Supplemental Online Content

Chen H, Li C, Han B, et al; STABLE-SR-III Investigators. Circumferential pulmonary vein isolation with vs without additional low-voltage-area ablation in older patients with paroxysmal atrial fibrillation: a randomized clinical trial. *JAMA Cardiol*. Published online June 28, 2023. doi:10.1001/jamacardio.2023.1749

eAppendix

eMethods

eReferences

eTable 1. Baseline characteristics of study patients (modified intention to treat)

eTable 2. Baseline characteristics (per-protocol set)

eTable 3. Procedural characteristics (modified intention to treat)

eTable 4. Procedural characteristics (per-protocol set)

eTable 5. Baseline characteristics of the four subgroups (modified intention to treat)

eTable 6. Procedural characteristics of four subgroups (modified intention to treat)

eTable 7. Baseline characteristics of the study population by LVA and treatment (modified intention to treat)

eTable 8. Procedural characteristics of the study population by LVA and treatment (modified intention to treat)

eTable 9. Baseline characteristics of the study population by LVA and treatment (perprotocol set)

eTable 10. Procedural characteristics of the study population by LVA and treatment (perprotocol set)

eTable 11. Peri-procedural safety data

eTable 12. Adverse events during follow-up

eTable 13. Baseline characteristics of the study population by sex

eTable 14. Hazard ratio for primary endpoint after adjustment of study centers, sex, and BMI

eFigure 1. Sample images of LVA distribution and the corresponding ablation strategies **eFigure 2.** Kaplan-Meier curve of the freedom from ATA after single procedure by

specificity analysis of clinical-detected event-based finding between CPVI plus and CPVI alone groups by modified intention-to-treat analysis

eFigure 3. Kaplan-Meier curve of the freedom from ATA after single procedure among three subgroups by modified intention-to-treat analysis

eFigure 4. Primary endpoint subgroup by modified intention-to-treat analysis

eFigure 5. Kaplan-Meier estimates of the freedom from ATA after single procedure between CPVI plus and CPVI alone groups by intention-to-treat analysis

eFigure 6. Kaplan-Meier estimates of the freedom from ATA after single procedure between CPVI plus and CPVI alone groups by per-protocol analysis

eFigure 7. Kaplan-Meier curve of the freedom from ATA after single procedure among four subgroups by per-protocol analysis

eFigure 8. Kaplan-Meier curve of the freedom from ATA after single procedure among three subgroups by per-protocol analysis

eFigure 9. Primary endpoint subgroup by per-protocol analysis

This supplemental material has been provided by the authors to give readers additional information about their work.

eAppendix.

Full list of investigators and participating centers, the distribution of enrolled patients in all centers

List	Investigator	Center	CPVI plus aroup	CPVI alone aroup	Enrolled Subiects
1	Minglong Chen Hongwu Chen	The First Affiliated Hospital of Nanjing Medical University	53	35	88
2	Youquan Wei	The First Affiliated Hospital of Wannan Medical College	22	17	39
3	Chengzong Li	The Affiliated Hospital of Xuzhou Medical University	15	14	29
4	Linsheng Shi	The Second Affiliated Hospital of Nantong University	8	8	16
5	Hong Du	The Second Hospital of Hebei Medical University	5	2	7
6	Fangyi Xiao	The First Affiliated Hospital of Wenzhou Medical University	23	31	54
7	Cao Zou	The First Affiliated Hospital of Soochow University	14	11	25
8	Fu Yi	Air Force Military Medical University	19	29	48
9	Bing Han	Xuzhou Čentral Hospital, the Affiliated Xuzhou Hospital of Medical College of Southeast	27	37	64
10	Weiming Wang	The Third Affiliated Hospital of Soochow University	8	4	12
11	Chenyang Jiang	Sir Run Run Shaw Hospital, affiliated with the Zhejiang University School of Medicine	15	17	32
12	Wei Ma	Tianjin Chest Hospital	5	10	15
13	Yuegang Wang	The First Affiliated Hospital of Southern Medical University	4	4	8
14	Long Chen	Zhongda Hospital, Southeast University	1	0	1
	Total		219	219	438

Steering committee (SC)

Investigator	Center	Country
Minglong Chen	The First Affiliated Hospital of	China
	Nanjing Medical University	
Bing Han	The Affiliated Xuzhou Hospital of	China
	Medical College of Southeast	
	University, Xuzhou Central	
	Hospital	
Chenyang Jiang	Sir Run Run Shaw Hospital,	China
	affiliated with the Zhejiang	
	University School of Medicine	

Data safety monitoring board (DSMB)

Investigator	Center	Country
Wenxi Wu (Professor of	The First Affiliated Hospital of	China
General Surgery)	Nanjing Medical University	
Fumin Zhang (Professor	The First Affiliated Hospital of	China
of Cardiology)	Nanjing Medical University	
Xin Yao (Professor of	The First Affiliated Hospital of	China
Respiratory Diseases)	Nanjing Medical University	
Hao Yu (Professor of	Nanjing Medical University	China
Statistics)		
Xiuqing Wang (Member of	The First Affiliated Hospital of	China
ethics committee,	Nanjing Medical University	
protection of study		
subjects)		

Event review committee (ERC)

Event adjudicated by an independent blinded committee:

Investigator	Center	Country
Zhibing Lu	Zhongnan Hospital of Wuhan	China
(Electrophysiologist)	University	
Lichun Wang	The First Affiliated Hospital of Sun	China
(Electrophysiologist)	Yat-Sen University	
Jiang Cao	Changhai Hospital, Naval Medical	China
(Electrophysiologist)	University	

Contract research organization (CRO)

Item Contract Research Organization (CRO)

Title Guangzhou EnChannel Medical Information China Technology Co. Ltd

Country

Randomization

Central randomization was issued from The First Affiliated Hospital of Nanjing Medical University.

