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Supplementary Results and Discussion 

Photocycle of PngR 

To analyze the photocycle of PngR, we performed flash-photolysis experiment. Extended Data 

Fig. 5A shows the flash-induced difference spectra over the spectral range of 380–700 nm. The 

depletion and recovery of absorbance at ~ 510 nm correspond to the bleaching of the original state, 

while an increase and decrease of absorbance at ~ 410 and 570 nm were characteristically observed. 

Extended Data Fig. 5B shows the time courses of the difference absorbance changes at the three 

wavelengths of 410, 510 and 570 nm. Following the illumination, an absorption increase at ~ 570 

nm was observed together with the depletion of the original state. An absorption increase at ~ 410 

nm was then observed with a concomitant absorption decrease at ~ 570 nm within 0.5 ms. 

Considering the temporal and spectral ranges of the absorption changes, the absorbances at 570 

and 410 nm were tentatively attributed to the K- and M-intermediates, respectively. The 

absorbance at ~ 410 nm decreased with the concomitant absorbance increase at ~ 570 nm, which 

was tentatively assigned as the O-intermediate, within 10 ms. Finally, the absorbance at ~ 570 nm 

was depleted with recovery of the original state within 300 ms. Thus, after the light absorption, 

PngR sequentially forms K-, M- and O-intermediates, and then returns to the original state. To 

estimate the decay time constants of the intermediates, the temporal absorption changes at 410, 

510 and 570 nm were fitted with a triple-exponential function assuming the irreversible sequential 

model. The decay time constants of the K-, M- and O-intermediates were estimated as 0.061, 0.83 

and 61 ms, respectively. Finally, we investigated how proton uptake and release happen during the 

photocycle since PngR exhibits a proton pumping function.  

Proton uptake and release by PngR during the photocycle were detected as the time course 

of the absorbance changes at 450 nm by using pyranine, a pH-sensitive dye. Pyranine works as a 

pH indicator, and the absorbance of pyranine at 450 nm was decreased under acidic conditions. As 

a result, the absorbance of pyranine increased within 5 ms and then decreased within 100 ms 

(Extended Data Fig. 5B), which indicates that the substrate proton was first taken up from the bulk 

solution and then released from PngR during photocycle. These absorbance changes were observed 

coinstantaneous with those of O-intermediate, which suggests that proton uptake and release are 

coincident with the formation and decay of O-intermediate, respectively. Based on these results, 

we propose a photocycle model of PngR as shown schematically in Extended Data Fig. 5C.  
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Extended Data Figs. 

 

