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Supplementary Notes 

 

 

1. Synergy computation 

Synergy scores are computed using the Bliss model1. The lower the score, the more synergistic the 

drug-combination is. A drug combination is synergistic if its score is less than 1.  

 

We defined a drug pair to be synergistic in the following manner: In each cell line and combination 

(for a particular library drug dose), we have cell counts measurements (day 6) upon library+anchor 

(LA) combination, library-only treatment (L), anchor-only treatment (A) and with only DMSO 

control treatment (C). Synergy score = (LA/A) / (L/C).  

  

Consider the following example to calculate synergy shown in Supplementary Table 1: 

 

Supplementary Table 1: Example to calculate synergy shown. 

Cell Line      Anchor ID    Library ID    Cell Count (from drugged plates data)  

X DMSO DMSO 500 

X DMSO L 450 

X A DMSO 400 

X A L 150 

 

Library drug alone response Plate (I) compared to DMSO control = 450 / 500 

Library + Anchor Plate (II) Compared to Anchor alone = 150 / 400 

  

Synergy (delta from bliss) = (Library + Anchor Plate (II) Compared to Anchor alone) / Library 

drug alone response Plate (I) compared to DMSO control = (150/400) / (450/500)   
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We calculate synergy for each cell line and for every drug pair in each cell line for all doses D1 to 

D5 (for library drugs). We then compute the median value of the 2 replicates to get a synergy value 

for each drug pair for each cell line for a particular library dose.  

 

 

2. Coverage analysis 

  

We ask the question: for a given anchor, what is the minimum number of library drugs required so 

that at least 80% of the cell lines have one high synergy? 

  

To address the above question, we consider the 21x242 drug combos across 81 cell lines. 

High synergy was defined based on second-best synergy (top 5% threshold). For each anchor, we 

have a binary matrix for all cell lines and libraries – a matrix of 1s and 0s, where 1 stands for high 

synergy and 0 otherwise.  We used a simple greedy algorithm to compute the minimum no. of 

library drugs so that at least 80% of the cell lines have one high synergy. Since it is a greedy 

algorithm, it is an approximate solution. 

  

The greedy algorithm used is similar to the classic greedy algorithm for the set covering problem2-

4.  

  

Our greedy algorithm is as follows: 

a)  For a given anchor, we have a binary matrix (say M) for all cell lines and libraries 

– a matrix of 1s and 0s, where 1 stands for high synergy and 0 otherwise. Let D be the 

counter for the no. of drugs considered. Set D=0. Also set the cell lines considered as PC 

= NULL SET. 

b) We pick the library drug with the maximum high synergy cell lines for the given 

anchor in matrix M. Set D = D + 1. 

c)  We remove those high synergy cell lines from M (let C be the names of those cell 

lines). So, we get a new smaller matrix for M. Calculate PC = union(PC, C). 

d) Check if (length_of_PC / total_no_of_cell_lines)*100 < 80%. If so, repeat from 

step b. 
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We repeated the above analysis for different percentages of cell lines (from 50% to 100%).  

 

3. Potential mechanisms underlying some notable synergistic combinations 

 

The first involves the NMPRT/NAMPT inhibitor daporinab (FK866), which was seen to yield 

HSA and synergies across many cell lines in combination with olaparib. PARP enzymes are 

thought to consume a large amount of cellular NAD as their substrate for PARylation on targets. 

Daporinab, by inhibiting NAMPT, lowers the levels of NAD in cells and this change in substrate 

availability has been previously suggested to underlie the synergy between PARP and NAMPT 

inhibitors5 with potential impact for the treatment of Ewing’s sarcoma6.  