A central computerised simple randomization scheme was used. Patients and the physicians who

followed up the patients were blinded to the randomization. All clinical outcomes were collected by

the contract research organization (CRO).

Core lab and independent statistical analysis

Each patient's procedure data were stored and reviewed by the core lab. Core lab would review

the procedural electroanatomic map and lesion placement:

Item	Title	Country
Core Lab	Department of Cardiology, the First Affiliated	China
	Hospital of Nanjing Medical University	
Statistical Analysis	Nanjing Lindu Medical Technology Co., Ltd	China

eMethods.

Voltage mapping: impact factors and practical considerations

The voltage of a mapping point depends on the rhythm, rate, contact force, thickness of the local tissue, inter-space of the mapping electrodes, wave front direction as well as other poorly understood tissue factors, all of which highlight the importance of a standardized approach to substrate identification^{1,2}. Mapping in sinus rhythm, rather than in AF, was preferred in most previous studies³⁻⁷. High density mapping, which we used in our STABLE-SR, STABLE-SR-II and other studies, is a fast and time-efficient approach⁸⁻¹⁰. However, the poor contact points can over-estimate the extent of LVA. In this study, LA substrate mapping strategy and the definition of LVAs were similar to other studies^{3,4}, but with contact force adjudication. We believe that point-by-point mapping fashion sparsely in the healthy area, densely in areas of interest and verified by contact force—is an acceptable and practical mapping approach. Other factors, such as the inter-space of the mapping electrodes, LVA definition of the different region² and wave-front direction were not taken into consideration in our trial. Although the foregoing factors may have impact on substrate identification, our point-by-point approach with contact force adjudication was consistent and parallel in both groups, thus the impact of this potential bias is minimized. Further, we performed voltage mapping after and not before CPVI for the following reasons: 1) Pursuing mapping during sinus rhythm, post CPVI mapping can reduce the possibility of electrical cardioversion, 2) Inadequate ablation because of unstable ablation catheter movement during CPVI adjacent to the lesion line might sometimes be the new iatrogenic areas of arrhythmogenecity. These half-lesion areas need evaluation, 3) Mapping during the waiting period after CPVI does not prolong the procedure time, and allows additional time to check the durability of isolation.

ITT analysis

In this study, the ITT analysis was conducted based on the worst-case analysis, in which

all the patients who declined ablation or lost to follow-up during the blanking period were

assumed to have ATA recurrence at the first 3-month follow-up.

eReferences

- 1. Wong GR NCJ, Lee G ea. Dynamic Atrial Substrate During High-Density Mapping of Paroxysmal and Persistent AF: Implications for Substrate Ablation. JACC-Clinical Electrophysiology. ,2019.
- 2. Squara F, Frankel DS, Schaller R, et al. Voltage mapping for delineating inexcitable dense scar in patients undergoing atrial fibrillation ablation: a new end point for enhancing pulmonary vein isolation. *Heart Rhythm*. 2014;11(11):1904-1911.
- **3.** Rolf S, Kircher S, Arya A, et al. Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation. *Circ Arrhythm Electrophysiol.* 2014;7(5):825-833.
- 4. Kircher S, Arya A, Altmann D, et al. Individually tailored vs. standardized substrate modification during radiofrequency catheter ablation for atrial fibrillation: a randomized study. *Europace*. 2018;20(11):1766-1775.
- 5. Yamaguchi T, Tsuchiya T, Nakahara S, et al. Efficacy of Left Atrial Voltage-Based Catheter Ablation of Persistent Atrial Fibrillation. *J Cardiovasc Electrophysiol*. 2016;27(9):1055-1063.
- 6. Masuda M, Asai M, Iida O, et al. Additional Low-Voltage-Area Ablation in Patients With Paroxysmal Atrial Fibrillation: Results of the Randomized Controlled VOLCANO Trial. *J Am Heart Assoc.* 2020;9(13):e015927.
- 7. Mohanty S, Mohanty P, Di Biase L, et al. Long-term follow-up of patients with paroxysmal atrial fibrillation and severe left atrial scarring: comparison between pulmonary vein antrum isolation only or pulmonary vein isolation combined with either scar homogenization or trigger ablation. *Europace*. 2017;19(11):1790-1797.
- 8. Jadidi AS, Lehrmann H, Keyl C, et al. Ablation of Persistent Atrial Fibrillation Targeting Low-Voltage Areas With Selective Activation Characteristics. *Circ Arrhythm Electrophysiol*. 2016;9(3).
- 9. Yang B, Jiang C, Lin Y, et al. STABLE-SR (Electrophysiological Substrate Ablation in the Left Atrium During Sinus Rhythm) for the Treatment of Nonparoxysmal Atrial Fibrillation: A Prospective, Multicenter Randomized Clinical Trial. *Circ Arrhythm Electrophysiol*. 2017;10(11).
- **10.** Yang G, Zheng L, Jiang C, et al. Circumferential Pulmonary Vein Isolation Plus Low-Voltage Area Modification in Persistent Atrial Fibrillation: The STABLE-SR-II Trial. *JACC Clin Electrophysiol*. 2022;8(7):882-891.

