𝑝positive~Bin(𝑝samples, 𝑝𝜏) (22) 

 𝑠positive~Bin(𝑠samples, 𝑠𝜏) (23) 
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