 

Second, a number of synergies were observed with the insulin/insulin growth factor receptors 

inhibitor BMS754807. This outcome most likely corresponds to the well described feedback 

inhibition on IRS1(Insulin Receptor Substrate 1), a key adaptor in the Insulin Receptor pathway 

that is subject to inhibitory phosphorylation in an mTORC1 dependent manner and was recently 

described to imply degradation of IRS1 following phosphorylation by mTORC1 itself7,8 

BMS754807 synergizes less with BYL719 or GDC0941 than with OSI-027 even though mTORC1 

is under the control of PI3K via AKT phosphorylation of TSC (Manning & Cantley, 2007). This 

is possibly due to the presence of other compensatory feedback loops that are not modulating the 

viability outcome when mTORC1 itself is targeted. In contrast to the PI3K inhibitors alpelisib 

(BYL719, PI3Kalpha) and pictilisib (GDC0941, pan PI3K), the MTORC inhibitor OSI027 

synergizes broadly with the farnesyl transferase inhibitor tipifarnib (Figure 3G, Figures 6-7). This 

is an unexpected outcome that seems to indicate either unappreciated activity of farnesyl 

transferase linked to mTORC1/2, perhaps linking HRAS to mTORC or an unsuspected off target 

of one of the two inhibitors. Interestingly, a recent study identified MTORC2 as a direct binding 

partner of RAS proteins albeit not specific to HRAS over other RAS isoforms9. 

 

Thirdly, targeting the RB pathway has been a long-standing interest in cancer therapeutics10. 

Inhibition of CDK4/6, which regulates cell cycle entry via the control of RB1/E2F complex, has 

in recent years been employed in multiple clinical settings. Single agent activity has been observed 
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in preclinical models across different cancer types and promising results obtained in non-small-

cell lung cancer (NSCLC) models11. In addition to improving the outcome of hormonal therapy in 

ER positive breast cancer inhibitors12 of CDK4/6 are considered candidate combination agents in 

several cancers13. CDK4 depletion in a mouse model of NSCLC driven by KRAS induces 

senescence and tumor regression14 and single agent activity of abemaciclib (LY2835219) a potent 

CDK4/6 inhibitor was seen in KRAS driven NSCLC human tumors15. However, further 

exploration of this paradigm has not led to improvement in overall survival of patients in the single 

agent setting16. More recently, a preclinical study reported activity of CDK4/6 targeting in NSCLC 

with loss of SMARCA4 (a component of the SWI/SNF chromatin regulator complex)17. There is 

thus considerable interest in building combinatorial strategies around CDK4/6 inhibition, in 

particular for KRAS mutant NSCLC. Here we identify mTOR and MEK inhibitors as best 

combination partners for palbociclib (Supplementary Figure 3). However, overall, our results in 

vitro and with limited time of exposure to drugs, show a modest number of synergies with high 

sparsity across cell lines. Nevertheless, longer time of treatment or non-cell autonomous effects 

could make these combinations beneficial in patients. Several clinical trials are poised to test the 

efficacy of MAPK pathway inhibitors in combination with CDK4/6 inhibition in NSCLC (for 

example, NCT03170206 for MAPK and NCT03065062 for mTOR/PI3K) and future combinations 

would be critical to address emerging resistance mechanisms18. In addition, different CDK4/6 

inhibitors vary in their target selectivity such that across the three approved CDK4/6 inhibitors, 

specific combinations might display differential synergies and/or clinical benefit19.  

 

Our fourth set of interesting combinations involves SRC kinases. These enzymes, including p60c-

Src and the closely related Src Family Kinases (SFK) members FYN and YES, are a group of non-

receptor tyrosine kinases that have long been implicated in several hallmarks of cancer20. In 

particular, SFKs regulate adhesion and motility mediated by integrins in coordination with the 

tyrosine kinase FAK as well as growth factor signaling. SFK are for example known to play a role 

in the activation of the MEK-ERK/MAPK pathway in several contexts and recent mechanistic 

studies support a model whereby SFKs can coordinate various signaling inputs with growth factor 

sensing by RTKs21. Their targeting in tumors has long been elusive however and somewhat 

surprisingly, no mutations are found in these kinases in tumors. The multi-targeted kinase inhibitor 

dasatinib is a potent inhibitor of Bcr-Abl and was approved for use in Philadelphia positive chronic 
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myelogenous leukemia (CML) and Acute Lymphoblastic Leukemia (Ph+ ALL) in 200622. It also 

potently inhibits SRC and other SFKs and was used here to probe the potential of an approved 

drug targeting SFKs to yield beneficial combinations in NSCLC.  We found that TAE-684 

synergizes broadly with dasatinib (Supplementary Figure 3,5). This is surprising since the kinase 

inhibitor TAE-684 was designed to inhibit the ALK tyrosine kinase which is an oncogene in 