Characteristics	CPVI plus, n=209	CPVI alone, n=205
Male, n (%)	107 (51.2)	103 (50.2)
Age, years	70.4±4.4	70.6±4.2
AF history, months	24.0 (6.0, 48.0)	14 (5.0, 48.0)
BMI, kg/m²	24.2±3.6	24.6±3.0
<25, n (%)	123 (62.8)	122 (60.4)
≥25, n (%)	73 (37.2)	80 (39.6)
Comorbidities, n (%)		
Hypertension	123 (58.9)	132 (64.4)
Diabetes	31 (14.8)	38 (18.5)
CAD	50 (23.9)	46 (22.4)
Stroke or TIA	16 (7.7)	20 (9.8)
Congestive heart failure	2 (1.0)	1 (0.5)
COPD	4 (2.0)	3 (1.5)
OSAS	2 (1.0)	1 (0.5)
CHA2DS2-VASc score	2.2±0.9	2.4±1.0
1, n (%)	52 (24.9)	46 (22.4)
2, n (%)	78 (37.3)	65 (31.7)
3, n (%)	57 (27.3)	65 (31.7)
>3, n (%)	22 (10.5)	29 (14.2)
LAD, mm	38.8±5.4	38.8±5.3
LVEF, %	62.5±5.3	62.4±5.5

eTable 1. Baseline characteristics of study patients (modified intention to treat)

CPVI, circumferential pulmonary vein isolation; AF, atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; TIA, transient ischaemic attack; COPD, chronic obstructive pulmonary disease; OSAS, obstructive sleep apnoea syndrome; LAD, left atrial diameter; LVEF, left ventricular ejection fraction.

Characteristics	CPVI plus, n=205	CPVI alone, n=200
Male, n (%)	107 (52.2)	100 (50.0)
Age, years	70.5±3.9	70.6±4.1
AF history, months	24.0 (6.0, 48.0)	13.0 (4.0, 37.5)
BMI, kg/m²	24.2±3.6	24.6±3.0
<25, n (%)	120 (58.5)	118 (59.9)
≥25, n (%)	72 (35.1)	79 (40.1)
Comorbidities, n (%)		
Hypertension	120 (58.5)	131 (65.5)
Diabetes	31 (15.1)	38 (19.0)
CAD	50 (24.4)	45 (22.5)
Stroke or TIA	16 (7.8)	20 (10.0)
Congestive heart failure	2 (1.0)	1 (0.5)
COPD	4 (2.0)	2 (1.0)
OSAS	2 (1.0)	1 (0.5)
CHA2DS2-VASc score	2.4±1.0	2.2±1.0
1, n (%)	51 (24.9)	43 (21.5)
2, n (%)	78 (38.0)	64 (32.0)
3, n (%)	54 (26.3)	64 (32.0)
>3, n (%)	22 (10.7)	29 (14.5)
LAD, mm	38.8±5.4	38.7±5.3
_LVEF, %	62.4±5.3	62.4±5.4

CPVI, circumferential pulmonary vein isolation; AF, atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; TIA, transient ischemic attack; COPD, chronic obstructive pulmonary disease; OSAS, obstructive sleep apnea syndrome; LAD, left atrial diameter; LVEF, left ventricular ejection fraction.

Characteristics	CPVI plus, n=209	CPVI alone, n=205
ATA at baseline, n (%)	33 (15.8)	33 (16.1)
AF termination during CPVI, n (%)	67 (32.1)	54 (26.3)
CV after CPVI, n (%)	13 (6.2)	2 (1.0)
Non-PV triggers, n (%)	17 (8.1)	20 (9.8)
Concomitant arrhythmia, n (%)	2 (1.0)	5 (2.4)
CTI ablation, n (%)	24 (11.5)	20 (9.8)
LVA, n (%)	86 (41.2)	88 (42.9)
LVA burden 1-10%, n (%)	65 (75.6)	74 (84.1)
Area, cm ²	3.9±2.4	3.6±2.6
LVA burden 11-20%, n (%)	15 (17.4)	8 (9.1)
Area, cm ²	13.2±1.8	13.7±3.5
LVA burden >20%, n (%)	6 (7.0)	6 (6.8)
Area, cm ²	27.9±9.5	40.6±9.5
Total procedure time, min	142.5±39.3	139.4±42.5
Begin-CPVI completed, min	108.9±31.5	106.5±28.0
CPVI completed-end, min	33.6±19.2	32.8±28.0
Total fluoroscopic time, min	9.2±5.3	9.7±7.1
Total RF delivery time, min	43.9±18.3	42.2±17.9

eTable 3. Procedural characteristics (modified intention to treat)

CPVI, circumferential pulmonary vein isolation; ATA, atrial tachyarrhythmia; CV, cardioversion; PV, pulmonary vein; CTI, cavotricuspid isthmus; LVA, low-voltage area, RF, radiofrequency.

Characteristics	CPVI plus, n=205	CPVI alone, n=200
ATA at baseline, n (%)	33 (16.1)	31 (15.1)
AF termination during CPVI, n (%)	66 (32.2)	52 (25.4)
CV after CPVI, n (%)	12 (5.9)	2 (1.0)
Non-PV triggers, n (%)	17 (8.5)	20 (9.8)
Concomitant arrhythmia, n (%)	2 (1.0)	5 (2.5)
CTI ablation, n (%)	24 (11.7)	20 (10.0)
LVA, n (%)	84 (41.0)	88 (44.0)
LVA burden 1-10%, n (%)	64 (76.2)	74 (84.1)
Area, cm ²	3.9±2.5	3.63±2.6
LVA burden 11-20%, n (%)	15 (17.9)	8 (9.1)
Area, cm ²	13.2±1.8	13.7±3.5
LVA burden >20%, n (%)	5 (6.0)	6 (6.8)
Area, cm ²	29.5±9.7	40.6±9.5
Total procedure time, min	142.1±39.3	139.1±42.8
Begin-CPVI completed, min	108.5±31.6	106.4±28.9
CPVI completed-end, min	33.6±19.3	32.6±28.2
Total fluoroscopic time, min	9.3±5.4	9.7±7.1
Total RF delivery time, min	43.8±18.3	41.9±18.1

eTable 4. Procedural characteristics (per-protocol set)

CPVI, circumferential pulmonary vein isolation; ATA, atrial tachyarrhythmia; AF, atrial fibrillation; CV, cardioversion; PV, pulmonary vein; CTI, cavotricuspid isthmus; LVA, low voltage area; RF, radiofrequency.