Extended Data Fig. 1. Phylogenetic position of diatom rhodopsin and the rhodopsin 
sequences used in this analysis. A maximum likelihood tree of amino acid sequences of microbial 
rhodopsins. Diatom rhodopsin (PngR) is indicated by red character and bootstrap probabilities (≥ 
50%) are indicated by black and white circles. Green branches indicate eukaryotic rhodopsins used 
in this analysis, and black branches indicate prokaryotic rhodopsins. Rhodopsin clades are as 
follows: XLR (Xanthorhodopsin-like rhodopsin), ClR (Cl--pumping rhodopsin), NaR (Na+-
pumping rhodopsin), PR (proteorhodopsin), XeR (xenorhodopsin), DTG-motif rhodopsin, SR 
(sensory rhodopsin-I and sensory rhodopsin-II), BR (bacteriorhodopsin), HR (halorhodopsin), 
CyHR (cyanobacterial halorhodopsin), and CyR (cyanorhodopsin).  
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Extended Data Fig. 2. Sequence alignment of rhodopsins. The accessions and rhodopsin 
families are as follows: PngR (AJA37445.1, XLR), XR (WP_011404249.1, XLR), GR 
(BAC88139.1, XLR), BR (CAP14056.1, BR), PR (AAG10475.1, PR), and NaR (BAN14808.1, 
NaR). All rhodopsins except NaR function as proton pump. Columns of functionally important 
residues are shown in bold. The numbers above the columns indicate amino acid numbers in BR, 
and PngR in parentheses. Known functions are as follows: primary proton acceptor (Asp85 in BR), 
proton donor (Glu96), counterion (Asp212), Schiff base (Lys216). Two carboxylates, Asp (D) and 
Glu (E), are shown in blue, and Schiff base Lys (K) is shown in red. 
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Extended Data Fig. 3. Retinal configuration of PngR. HPLC patterns of retinal isomers of PngR 
with (green line) and without (black line). Ts and Ta represent all-trans-15-syn and all-trans-15-
anti retinal oximes, respectively. 
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Extended Data Fig. 4. pH-induced spectral changes of PngR. (A) Absorption spectra of PngR 
at acidic pH from 7.0 to 3.4 in Buffer A containing 50 mM Tris–HCl, 1 M NaCl and 0.05% (w/v) 
DDM. (B) Difference absorption spectra; each spectrum was obtained by subtracting the spectrum 
at pH 7.0. (C) Plots of the difference absorbance at 498 and 573 nm against the pH values. The 
titration curve was analyzed using the Henderson–Hasselbalch equation assuming single pKa 
value (solid lines). 
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Extended Data Fig. 5. Photoreaction kinetics of PngR with timing of proton release and 
uptake. (A) Flash-induced difference absorption spectra over the spectral range of 380 to 700 nm 
in Buffer A containing 50 mM Tris-HCl (pH 7.0), 1 M NaCl and 0.05% (w/v) DDM. (B) Time 
courses of absorbance changes at 410, 510, and 570 nm. The black solid lines indicate the fitting 
curves. The absorption changes of pyranine monitored at 450 nm were enlarged 2 times and are 
shown as a gray solid line. (C) Proposed photo cycle model of PngR with the timing of the proton 
release and uptake. 
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Extended Data Fig. 6. Subcellular localization of the exogenously introduced PngR and 
plastid in diatom cells. Transformed diatom cells were observed with DIC (Differential Interface 
Contrast) (Left). Green fluorescence from the recombinant protein (GFP) and the chlorophyll 
autofluorescence (Chl) are shown in center and right, respectively. The triangles show the location 
of nucleus, and GFP surrounds the nucleus. Scale bar indicates 20 µm.  
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Extended Data Fig. 7. Subcellular localization of the exogenously introduced PngR, nucleus 
and plastid in diatom cells. Transformed diatom cells were observed with DIC (Differential 
Interface Contrast) (Left). Green fluorescence from the recombinant protein (GFP) (Left center). 
The nuclear DNA stained with DAPI and the chlorophyll autofluorescence (DAPI + Chl) and 
merged image (Merge) are shown in right center and right, respectively. Arrows indicate GFP 
fluorescence outside the chloroplast; most of the GFP fluorescence is localized to the CERM, but 
it may also be observed in other organelles (e.g., vacuoles and periplasmic membranes). 

 

 

 

 

Extended Data Fig. 8. A proposed model that proton transport by rhodopsin is involved in 
CCM. The proton transport of rhodopsin acidifies the region (the middle space) surrounded by the 
membrane of CERM and PPM. Abbreviation are as follows: Cyt (Cytosol), Nuc (Nucleus), PL 
(Plastid), CERM (Chloroplast endoplasmic reticulum membrane), PPM (Periplastidial membrane), 
oEM (Outer plastid envelope membrane) and iEM (Internal plastid envelope membrane).          
 . 

  

H+ H+ H+

HCO3- + H+
Acidic condition

CO2 + H2O

HCO3-

HCO3-

HCO3-

CO2

Calvin Benson 
Cycle

CERM

PPM
oEM
iEM

H+ pumping 
Rhodopsin

Inorganic carbon transporter

Acidification

Nuc

PL

Cyt



11 
 

Supplementary Tables 

Table S1  Parameters, units and definitions. Parameters are listed roughly in the order of 
appearance. 

Parameter Unit Definition 
[𝐶𝑂!]" µmol L-1 CO2 concentration in the plastid 
𝑡 d time 
𝐷 d-1 diffusion coefficient 

[𝐶𝑂!]# µmol L-1 CO2 concentration in the middle space 
𝑉#$% µmol L-1 d-1 maximum C fixation rate 
𝐾 µmol L-1 Half-saturation constant for C fixation 

𝑉&'(% µmol L-1 d-1 C fixation rate 
[𝐷𝐼𝐶]# µmol L-1 DIC concentration in the middle space 
[𝐻)]# mol kg-1 H+ concentration in the middle space  
𝐾* mol kg-1 temperature and salinity dependent constant 1 
𝐾! mol kg-1 temperature and salinity dependent constant 2 
𝑇 K temperature 
𝑆 ‰ salinity 

 

Table S2  Parameter values 
Parameter Value Unit 

𝐾 44*1 µmol L-1 
[𝐷𝐼𝐶]# 993*2 µmol L-1 
𝑇 298.15*3 K 
𝑆 35*4 ‰ 

*1 Based on the middle value from (Young et al., 2016, Jensen et al., 2020)  
*2 Observed value of DIC in a diatom Phaeodactylum tricornutum (Burns and Beardall, 1987). 
This is the only mean value we found for diatoms.  
*3 Typical room temperature. 
*4 Typical values of seawater (note that K1 and K2 values are relatively insensitive to S values). 
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