NSCLC when fused to EML423. ALK is not normally expressed in NSCLC and ALK inhibitors 

are thus not broadly expected to be active outside of the ALK fusion driver context. This 

synergistic interaction between dasatinib and TAE-684 is thus most likely due to targeting of other 

kinase(s) than ALK, possibly IGF1R24. Two Insulin Receptor (IR) / Insulin Growth Factor 1 

Receptor (IGF1R) inhibitors were used. Intriguingly, only one, BMS-754807 but not linsitinib 

displayed a very high number of synergies with dasatinib and indeed was the top synergizing drug 

with dasatinib. This strongly suggests that the synergies seen with the BMS compound are either 

not due to IR/IGF1R targeting or that additional targeting is needed to yield synergy 

(Supplementary Figure 4,5). This illustrates again the challenge brought by polypharmacology 

when trying to assign mechanisms to the observed synergies as well as how polypharmacology 

can result in differential synergistic outcome across compounds that are as single agents yielding 

similar activity profiles. 

 

Fifth, a number of strong synergies were seen with the pan Aurora Kinase (AURK) inhibitor 

tozasertib (VX-680, used as an anchor) (Figure 3G, 4D, Supplementary Figures 7-8). Three 

additional AURK inhibitors were used in the drug library: Barasertib (AZD-1152) which is 

selective for Aurora Kinase B over Aurora Kinase A, alisertib (MLN8237) and ENMD-981693 

which are selective for Aurora kinase A. Synergistic activity was detected between AURK 

inhibitors and HDAC inhibitors (Supplementary Figure 7) in line with previous reporting25. 

Interestingly, while both AURK and Cyclin Dependent Kinases are involved in cell cycle 

progression CDK inhibitors did not display the same broad pattern of synergies as AURK 

inhibitors (Supplementary Figure 7). Thus, cell cycle inhibition does not appear to be sufficient to 

explain the AURK inhibitors results and perhaps a more specific outcome of inhibiting mitotic 

progression with AURK inhibitors is at play or other non-mitotic targets26-28 of AURK are 

involved. Across anchors, different AURK inhibitors display differential synergy profiles. For 

example, while both barasertib and alisertib synergize with the BCL2 family targeting compound 
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navitoclax, ENMD-981693 shows more synergies across cell lines with the CHK inhibitor 

AZD7762 than other AURK inhibitors. In contrast, all 4 AURK inhibitors tested synergize with 

the HDAC inhibitor vorinostat across many cell lines, albeit with only partial overlap of cell lines 

presenting synergy (Supplementary Figure 7). Thus, inhibition of either AURKA, AURKB (and 

AURKC) appears to have distinct outcomes in the combination setting. The mechanistic 

underlying of this observation is unclear but could be either a specific, possibly non-mitotic 

function of AURKs, a specific state of cell cycle arrest obtained with one inhibitor versus another, 

or alternate targets engaged by different inhibitors. Nevertheless, here and in other combination 

screens29 targeting AURK in combination with different growth factors, survival and DNA 

damaging agents could yield relatively frequent synergistic outcomes. Interestingly, AURKA has 

been linked to PI3K inhibition response in breast cancer and to resistance to EGFR inhibition in 

NSCLC30,31. 

 

Sixth, the BCL2 family inhibitor synergizes with many drugs in the present study in keeping with 

previous results obtained in our studies on melanoma cell lines where navitoclax was characterized 

as a broad sensitizer to many other drugs32. This makes intuitive sense for a pro-apoptotic agent. 