Characteristics	+LVA (CPVI plus), n=86	-LVA (CPVI plus), n=123	-LVA (CPVI only), n=117	+LVA (CPVI only), n=88
Male, n (%)	37 (43.0)	70 (56.9)	70 (59.8)	33 (37.5)
Age, years	71.1±4.0	69.9±4.6	70.3±4.0	71.1±4.4
AF history, months	24.0 (7.0, 48.0)	24.0 (4.0, 49.0)	12.0 (4.0, 48.0)	16.5 (5.5, 42.5)
BMI, kg/m²	23.9±4.4	24.5±2.8	24.7±3.0	24.5±2.9
<25, n (%)	58 (70.7)	65 (57.0)	69 (59.5)	53 (61.6)
≥25, n (%)	24 (29.3)	49 (43.0)	47 (40.5)	33 (38.4)
Comorbidities, n (%)				
Hypertension	59 (68.6)	64 (52.0)	77 (65.8)	55 (62.5)
Diabetes	16 (18.6)	15 (12.2)	19 (16.2)	19 (21.6)
CAD	26 (30.2)	24 (19.5)	24 (20.5)	22 (25.0)
Stroke or TIA	4 (4.7)	12 (9.8)	12 (10.3)	8 (9.1)
Congestive heart failure	1 (1.2)	1 (0.81)	1 (0.85)	0 (0.0)
COPD	3 (3.5)	1 (0.8)	2 (1.7)	1 (1.1)
OSAS	0 (0.0)	0 (0.0)	2 (1.6)	1 (0.85)
CHA2DS2-VASc score	2.4±1.0	2.1±1.0	2.3±1.0	2.5±1.0
1, n (%)	16 (18.6)	36 (29.3)	28 (23.9)	18 (20.5)
2, n (%)	28 (32.6)	50 (40.7)	41 (35.0)	24 (27.3)
3, n (%)	30 (34.9)	27 (22.0)	31 (26.5)	34 (38.6)
>3, n (%)	12 (14.0)	10 (8.1)	17 (14.5)	12 (13.6)
LAD, mm	39.3±5.5	38.4±5.4	38.3±5.2	39.4±5.3
LVEF, %	62.3±6.0	62.5±4.7	62.8±6.1	61.9±4.3

eTable 5. Baseline characteristics of the four subgroups (modified ITT)

+LVA (CPVI plus), patients with LVA who received substrate modification; (2) +LVA (CPVI alone); patients with LVA who received CPVI alone; (3) -LVA (CPVI plus), patients without LVA who received CPVI in the "CPVI plus" group; (4). -LVA (CPVI alone), patients without LVA in the "CPVI alone" group. CPVI, circumferential pulmonary vein isolation; AF, atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; TIA, transient ischemic attack; COPD, chronic obstructive pulmonary disease; OSAS, obstructive sleep apnea syndrome; LAD, left atrial diameter; LVEF, left ventricular ejection fraction.

Characteristics	+LVA (CPVI plus), n=86	-LVA (CPVI plus), n=123	-LVA (CPVI only), n=117	+LVA (CPVI only), n=88
ATA at baseline, n (%)	14 (16.3)	19 (15.5)	18 (15.4)	15 (17.1)
AF termination during CPVI, n (%)	21 (24.4)	46 (37.4)	33 (28.2)	21 (23.9)
CV after CPVI, n (%)	8 (9.3)	5 (4.1)	2 (1.7)	0 (0.0)
Non-PV triggers, n (%)	6 (7.1)	11 (8.9)	14 (12.0)	6 (6.8)
Concomitant arrhythmia, n (%)	1 (1.2)	0 (0.00)	0 (0.00)	2 (2.3)
CTI ablation, n (%)	12 (14.0)	12 (9.8)	13 (11.1)	7 (8.0)
LVA, n (%)	86 (100.0)	0 (0.00)	0 (0.00)	88 (100.0)
LVA burden 1-10%, n (%)	65 (75.6)	0 (0.00)	0 (0.00)	74 (84.1)
Area, cm ²	3.93±2.4	0 (0.00)	0 (0.00)	3.6±2.6
LVA burden 11-20%, n (%)	15 (17.4)	0 (0.00)	0 (0.00)	8 (9.1)
Area, cm ²	13.2±1.8	0 (0.00)	0 (0.00)	13.6±3.5
LVA burden >20%, n (%)	6 (7.0)	0 (0.00)	0 (0.00)	6 (6.8)
Area, cm ²	27.9±9.5	0 (0.00)	0 (0.00)	40.6±9.5
Total procedure time, min	147.7±45.0	138.7±34.2	140.6±37.6	137.9±48.4
Begin-CPVI completed, min	108.1±33.7	109.5±30.0	108.4±28.6	104.2±27.2
CPVI completed-end, min	39.6±22.3	29.2±15.2	32.3±21.3	33.6±35.1
Total fluoroscopic time, min	9.6±6.2	9.0±4.7	10.2±6.1	9.1±8.2
Total RF delivery time, min	47.4±19.8	41.3±16.7	42.9±9.1	41.2±16.3

eTable 6. Procedural characteristics of four subgroups (modified ITT)

+LVA (CPVI plus), patients with LVA who received substrate modification; (2) +LVA (CPVI alone); patients with LVA who received CPVI alone; (3) -LVA (CPVI plus), patients without LVA who received CPVI in the "CPVI plus" group; (4). -LVA (CPVI alone), patients without LVA in the "CPVI alone" group. LVA, low voltage area; ATA, atrial tachyarrhythmia; AF, atrial fibrillation; CPVI, circumferential pulmonary vein isolation; CV, cardioversion; PV, pulmonary vein; CTI, cavotricuspid isthmus; RF, radiofrequency.

Characteristics	Subgroup A, n=86	Subgroup B, n=88	Subgroup C, n=240
Male, n (%)	37 (43.0)	33 (37.5)	140 (58.3)
Age, years	71.1±4.0	71.1±4.4	70.1±4.3
AF history, months	24.0 (7.0, 48.0)	16.5 (5.5, 42.5)	14.0 (4.0, 48.0)
BMI, kg/m²	23.9±4.4	24.5±2.9	24.6±2.9
<25, n (%)	58 (70.7)	53 (61.6)	134 (58.3)
≥25, n (%)	24 (29.3)	33 (38.4)	96 (41.7)
Comorbidities, n (%)			
Hypertension	59 (68.6)	55 (62.5)	141 (58.8)
Diabetes	16 (18.6)	19 (21.6)	34 (14.2)
CAD	26 (30.2)	22 (25.0)	48 (20.0)
Stroke or TIA	4 (4.7)	8 (9.1)	24 (10.0)
Congestive heart failure	1 (1.2)	0 (0.0)	2 (0.8)
COPD	3 (3.5)	1 (1.1)	3 (1.3)
OSAS	0 (0.0)	0 (0.0)	3 (1.3)
CHA2DS2-VASc score	2.4±1.0	2.5±1.0	2.2±1.0
1, n (%)	16 (18.6)	18 (20.5)	64 (26.7)
2, n (%)	28 (32.6)	24 (27.3)	91 (37.9)
3, n (%)	30 (34.9)	34 (38.6)	58 (24.2)
>3, n (%)	12 (14.0)	12 (13.6)	27 (11.3)
LAD, mm	39.3±5.5	39.4±5.3	38.3±5.3
LVEF, %	62.3±6.0	61.9±4.3	62.7±5.5

eTable 7. Baseline characteristics of the study population by LVA and treatment (modified intention to treat)

Subgroup A, patients with LVA who received "CPVI plus"; Subgroup B, patients with LVA who received "CPVI alone"; Subgroup C; all the enrolled patients without LVA of both groups; LVA, low voltage area; CPVI, circumferential pulmonary vein isolation; AF, atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; TIA, transient ischemic attack; COPD, chronic obstructive pulmonary disease; OSAS, obstructive sleep apnea syndrome; LAD, left atrial diameter; LVEF, left ventricular ejection fraction.

Characteristics Subgroup A, n=86 Subgroup B, n=88 Subgroup C, n=240 ATA at baseline, n (%) 15 (17.1) 14 (16.3) 37 (15.4) AF termination during CPVI, n (%) 21 (24.4) 21 (23.9) 79 (32.9) CV after CPVI, n (%) 8 (9.3) 7 (2.9) 0 (0.0) Non-PV triggers, n (%) 6 (7.1) 25 (10.7) 6 (6.8) Concomitant arrhythmia, n (%) 1 (1.2) 2 (2.3) 4 (1.7) CTI ablation, n (%) 12 (14.0) 7 (8.0) 25 (10.4) LVA, n (%) 86 (100.0) 88 (100.0) 0 (0.0) LVA burden 1-10%, n (%) 65 (75.6) 74 (84.1) 0 (0.0) Area. cm² 3.93 ± 2.4 3.6 ± 2.6 0±0 LVA burden 11-20%, n (%) 8 (9.1) 0 (0.0) 15 (17.4) Area, cm² 13.2 ± 1.8 13.6±3.5 0±0 LVA burden >20%, n (%) 6 (7.0) 6 (6.8) 0 (0.0) Area, cm² 27.9±9.5 40.6±9.5 0±0 Total procedure time, min 147.7±45.0 137.9±48.4 139.6±35.9 Begin-CPVI completed, min 108.1±33.7 104.2±27.2 108.9±29.2 CPVI completed-end, min 39.6±22.3 33.6±35.1 30.7±18.4 Total fluoroscopic time, min 9.6 ± 6.2 9.1±8.2 9.6 ± 5.4 Total RF delivery time, min 47.4±19.8 41.2 ± 16.3 42.1+17.9

eTable 8. Procedural characteristics of the study population by LVA and treatment (modified intention to treat)

Subgroup A, patients with LVA who received "CPVI plus"; Subgroup B, patients with LVA who received "CPVI alone"; Subgroup C; all the enrolled patients without LVA of both groups; LVA, low voltage

area; ATA, atrial tachyarrhythmia; AF, atrial fibrillation; CPVI, circumferential pulmonary vein isolation; CV, cardioversion; PV, pulmonary vein; CTI, cavotricuspid isthmus; RF, radiofrequency.

Characteristics	Subgroup A, n=84	Subgroup B, n=88	Subgroup C, n=233
Male, n (%)	37 (44.1)	33 (37.5)	137 (58.8)
Age, years	71.0±4.1	71.1±4.4	70.2±3.8
AF history, months	24.0 (6.5, 48.0)	16.5 (5.5, 42.5)	14.0 (4.0, 48.0)
BMI, kg/m ²	23.9±4.5	24.5±2.9	24.6±2.9
<25, n (%)	56 (70.0)	53 (61.6)	129 (57.9)
≥25, n (%)	24 (30.0)	33 (38.4)	94 (42.6)
Comorbidities, n (%)			
Hypertension	57 (67.9)	55 (62.5)	139 (59.7)
Diabetes	16 (19.1)	19 (21.6)	34 (14.6)
CAD	26 (31.0)	22 (25.0)	47 (20.2)
Stroke or TIA	4 (4.8)	8 (9.1)	24 (10.3)
Congestive heart failure	1 (1.2)	0 (0.0)	2 (0.9)
COPD	3 (3.6)	1 (1.1)	2 (0.9)
OSAS	0 (0.0)	0 (0.0)	3 (1.3)
CHA2DS2-VASc score	2.4±1.0	2.5±1.0	2.2±1.0
1, n (%)	16 (19.1)	18 (20.5)	60 (25.8)
2, n (%)	28 (33.3)	24 (27.3)	90 (38.6)
3, n (%)	28 (33.3)	34 (38.6)	56 (24.0)
>3, n (%)	12 (14.3)	12 (13.6)	27 (11.6)
LAD, mm	39.4±5.4	39.4±5.3	38.27±5.3
LVEF, %	62.3±6.1	61.9±4.3	62.7±5.5

eTable 9. Baseline characteristics of the study population by LVA and treatment (per-protocol set)