In particular, some but not all inhibitors of the cell cycle present with numerous synergies when 

combined with navitoclax. For example, dinaciclib an inhibitor of multiple CDKs, BI-2536 and 

GW843682X inhibitors of Polo Like Kinases (PLK), or AT9283, alisertib and barasertib, 

inhibitors of AURKs are some of the drugs with the most synergies. There is precedent for the 

combination of dinaciclib and ABT263 to synergize via downregulation of MCL1, a major 

resistance factor to navitoclax as mentioned in the results section. Somewhat less expected are 

synergies observed between the ETC complex V inhibitor oligomycin and navitoclax, although a 

recent report on CLL identified oxidative phosphorylation as a regulator or BCL2 inhibitor 

sensitivity and demonstrated synergy between oligomycin and BCL2 targeting in lymphoid cells33. 

BCL2 family members are not only involved in apoptosis by regulating the release of cytochrome 

C from the mitochondria but also in the maintenance of mitochondrial network function through 

regulation of fission-fusion cycle and possibly other means34. Thus, the observed synergies 

between complex V inhibition and BCL2 inhibition could represent impact on mitochondrial 

integrity or sensitization to mitochondrial release of cytochrome C.  

 



 8 

Seventh, the mitochondrial ATPsynthase inhibitor oligomycin was ranked 6th when considering 

median HSA score across cell lines for trametinib. This represented strong but relatively 

uncommon synergies and thus was also not flagged in the impact score analysis.  Notably, 

oligomycin was the only drug with no obvious signaling network connection to MEK in the top 

12 drugs ranked by median HSA. Oligomycin was also synergistic with OSI-27, pictilisib, 

dasatinib, navitoclax and perhaps less surprisingly with phenformin. These results suggest that 

disruption of ETC, while not necessarily lethal on its own, is creating vulnerability to core growth 

factor signaling inhibition by PI3K or ERK pathway inhibition.  

 

 

4. Self-addition breaking and limitation of statistical independence modeling 

 

A simple explanation for self-additive coherence breaking is as follows: Consider a scenario where 

doubling the dose of a drug yields a doubling of the viability effect. Then consider what happens 

if the outcome of dose A for this drug is 80% viability. Doubling the dose (adding the same 

treatment to itself, Ax2), based on statistical independence would be expected to yield 64% 

viability (0.8x0.8). Thus, in this case yielding a synergy score of 0.625 (0.08/0.64). Now consider 

the same drug but with an initial dose yielding 40% viability. In this case the expected outcome is 

16% (0.4x0.4; or 40% of 40%) and the observed outcome is 20%, meaning that no synergy is 

detected. Now, consider a drug that has a shallower dose response curve with a doubling of the 

dose yielding a 1.2-fold change in viability. This time, starting at 80% for dose A the expected 

outcome of 64% for (A)x2 is compared to an observed outcome of 0.67 (0.8/1.2) which does not 

represent synergy based on statistical independence (67% compared to 64%). Thus, both steepness 

of the curve and dosing (where on the dose response curve the data is acquired) impact the synergy 

call outcome. Importantly, analysis of single agent data in the present screen reveals that dosing 

yielded a broad range of viability values (Supplementary Figure 1) and that viability ratio for two 

consecutive doses chosen experimentally to be 10 apart (every other dose matches a 10-fold 

dilution) has a median value of 1.04 (1.14 for the top 25% ratio values). By contrast, the HDAC 

inhibitor vorinostat that shows self-additive synergy has a median ratio of viability across two 

consecutive doses of 1.44 (2.11 for the top 25% ratio values). 
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5. Comparison of in vitro and in vivo NSCLC models 

Gao et al. (2015)35 tested 5 drug combinations across 36 NSCLC mouse PDX models. While none 

of these drug combinations were exactly the same as what we used in our in vitro original drug 

combination screens, 3 drug combinations had similar drug targets.  These three drug combinations 

in the Gao paper are: BKM120 (panPI3K inhibitor) and binimetinib (MEK inhibitor); BYL719 

(PI3Kalpha inhibitor) and LGH447 (PIM inhibitor); LFW527 (IGF1R inhibitor) and binimetinib 

(MEK inhibitor).  