Subgroup A, patients with LVA who received "CPVI plus"; Subgroup B, patients with LVA who received "CPVI alone"; Subgroup C; all the enrolled patients without LVA of both groups; CPVI, circumferential pulmonary vein isolation; AF, atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; TIA, transient ischemic attack; COPD, chronic obstructive pulmonary disease; OSAS, obstructive sleep apnea syndrome; LAD, left atrial diameter; LVEF, left ventricular ejection fraction.

Characteristics	Subgroup A, n=84	Subgroup B, n=88	Subgroup C, n=233
ATA at baseline, n (%)	14 (16.7)	15 (17.1)	35 (15.0)
AF termination during CPVI, n (%)	20 (23.8)	21 (23.9)	77 (33.1)
CV after CPVI, n (%)	7 (8.3)	0 (0.0)	7 (3.0)
Non-PV triggers, n (%)	6 (7.1)	5 (5.7)	25 (10.7)
Concomitant arrhythmia, n (%)	1 (1.2)	2 (2.3)	3 (1.3)
CTI ablation, n (%)	12 (13.4)	7 (8.0)	25 (10.4)
LVA, n (%)	84 (100.0)	88 (100.0)	0 (0.0)
LVA burden 1-10%, n (%)	64 (76.2)	74 (84.1)	0 (0.0)
Area, cm²	3.9±2.5	3.6±2.6	0±0
LVA burden 11-20%, n (%)	15 (17.9)	8 (9.1)	0 (0.0)
Area, cm²	13.2±1.8	13.7±3.5	0±0
LVA burden >20%, n (%)	5 (6.0)	6 (6.8)	0 (0.0)
Area, cm²	29.5±9.7	40.6±9.5	0±0
Total procedure time, min	146.9±45.0	137.9±48.4	139.3±36.2
Begin-CPVI completed, min	107.3±33.6	104.2±27.2	108.8±29.4
CPVI completed-end, min	39.5±22.5	33.6±35.1	30.6±18.4
Total fluoroscopic time, min	9.7±6.2	9.1±8.2	9.6±5.5
Total RF delivery time, min	47.1±19.9	41.2±16.3	42.0±18.1

eTable 10. Procedural characteristics of the study population by LVA and treatment (per-protocol set)

Subgroup A, patients with LVA who received "CPVI plus"; Subgroup B, patients with LVA who received "CPVI alone"; Subgroup C; all the enrolled patients without LVA of both groups; LVA, low voltage

area; ATA, atrial tachyarrhythmia; AF, atrial fibrillation; CPVI, circumferential pulmonary vein isolation; CV, cardioversion; PV, pulmonary vein; CTI, cavotricuspid isthmus; RF, radiofrequency.

eTable 11. Peri-procedural safety data

Adverse events	CPVI plus, n=209	CPVI alone, n=205
VF during peri-procedure, n	0	1
Vascular access complication, n	1	1
Hemoptysis, n	1	1
Total, n	2	3

CPVI, circumferential pulmonary vein isolation; VF, ventricular fibrillation.

Adverse events	CPVI plus, n=209	CPVI alone, n=205		
Death, n	1	0		
Cancer, n	1	2		
Total, n	2	2		

CPVI, circumferential pulmonary vein isolation.

Characteristics	Male, n=210	Female, n=204
Age, years	70.6±3.9	70.5±4.7
AF history, months	12 (3.0, 36)	24 (6.0, 48)
BMI, kg/m ²	24.4±3.1	24.7±3.2
<25, n (%)	125 (62.5)	120 (60.6)
≥25, n (%)	75 (37.5)	78 (39.4)
Comorbidities, n (%)		
Hypertension	128 (61.0)	127 (62.3)
Diabetes	37 (17.6)	32 (15.7)
CAD	49 (23.3)	47 (23.0)
Stroke or TIA	25 (11.9)	11 (5.4)
Congestive heart failure	2 (1.0)	1 (0.5)
COPD	6 (2.9)	1 (0.5)
OSAS	1 (0.5)	2 (1.0)
CHA2DS2-VASc score	2.0±1.0	2.7±1.0
1, n (%)	77 (36.7)	21 (10.3)
2, n (%)	80 (38.1)	63 (30.9)
3, n (%)	36 (17.1)	86 (42.2)
>3, n (%)	17 (8.1)	34 (16.7)
LAD, mm	39.0±5.5	38.5±5.2
LVEF, %	62.3±5.7	62.6±4.9
LVA prevalence, n (%)	63 (30.0)	104 (50.9)
LVA burden, %	4.6±4.3	9.0±7.8

eTable 13. Baseline characteristics of the study population by sex

CPVI, circumferential pulmonary vein isolation; AF, atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; TIA, transient ischemic attack; COPD, chronic obstructive pulmonary disease; OSAS, obstructive sleep apnea syndrome; LAD, left atrial diameter; LVEF, left ventricular ejection fraction; LVA, low voltage area.

eTable 14. Hazard ratio for primary endpoint after adjustment of study centers, sex, and BMI

		mITT		PPS		
	CPVI alone	CPVI plus	P value	CPVI plus	P value	
HR (95% CI), Model 1	1 (reference)	0.58 (0.37-0.92)	0.021	0.56 (0.35-0.89)	0.014	
HR (95% CI), Model 2	1 (reference)	0.61 (0.39-0.95)	0.030	0.58 (0.37-0.92)	0.020	
HR (95% CI), Model 3	1 (reference)	0.59 (0.37-0.94)	0.025	0.56 (0.35-0.90)	0.016	
HR (95% CI), Model 4	1 (reference)	0.57 (0.36-0.92)	0.020	0.55 (0.34-0.88)	0.013	

Model 1: adjusted for study centers;

Model 2: adjusted for sex;

Model 3: adjusted for BMI;

Model 4: adjusted for study centers, sex and BMI;

mITT, modified intention to treat; PPS, per-protocol analysis, BMI, body mass index; CPVI, circumferential pulmonary vein isolation.

eFigure 1. Sample images of LVA distribution and the corresponding ablation strategies

A: Patients without LVA after CPVI and no additional ablation was needed; **B:** LVA homogenization was performed in the left anterior atrial wall with a short lesion line extended to the right-side PV line; **C and D:** Isolated small patches of LVAs in left anterior atrial body and exterior RIPV antrum, localized homogenizations were performed accordingly; **E and F**, Extensive LVA was mapped in the anterior wall and posterior region of the left atrium. Scar isolation was conducted by placing the lesions encircling the LVA areas. Note that there was an apparent dissociation between the high-voltage pacing within the box area (blue dot) and the left atrial activation. CPVI, circumferential pulmonary vein isolation; LVA, low-voltage area; RIPV, right inferior pulmonary vein.

eFigure 2. Kaplan-Meier curve of the freedom from ATA after single procedure by specificity analysis of clinical-detected event-based finding between CPVI plus and CPVI alone groups by modified intentionto-treat analysis

This graph shows freedom from recurrent ATA following the post-blanking period after a single procedure between CPVI plus and CPVI alone groups by specificity analysis of clinical-detected event-based finding between two groups. ATA recurrence referred to the situation where patients experienced symptoms of palpitation and had documented AF recurrence on an ECG during unscheduled clinical visits. The recurrent events in the proposal-scheduled follow-up were neglected. There was no significant difference in ATA recurrence between the two groups (Hazard Ratio 0.70 [95% CI, 0.31-1.58], Log rank P=0.389).

eFigure 3. Kaplan-Meier curve of the freedom from ATA after single procedure among three subgroups by mITT

The graph demonstrates that patients with LVA who received CPVI alone (Subgroup B) had significantly higher recurrence rate than those without LVA (Subgroup C, P=0.011), and those with LVA receiving modification (Subgroup A, P=0.031), respectively. Note that the curves begin to diverge at 1 year, coinciding with the 12 month 7-day ambulatory monitoring. ATA, atrial tachyarrhythmia; Based on the presence of LVA and the 2 ablation strategies described in protocol section (Supplemental materials, page 18), all patients were divided into three subgroups: Subgroup A, patients with LVA who received "CPVI plus"; Subgroup B, patients with LVA who received "CPVI alone"; Subgroup C, all the enrolled patients without LVA of both groups; CPVI, circumferential pulmonary vein isolation; HR, hazard ratio; CI, confidence interval.

O: h anno 110	No. of Events/Patients (Person-Years)					
Subgroup	Control	Study	HR (95%CI)	Favors CPVI plus	Favors CPVI alone	Interaction P value
Age, y						0.703
<70	26/100 (190)	16/108 (212)	0.56 (0.30-1.04)			
≥70	23/105 (192)	15/101 (200)	0.66 (0.35-1.27)			
Sex						0.024
Male	19/103 (190)	20/107 (211)	1.03 (0.55-1.93)		_	
Female	30/102 (192)	11/102 (201)	0.35 (0.18-0.70)			
BMI, kg/m ²						0.078
<25	34/122 (217)	16/123 (243)	0.46 (0.26-0.82)			
≥25	15/80 (156)	13/73 (138)	0.99 (0.47-2.09)			
AF history, y						0.521
≤1	16/76 (133)	12/78 (149)	0.70 (0.33-1.47)			
>1	26/105 (205)	14/115 (238)	0.48 (0.25-0.92)			
LAD, mm						0.708
<40	18/109 (210)	13/114 (230)	0.68 (0.32-1.38)			
≥40	31/95 (171)	18/93 (180)	0.58 (0.33-1.04)			
CHA2DS2-VASc score						0.853
<3	25/111 (210)	19/130 (258)	0.64 (0.35-1.16)			
≥3	24/94 (173)	12/79 (154)	0.59 (0.29-1.17)			
LVA						0.323
Yes	27/88 (166)	13/86 (167)	0.49 (0.25-0.94)			
No	22/117 (216)	18/123 (245)	0.77 (0.41-1.43)			
All patients	49/205 (382)	31/209 (412)	0.61 (0.39-0.95)			
					1	
				0.1 1	4	
				HR(95%	6CI)	

eFigure 4. Primary endpoint subgroup by mITT analysis

Primary endpoint subgroup analyses. Squares represent point estimates calculated by Cox regression analysis with lines representing the 95% CI. Sensitivity analysis is shown in eTable 14. CI, confidence interval; CPVI, circumferential pulmonary vein isolation; BMI, body mass index; AF, atrial fibrillation; LAD, left atrial diameter; CHA2DS2-VASc score, congestive heart failure, hypertension, age ≥75 years (doubled), diabetes, stroke/transient ischemic attack/thromboembolism (doubled), vascular disease (prior myocardial infarction, peripheral artery disease, or aortic plaque), age 65-75 years, sex category (female); LVA, low-voltage area.

eFigure 5. Kaplan-Meier estimates of the freedom from ATA after single procedure between CPVI plus and CPVI alone groups by intention-to-treatment