Since, there is no clear concept of synergy in this mouse models dataset, in the Gao et al paper35, 

we checked the percentage of PDX models in which drug combinations are more effective than 

both individual drugs (based on the percent tumor volume change after treatment; one-sided 

Wilcoxon rank-sum test, P < 0.05). We compared it with the percentage of highly synergistic cell 

lines in the correspondingly mapped drug combinations in our original in vitro screen (top 5 

percentile chosen as the threshold of high synergy).  The results are summarized in Supplementary 

Table 2. As seen, we see a very good concordance between our drug combination in vitro screen 

and in the PDX models based on the fraction of highly synergistic/effective models for PI3K and 

MEK inhibitors, PI3K and PIM inhibitors, IGF1R and MEK inhibitors. 
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Supplementary Table 2: Comparing drug combinations between in vitro and in vivo NSCLC 

models. 

Drug targets  PDX screen drug combination 

(percentage of NSCLC PDX 

models in which the combinations 

is more effective than both 

individual drugs is shown). 

Original in vitro screen drug combination 

for the mapped drugs based on similar 

targets (percentage of highly synergistic 

cell lines shown) 

PI3K & MEK inhibitor 

combination 

 

BKM120 & Binimetinib = 20.69% 

(6 out of 29 models) 

Alpelisib & Trametinib = 24.32% 

Alpelisib & Selumetinib =16.22% 

Pictilisib & Trametinib = 31.58% 

Pictilisib & Selumetinib = 22.37% 

Mean value of high synergies of these 

combinations = 23.62% 

PI3K & PIM inhibitor 

combination 

BYL719 & LGH447 = 10.34% (3 

out of 29 models) 

Alpelisib & AZD1208 = 8.11% 

Alpelisib & SGI-1776 = 4.05% 

Pictilisib & AZD1208 = 17.11% 

Pictilisib & SGI-1776 = 3.95% 

Mean value of high synergies of these 

combinations = 8.31% 

 

IGF1R & MEK inhibitor 

combination 

LFW527 & Binimetinib = 12% (3 

out of 25 models). 

Linsitinib & Trametinib = 10.96% 

Linsitinib & Selumetinib = 9.59% 

Mean value of high synergies of these 

combinations = 10.28% 
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Supplementary Table 3: Cell lines used in this study. 