This graph shows freedom from recurrent ATA following the post-blanking period after a single procedure between CPVI plus and CPVI alone groups by intention-to-treatment depend on "worst-case" analysis, which means all the patients who declined ablation (one case in study group) or lost to follow-up during the blanking period (9 cases in study group and 14 cases in control group) were assumed to have ATA recurrence at the first 3month follow-up. There is significant reduction in CPVI plus group compared with CPVI alone group (18.7% vs. 28.8%, HR 0.63, [95% CI, 0.43-0.94], P=0.022). Note that the curves begin to diverge at 1 year, coinciding with the 12 month 7-day ambulatory monitoring. CPVI, circumferential pulmonary vein isolation; ATA, atrial tachyarrhythmia; HR, hazard ratio; CI, confidence interval.

eFigure 6. Kaplan-Meier estimates of the freedom from ATA after single procedure between CPVI plus and CPVI alone groups by per-protocol analysis

This graph shows freedom from recurrent ATA following the post-blanking period after a single procedure. There is significant reduction in CPVI plus group compared with CPVI alone group (P=0.02). Note that the curves begin to diverge at 1 year, coinciding with the 12 month 7-day ambulatory monitoring. CPVI, circumferential pulmonary vein isolation; ATA, atrial tachyarrhythmia; HR, hazard ratio; CI, confidence interval.

eFigure 7. Kaplan-Meier curve of the freedom from ATA after single procedure among four subgroups by per-protocol analysis

The graph demonstrates that patients with LVA who received CPVI plus had significantly higher recurrence rate than those with LVA who received CPVI alone (P=0.023). Based on randomization assignment and the existence of LVA, all patients were divided into four subgroups: (1) +LVA (CPVI plus), patients with LVA who received substrate modification; (2) +LVA (CPVI alone); patients with LVA who received CPVI alone; (3) -LVA (CPVI plus), patients without LVA who received CPVI alone; (3) -LVA (CPVI plus), patients without LVA who received CPVI in the "CPVI plus" group; (4). -LVA (CPVI alone), patients without LVA in the "CPVI alone" group. Patients with LVA who received modification in the study group had a significant reduction of ATA recurrence compared to those who did not in the control group (A). Note that the ascertainment of recurrent ATA episodes differed at 12 vs. 3 or 6 months. CPVI, circumferential pulmonary vein isolation; HR, hazard ratio; CI, confidence interval; - LVA = without low voltage area, + LVA = with low voltage area.

The graph demonstrates that patients with LVA who received CPVI alone (Subgroup B) had significantly higher recurrence rate than those without LVA (Subgroup C, P=0.015), and those with LVA receiving modification (Subgroup A, P=0.022), respectively. Note that the curves begin to diverge at 1 year, coinciding with the 12 month 7-day ambulatory monitoring. ATA, atrial tachyarrhythmia. Based on the presence of LVA and the 2 ablation strategies, all patients were divided into three subgroups: Subgroup A, patients with LVA who received "CPVI plus"; Subgroup B, patients with LVA who received "CPVI alone"; Subgroup C, all the enrolled patients without LVA of both groups; CPVI, circumferential pulmonary vein isolation; HR, hazard ratio; CI, confidence interval.

Subgroup	No. of Events/Patients (Person-Years))		latere eti ere
Subgroup	Control	Study	HR (95%CI)	Favors CPVI plus	Favors CPVI alone	P value
Age, y						0.772
<70	26/97 (182)	16/107 (209)	0.55 (0.29-1.02)			
≥70	23/103 (189)	14/98 (195)	0.62 (0.32-1.21)			
Sex						0.021
Male	19/100 (183)	20/107 (211)	1.00 (0.53-1.87)			
Female	30/100 (189)	10/98 (193)	0.32 (0.16-0.66)			
BMI, kg/m ²						0.055
<25	34/118 (209)	15/120 (238)	0.43 (0.24-0.77)			
≥25	15/79 (154)	13/72 (135)	1.00 (0.47-2.10)			
AF history, y						0.393
≤1	16/75 (131)	12/76 (144)	0.70 (0.33-1.49)		-	
>1	26/101 (196)	13/114 (238)	0.43 (0.22-0.84)			
LAD						0.720
<40	18/109 (210)	12/111 (224)	0.64 (0.31-1.33)		-	
≥40	31/90 (160)	18/92 (177)	0.55 (0.31-0.99)			
CHA ₂ DS ₂ -VASc score						0.801
<3	25/107 (200)	19/129 (255)	0.62 (0.34-1.12)			
≥3	24/93 (171)	11/76 (149)	0.55 (0.27-1.12)			
LVA						0.297
Yes	27/88 (166)	12/84 (164)	0.45 (0.23-0.90)			
No	22/112 (205)	18/121 (240)	0.74 (0.40-1.38)	· · ·	-	
All patients	49/200 (371)	30/205 (404)	0.58 (0.37-0.92)			
			C).1 1	4	
				HR (95%CI)	

eFigure 9. Primary endpoint subgroup by per-protocol analysis

Squares represent point estimates calculated by Cox regression analysis with lines representing the 95% CI. Note that LVA ablation in female patients were more beneficial in "CPVI plus" group compared with "CPVI alone" group (P=0.021) according to subgroup interactions analyses. CI, confidence interval; CPVI, circumferential pulmonary vein isolation; BMI, body mass index; AF, atrial fibrillation; LAD, left atrial diameter; CHA₂DS₂-VASc score, congestive heart failure, hypertension, age≥75 years (doubled), diabetes, stroke/transient ischemic attack/thromboembolism (doubled), vascular disease (prior myocardial infarction, peripheral artery disease, or aortic plaque), age 65-75 years, sex category (female); LVA, Low-voltage area.