  
ID Cell Line Source CatalogNumber

850 201T UPM C NA

752 A-427 ATCC HTB-53

677 A549 ATCC CCL-185

888 ABC-1 JHSF JCRB0815

756 BEN DSM Z ACC 254

851 CAL-12T DSM Z ACC 443

679 ChaGo-K-1 ATCC HTB-168

864 COR-L 105 ECACC 92031918

865 COR-L23 ECACC 92031919

886 EBC-1 JHSF JCRB0820

854 EPLC-272H DSM Z ACC 383

890 H3255 NCI NA

872 HARA JHSF JCRB1080.0

855 HCC-15 DSM Z ACC 496

856 HCC-366 DSM Z ACC 492

857 HCC-44 DSM Z ACC 534

858 HCC-78 DSM Z ACC 563

859 HCC-827 DSM Z ACC 566

860 LCLC-103H DSM Z ACC 384

861 LCLC-97TM 1 DSM Z ACC 388

871 LK-2 JHSF JCRB0829

862 LOU-NH91 DSM Z ACC 393

879 LU99A JHSF JCRB0044

801 NCI-H1299 ATCC CRL-5803

1243 NCI-H1395 ATCC CRL-5868

812 NCI-H1437 ATCC CRL-5872

813 NCI-H1563 ATCC CRL-5875

815 NCI-H1623 ATCC CRL-5881

1245 NCI-H1648 ATCC CRL-5882

791 NCI-H1650 ATCC CRL-5883

816 NCI-H1651 ATCC CRL-5884

792 NCI-H1666 ATCC CRL-5885

818 NCI-H1703 ATCC CRL-5889

819 NCI-H1734 ATCC CRL-5891

820 NCI-H1755 ATCC CRL-5892

794 NCI-H1792 ATCC CRL-5895

821 NCI-H1793 ATCC CRL-5896

823 NCI-H1915 ATCC CRL-5904

824 NCI-H1944 ATCC CRL-5907

755 NCI-H1975 ATCC CRL-5908

1136 NCI-H1993 ATCC CRL-5909

796 NCI-H2009 ATCC CRL-5911

825 NCI-H2023 ATCC CRL-5912

827 NCI-H2085 ATCC CRL-5921

847 NCI-H2087 ATCC CRL-5922

841 NCI-H2170 ATCC CRL-5928

832 NCI-H2228 ATCC CRL-5935

800 NCI-H23 ATCC CRL-5800

833 NCI-H2342 ATCC CRL-5941

834 NCI-H2347 ATCC CRL-5942

835 NCI-H2405 ATCC CRL-5944

1180 NCI-H3122 DFCI NA

802 NCI-H358 ATCC CRL-5807

840 NCI-H441 ATCC HTB-174

753 NCI-H460 ATCC HTB-177

842 NCI-H520 ATCC HTB-182

803 NCI-H522 ATCC CRL-5810

797 NCI-H596 ATCC HTB-178

806 NCI-H647 ATCC CRL-5834

807 NCI-H650 ATCC CRL-5835

799 NCI-H661 ATCC HTB-183

680 NCI-H727 ATCC CRL-5815

808 NCI-H838 ATCC CRL-5844

868 PC-14 ECACC 90071810

877 PC-3 [JPC-3] JHSF JCRB0077

870 RERF-LC-KJ JHSF JCRB0137

848 SK-LU-1 ECACC 93120835

843 SK-M ES-1 ATCC HTB-58

844 SW 1573 ATCC CRL-2170

839 SW 900 ATCC HTB-59

678 UM C-11 ATCC CRL-5975

8018 Calu-6 ATCC HTB-56

8040 EKVX NCI NA

8072 HOP-62 NCI NA

8075 IA-LM RIKEN RCB0554

8103 LC-2-ad RIKEN RCB0440

8111 LXF-289 DSM Z ACC265

8130 NCI-H1355 ATCC CRL-5865

8132 NCI-H2126 ATCC CCL-256

8133 NCI-H322M NCI NA

8232 EM C-BAC-2 WTSI NA
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Supplementary Data 

Supplementary data S1-S11 are provided separately in Excel files. Supplementary data S12 is a 

compressed (zip) folder.  
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Supplementary Figures 
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Supplementary Figure 1: Overview of the dataset and response to single agents. A: Coverage 

of the cell line collection. The 81 cell lines (rows) are shown with key cancer genes altered to the 

right of the heatmap displaying data acquired and passing quality control. The number of biological 

replicates (Bio Replicates) corresponding to independent days of cell seeding are indicated by the 

color scheme indicated at the top right. B. Viability response to anchor drugs, the distribution of 

viability values (across all 81 cell lines) is represented. C. Viability response to library drugs: For 

each library drugs the range of viability obtained with the indicated drug across the 81 cell line 

collection is plotted. All 5 doses are plotted together for each drug to demonstrate the overall range 

of viability obtained. The box plots have median center, 25 and 75 percentiles (Q1 and Q3) as  

bounds of the box, the minima and maxima being Q1 – 1.5xIQR and Q3 + 1.5xIQR (with IQR 

being interquartile range). 
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Supplementary Figure 2: Profile of synergy counts across all tested combinations. For each 

combination between the indicated library drug (row) and anchor drug (column) the number of 

cell lines harboring synergy is depicted by a bar. The size of the bar is proportional to the number 

of cell lines harboring synergy with maximum size set at 53 (maximum number of cell lines 

presenting with synergy). Synergy count is based on a synergy score threshold of 0.8. 
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Supplementary Figure 3: Pattern of synergies and HSA events across related drugs. Several 

examples of patterns obtained for drugs with related targets are shown for some of the anchors. A-

E: Cell lines (columns) are in the same order across rows to allow for pattern comparison. Cell 

lines harboring HSA (orange) or synergy (green) are colored accordingly. The same thresholds for 

synergy and HSA are used across all panels. Anchors for the different panels are: A, Alpelisib 

(PI3Kalpha); B, Pictilisib (pan PI3K); C, Palbociclib (CDK4/6); D, Trametinib (MEK1/2); E, 

Dasatinib (ABL, SRC). 

 

 

 

 

 

 

 



 21 

 

 



 22 

 

 

Supplementary Figure 4: Distribution of synergy and HSA scores for selected anchors 

illustrates global consistency of the two scoring metrics. The impact score for each combination 

is plotted. X axis: Differential median synergy score across cell lines corresponding to the Log10 

ratio of the median synergy (or HSA) score for the indicated library drug over median score of all 
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other drugs. Y axis: FDR value for statistical enrichment of synergies for the plotted combination 

over all other tested combinations (with the same anchor). The size of the dots represents the 

percentile of synergy scores for a given combination falling within the top 5% of all synergy scores 

for the whole screen (all anchors). Anchors: Pictilisib (pan PI3K), OSI-27 (mTORC), Votinostat 

(HDAC), Dasatinib (ABL, SRC). 
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Supplementary Figure 5: HSA Scores for selected drugs and overall HSA score matrix. A 

and B, HSA impact scores for the anchors palbociclib (CDK4/6) and Olaparib (PARP). C: 

Overview of HSA scores across tested combination. Combinations yielding HSA in at least 15% 

of the cell lines tested are shown. The size of the dot corresponds to the percentile of cell lines 

with HSA and the shade to the statistical enrichment of HSA events for the indicated combination 

over all other tested combinations (darker corresponds to lower FDR).  
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Supplementary Figure 6: Pattern of synergy score for cytotoxic drugs. For each of the 

indicated anchor drugs (vertical labels) the pattern of synergy for a given library drug (horizontal 

label) is shown by a color box when the chosen threshold of 0.8 synergy score is passed. Cell lines 

are in same order across all rows. Gray shading corresponds to missing data. 
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Supplementary Figure 7: Aurora kinase inhibitors are engaged more frequently in 

synergistic and HSA events than CDK inhibitors. A, Pattern of synergy and HSA events across 
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selected anchors for the library drugs targeting Aurora Kinases and CDKs. B, Impact score graphs 

for Aurora Kinase and CDK inhibitors.  

 

 

 

 

Supplementary Figure 8: Network representation of drug-drug interactions for top 5% 

synergistic events across all drugs and anchors. Anchor drugs are represented as squares and 

library drugs as circles. The size of the anchor nodes is proportional to the number of synergistic 
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events the corresponding drug is involved in. The thickness of the edge between two drugs 

corresponds to the median value of the synergy scores across all cell lines.  
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Supplementary figure 9: Validation of high synergistic drug combinations between the 

original and validation screens. Each drug combination is ranked based on the percentage of cell 

lines in which they are highly synergistic (Methods), in the original and in the validation screens. 

Spearman’s correlation and p-value between the rankings of the drug combinations between the 

original and validation screens are shown. Overall, 27 common drug combinations were tested in 

both screens. Only some drug combination names are displayed for the sake of clarity. 
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Supplementary figure 10: Correlation between the viability scores of two drug 

combinations between the original screen and validation screen across all 15 NSCLC cell 

lines. (A) Oligomycin and Navitoclax; (b) Adavosertib and AZD7762. The correlation values for 

all 29 drug combinations are shown in Supp. Data S10A. Spearman and pearson correlations and 

p-values are shown. When P was reported as 0 by the software, it is written as P < 2.2e-16.  
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Supplementary Figure 11: Analysis of synergy patterns across drugs for each cell line does 

not differentiate KRAS WT from KRAS mutant cell lines. Principle component analysis was 

used to analyze the proximity of cell lines based on the pattern of synergistic events across all 

anchors and library drugs. Cell lines are color coded based on KRAS mutational status. 
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